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ABSTRACT

In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy
of traditional feature matching algorithms within automotive panoramic surround view systems, this paper
has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal
Component Analysis (PCA) and Dual-Heap Filtering (DHF). The algorithm employs PCA to map the feature
points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,
which significantly reduces computational complexity. To ensure the accuracy of feature matching, the algorithm
utilizes Dual-Heap Filtering to filter and refine matched point pairs. To further enhance matching speed and make
optimal use of computational resources, the algorithm introduces a multi-core parallel matching strategy, greatly
elevating the efficiency of feature matching. Compared to Scale-Invariant Feature Transform (SIFT) and Speeded
Up Robust Features (SURF), the proposed algorithm reduces matching time by 77% to 80% and concurrently
enhances matching accuracy by 5% to 15%. Experimental results demonstrate that the proposed algorithm exhibits
outstanding real-time matching performance and accuracy, effectively meeting the feature-matching requirements
of automotive panoramic surround view systems.
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1 Introduction

The automotive panoramic surround view system combines partial road images from multiple
vehicle-mounted cameras to generate real-time 360° panoramic views centered on the current vehicle.
This significantly enhances the vehicle’s perception of the surrounding road environment and improves
driving safety [1–4]. The key to this technology is efficiently matching high-dimensional feature points
across different partial road images. Given the need for real-time road environment perception in
intelligent driving, accurately matching these feature points has become a primary focus and challenge
in the field.
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Currently, researchers have embarked on investigations into feature matching for high-
dimensional images, broadly falling into four categories:

(i) Brute-Force Matching: These algorithms make similarity comparison between the feature
points to be matched and the reference feature points one by one, and takes the reference
feature points with the highest similarity as the best match. Alaee et al. [5] utilized a brute-force
matching method based on Euclidean distance, followed by a ratio test using a dynamic thresh-
old to determine matched point pairs, effectively enhancing matching robustness. Sun et al. [6]
proposed a bidirectional brute-force matching strategy. This strategy computes the distance
ratio between the nearest and second nearest neighbors for the pair of feature points to be
matched. It adjusts the threshold according to the change of the number of feature point pairs,
and solves the problem of one-to-many matching effectively. Although these algorithms can
quickly and accurately match the features with a small number of features and low dimension,
they are less efficient when matching high-dimensional features.

(ii) Feature Dimensionality Reduction: These algorithms reduce computational complexity and
eliminate redundant information by transforming the high-dimensional feature representation
of images into a lower-dimensional representation. Zou et al. [7] introduced a circular region
descriptor extraction method based on the SURF algorithm, reducing the dimensionality of
descriptors. They utilized the minimum Euclidean distance criterion for matching, effectively
enhancing matching speed. Wang et al. [8] proposed a feature dimensionality reduction method
based on local linear embedding. While reducing dimensionality, they retained the local
linear relationships of features, enhancing robustness in deformation and rotation matching.
Although these algorithms can optimize the dimension of feature descriptors to a certain extent
and improve the matching speed, the dimensionality reduction degree is limited, and they are
not suitable for massive high-dimensional feature points between road images.

(iii) Metaheuristic Feature Matching: These algorithms optimize the feature matching process
by using meta-heuristic algorithms, such as genetic algorithm, particle swarm optimization
algorithm, ant colony algorithm, etc. Tran et al. [9] proposed a variable-length particle swarm
optimization algorithm, enabling particles to have different and shorter lengths, thereby
defining a smaller feature matching search space and effectively enhancing matching speed.
Ghosh et al. [10] introduced a feature selection technique based on ant colony optimization
algorithms, combining them with wrapping and filtering methods, and utilizing filtering
methods for feature subset evaluation, thereby reducing computational complexity. Such
algorithm optimizes the feature matching process by simulating biologically inspired thinking,
which is flexible and efficient. However, its performance is limited by the design of heuristic
rules, and it may encounter the problem of local optimal solution in the feature matching
process.

(iv) Deep Learning Matching Algorithms: These algorithms obtain the matching rules between high-
dimensional feature points through large-scale data learning, and realizes efficient and accurate
feature point matching. Ma et al. [11] used a Convolutional Neural Network (CNN) based on
homography transformation to extract feature points. They employed a neural network with
a cross-attention mechanism for high-dimensional feature matching, effectively addressing
the issue of poor feature matching under large disparities and distortion transformations.
Chaudhari et al. [12] combined a neural network with image grayscale information to form
a feature descriptor grid. They used same-name point constraints to match regions, effectively
addressing the matching problem caused by abrupt feature content changes across different
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viewpoints. Such algorithms can automatically learn feature representations and process high-
dimensional feature relationships, but feature matching based on artificial intelligence requires
large computational resources, is poor in real-time, and is more sensitive to abnormal data,
which is prone to overfitting.

It can be seen that the current algorithms for matching high-dimensional features suffer from low
matching efficiency and poor real-time performance. There is still considerable room for improvement
before these algorithms can be practically applied in automotive panoramic surround view systems. To
address these issues and meet the real-time and matching accuracy requirements for local road image
stitching in automotive panoramic surround view systems, this paper proposes a high-performance
dimensionality reduction parallel algorithm, named SUPD (SURF combining PCA and DHF), based
on the SURF algorithm.

Addressing the computational complexity caused by high-dimensional descriptors in traditional
SURF algorithm [13–15], the SUPD employs Principal Component Analysis (PCA) to project the
feature point set onto a lower-dimensional space. It also utilizes the Square Euclidean Distance
(SED), which has lower computational cost, for ranking estimation in feature point matching.
Additionally, to eliminate mis-matching, the SUPD employs the Double Heap Filter (DHF) for feature
point purification. This involves re-projecting the matched point pairs in the PCA space back into
the high-dimensional space for verification, effectively eliminating erroneous matched point pairs.
Furthermore, the SUPD improves the feature point matching process by transforming the traditional
sequential matching process into a grouped matching process, making full use of multi-core computing
resources and enhancing the matching speed of image feature points.

The contributions of this algorithm are as follows:

(1) Dimensionality reduction projection is applied to high-dimensional image feature points,
replacing the high-dimensional Euclidean distance with the square Euclidean distance in a
lower-dimensional space, thereby reducing computational overhead by reducing the dimen-
sionality of feature points and avoiding square root calculations.

(2) To eliminate erroneous matches, the Double Heap Filter algorithm is proposed to filter and
refine the matched point pairs, enhancing the matching accuracy of the SUPD.

(3) To enhance the concurrency performance of the SUPD algorithm, a multi-core parallel
matching strategy is proposed. This strategy involves parallel matching of reference feature
points in a grouped manner, thereby improving the efficiency of feature point matching.

2 System Model

Consider the matching process of the partial road images Gt
i and Gt

j captured by the neighboring
car-mounted camera positions Li and Lj at time t. Define dt

i (ki) as the feature point with index ki in Gt
i

at time t. The set of feature points in image Gt
i can be represented as Dt

i =
{
dt

i (k1) , dt
i (k2) , · · · }. Let Dt

i be
the set of query feature points and Dt

j be the set of reference feature points. In the matching process, the
total number of matched point pairs is obtained by the ratio of nearest neighbor distance to the second
nearest neighbor distance, denoted as Ns(Dt

i, Dt
j). To achieve the correct fusion of partial road images

Gt
i and Gt

j , it is necessary to use a transformation matrix to map the feature point coordinates in Gt
i

to the corresponding feature point coordinates in Gt
j , thereby establishing a geometric correspondence

between the two images. Let matrix H represent the transformation matrix between Gt
i and Gt

j , and Nh

represent the number of matched point pairs satisfying the transformation matrix H.
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Define σi(ki) as the time to complete matching of the query feature point dt
i (ki), i.e., the time taken

to find the nearest reference feature point in Dt
j. Then, the total time t to complete matching of all query

feature points is shown in Eq. (1).

t(σi, n) = ∑n

i=1 σi(ki) (1)

where n = ∣∣Dt
i

∣∣ is the overall number of query feature points.

Define the matching accuracy ξ as the percentage of matched point pairs Nh satisfying the
transformation matrix H out of total matched point pairs Ns(Dt

i, Dt
j), as shown in Eq. (2).

ξ(Ns, Nh) = Nh

Ns(Dt
i, Dt

j)
· 100% (2)

Define the matching efficiency E as the matching accuracy ξ(Ns, Nh) divided by the feature
matching time t(σi, n), the matching process of partial road images can be described as a mathematical
optimization problem as shown in Eq. (3), based on the above definitions.

max E (σi, Ns, Nh) = ξ (Ns, Nh)

t (σi, n)

= Nh(∑n

i=1 σi (ki)
) · Ns

(
Dt

i, Dt
j

) (3)

s. t. ϕ ≥ 4 (4)

where Eq. (3) represents the objective function for completing feature matching in the partial road
images matching process. A higher value of E indicates a better matching efficiency of the algorithm.
Constraint (4) requires the number of correctly matched feature point pairs ϕ to satisfy the generation
condition of the transformation matrix.

3 Implementation of SUPD

In order to meet the requirements of panoramic surround view systems in terms of matching
accuracy and real-time performance, this paper proposes a novel panoramic image feature matching
algorithm named SUPD. This algorithm integrates the advantages of PCA and DHF algorithms,
aiming to perform dimensionality reduction matching and purification filtering on high-dimensional
feature points. Simultaneously, by employing a parallel matching strategy to fully utilize computational
resources, the algorithm further accelerates the matching efficiency.

3.1 Distance Ranking Based on PCA Dimensionality Reductions

Principal Component Analysis (PCA) is a commonly used dimensionality reduction technique.
Its fundamental concept involves projecting high-dimensional data onto a lower-dimensional space,
extracting essential features, and reducing redundant information, thereby offering a more concise and
efficient data representation for subsequent data analysis and modeling processes [16–18]. Applied
to the domain of feature matching, PCA employs a projection matrix P to project the feature point
set from the high-dimensional original space to a lower-dimensional space (PCA space) for distance
estimation. This estimation predicts the similarity between query and reference feature points.

In this paper, singular value decomposition is used to obtain the projection matrix P. For
the matrix S composed of eigenvectors of feature points in the original space, the singular value
decomposition is shown in Eq. (5).
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S = UZV T (5)

where U and V are the eigenvectors of SST and STS, respectively. Z = diag (γ1, γ2, · · · , γn) is a diagonal
matrix, with its diagonal elements being the square roots of the eigenvalues.

From Eq. (5), the eigenvalues and corresponding eigenvectors of matrix S can be obtained.
According to the eigenvalues, cumulative contribution rate μ is computed, and the number of principal
components c corresponding to achieving the cumulative contribution rate is determined using Eq. (6).

μ =
∑c

e λe∑m

e λe

(6)

where m represents the total number of principal components. Reference [19] showed the value of
μ is generally taken to be between 85% and 95%. Here, m represents the total number of principal
components, λe signifies the eigenvalue of matrix S, and e represents the index of the eigenvalue, with
its range spanning from 1 to m.

Once the number of principal components c corresponding to achieving the cumulative contri-
bution rate is determined, the number of retained eigenvectors is obtained, which further yields the
projection matrix P.

After obtaining the projection matrix P, the reference feature point set R = {r1, r2, · · · , rn} and
query feature point qi are projected into the lower-dimensional PCA space, as shown in Eq. (7).{

R′ = PR = {r′
1, · · · , r′

n}
q′

i = Pqi
(7)

Upon completing the projection, the distance between each reference feature point r′
i and query

feature point q′
i in the PCA space can be calculated. To reduce computational cost, the squared

Euclidean distance SED (r′
i, q′

i) is employed to estimate the distance between r′
i and q′, as shown in

Eq. (8).

SED (r′
i, q′

i) = ∥∥r′
i, q′

i

∥∥2 = ∑w

n=1

(
q′

in − r′
in

)2 (8)

where w is the dimension of the PCA space.

The nearest reference feature point r′
i to query feature point q′ can be obtained by ranking the SED

values, generating matched point pairs. Since the principal components retain the crucial information
between points in the original space, the ranking of distances between any two points qi and rj in the
high-dimensional space and the corresponding projection points q′

i and r′
j in the low-dimensional space

are closely related.

As shown in Fig. 1a, considering a three-dimensional vector where q represents the query feature
point and A, B, C, D represent feature points. All feature points are projected into the PCA space for
dimensionality reduction, resulting in the projection points q′, A′, B′, C ′, D′. The distance ranking is
presented in Table 1. In the PCA space, the order of reference feature points based on SED ranking
is A′-B′-C ′-D′, which is the same as the ranking of Euclidean distances (ED) in the original three-
dimensional space A-B-C-D. Finally, matched point pairs are determined by the ratio of distances
between the nearest neighbor and the second nearest neighbor, as shown in Eq. (9).
dqA

dqB

< R (9)
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where dqA represents the distance between the query point q and its nearest point A, dqB represents
the distance between the query point q and its second nearest point B, and R is the distance ratio
threshold, typically set as R = 0.8.

Figure 1: Three-dimensional feature points and their projections in the PCA space. (a) correct matches.
(b) incorrect matches

Table 1: Accurate ranking estimation of three-dimensional feature points

3D ED Rank PCA SED Rank

q − − q′ − −
A 2.7 1 A′ 3.1 1
B 4.1 2 B′ 16.9 2
C 6.3 3 C′ 35.5 3
D 7.8 4 D′ 61.2 4

3.2 Dual-Heap Filtering

Although using the squared Euclidean distance ranking in the low-dimensional PCA space can
predict the similarity between query points and reference feature points, occasional incorrect matches
may occur, as depicted in Fig. 1b and Table 2. In the PCA space, the distance ranking is A′−B′−C ′−D′,
while in the original three-dimensional space, the distance ranking is B−A−C−D. Relying solely on
the distance ranking in the PCA space for matching could lead to erroneous matched point pairs.

To address the aforementioned issue, this paper proposes a Dual-Heap Filtering (DHF) algorithm
based on PCA ranking prediction. DHF maintains two filtering heaps: one in the PCA space called
the filtering heap, and the other in the original space called the validation heap. Each heap retains
the top k nearest neighbor distance results, providing filtering for the projected feature points. The
structure of DHF is illustrated in Fig. 2.
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Table 2: Incorrect ranking estimation of three-dimensional feature points

3D ED Rank PCA SED Rank

q − − q′ − −
A 3.5 2 A′ 1.7 1
B 2.3 1 B′ 5.0 2
C 5.3 3 C′ 22.8 3
D 6.6 4 D′ 42.6 4

Figure 2: Illustration of the dual-heap filtering

When using the DHF algorithm to filter feature points, the first step is to calculate the squared
Euclidean distance (SED) between the projected reference feature point and the query point in the PCA
space. If this squared Euclidean distance is greater than the maximum value in the filtering heap, the
reference feature point is discarded. If the squared Euclidean distance is less than the maximum value in
the filtering heap, the Euclidean distance (ED) between the reference feature point and the query point
in the original space is then calculated. If this Euclidean distance is greater than the maximum value
in the validation heap, the reference feature point is discarded. If it is less than the maximum value,
it is considered a correct judgment. The respective Euclidean distance value and squared Euclidean
distance value are then inserted into the validation heap and the filtering heap, respectively, replacing
their initial maximum values and reordering them accordingly. The specific code implementation is as
follows:

Algorithm 1: Dual-heap filtering
Input: R, R′: A collection of reference points and their projections
Input: q, q′: query point and its projection
Input: k: verify the number of nearest neighbours of the heap
Input: k′: Number of nearest neighbours of the filtered heap
Input: α: Adjustment factor for filter stacks
Output: heap: validation heap: keep k nearest neighbor results
1: for all i ∈ [1, n]
2: �′ = ∥∥q′ − r′

i

∥∥2

(Continued)
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Algorithm 1 (continued)
3: if �′ < heap′.max
4: � = ‖q − ri‖2

5: if � < heap.max
6: heap′.insert (�′)
7: heap.insert (�)

8: end if
9: end if
10: end for
11: return heap

The relationship between the adjustment factor α and the number of the nearest neighbors is
k′ = αk. The parameter α adjusts the size of the filtering heap, effectively reducing the phenomenon
of poor filtering performance caused by using only a portion of the principal component information.
The values of α and k will be achieved through experimental analysis.

3.3 Multi-Core Parallel Matching

Traditional matching algorithms typically involve matching according to the index order of
reference feature points, with each matching task performed on a per-reference-point basis. For
instance, matching algorithms utilizing kd-trees necessitate continuous searching of reference feature
points based on tree-like indexing [20–22]. However, due to the large number of reference feature points
overall, this matching approach imposes a significant computational burden during the matching
process of individual query points, thereby complicating the task of load balancing within the system.

Due to the relatively independent nature of the matching tasks for each reference feature point
in the proposed algorithm, it is particularly suitable for parallel processing when dealing with a large
number of reference feature points [23–25]. To achieve this, we have designed a multi-core parallel
matching strategy, dividing the matching tasks into multiple subsets and concurrently assigning these
subsets to multiple processing cores for parallel computation, as illustrated in Fig. 3.

Figure 3: Schematic diagram of multi-core parallel matching
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During feature matching, the first step involves partitioning the reference feature point set R′,
which has been projected into the PCA space, into w subsets. Subsequently, while sequentially matching
each projected query point q′

i , these subsets are allocated to different threads for parallel computation
within the system. Each subset generates its own k nearest neighbor results. Ultimately, a max-heap
of size k is maintained, where the k nearest neighbor results obtained from each subset serve as the
initial elements of the max-heap. Continuous adjustment of the max-heap is performed by comparing
distance metric values, resulting in the final k nearest neighbor results. This parallel matching strategy
breaks down the originally serial computational tasks into multiple smaller tasks, distributing them
among multiple processor cores for simultaneous computation. This fully utilizes computational
resources and enhances the efficiency of matching feature points. The specific implementation code is
presented as follows:

Algorithm 2: Multi-core parallel matching
Input: R: set of reference points
Input: Q: set of query points
Input: k: number of nearest neighbours
Input: w: number of subset divisions
Output: max_heap: maximum heap
1: divide R into w subsets
2: store subsets in list R_subsets
3: for q in Q
4: knn (R_subsets, q, k)
5: for e in knn
6: if e < max_heap.max
7: max_heap.insert(e)
8: end if
9: end for
10: end for
11: return max_heap

4 Performance Analysis

4.1 Time and Space Complexity

In this section, brute-force search (BF) will be used as a comparative algorithm to analyze the time
and space complexity of the SUPD. For the matching of a single query feature point, the BF algorithm
calculates and matches the distances of all reference feature points in the original space through
exhaustive search [26–28]. Due to the high dimensionality of the original space, the BF algorithm
needs to traverse all reference feature points, resulting in a high space complexity of O (ND), where N
is the number of reference feature points, and D is the dimensionality of the original high-dimensional
space.

However, in the actual matching process, if most unnecessary distance calculations are avoided,
the algorithm’s performance can be significantly improved. The SUPD precisely possesses this
characteristic. This algorithm first projects feature points into a low-dimensional PCA space and then
utilizes the K-nearest neighbors (KNN)-based DHP algorithm for filtering. Although these two steps
introduce some computational overhead, they play a crucial role in reducing the computational load
in the subsequent matching process.
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In the dimensionality reduction process, Principal Component Analysis is used to project feature
points from high-dimensional space to low-dimensional space, thereby eliminating redundant infor-
mation among features. Although PCA involves calculating the covariance matrix and decomposing
eigenvectors, which may incur some computational overhead, it can significantly reduce the amount
of data to be processed in the subsequent matching steps. Therefore, from an overall performance
perspective, this overhead is worthwhile. Next, the DHP utilizes the KNN for filtering. The space
complexity of the KNN mainly stems from the construction of the tree, while the tree search process
does not require additional storage space [29–30]. Although tree construction may introduce some
additional computational overhead, this overhead is negligible compared to the subsequent avoided
matching computations. By filtering out most of the unlikely matching feature points, the DHP
significantly improves the efficiency of the matching process.

Considering these computational overheads, the space complexity of the SUPD after dimensional-
ity reduction and filtering can be approximated as O (Nd), where d is the dimension of the PCA space.
From subsequent experimental results, it can be inferred that d is much smaller than D. Furthermore,
to fully utilize computational resources, this paper divides the reference feature point set into w subsets
and assigns each subset to a thread for parallel matching. This parallelization strategy further reduces
the space complexity to O

(
Nd
w

)
, which is much smaller than the space complexity of the BF algorithm,

O (ND).

Suppose the total time required for the BF algorithm to compute all distances for a single query
feature point in the original space is denoted as TD. However, the SUPD successfully reduces this
time through dimensionality reduction and multi-core parallel matching. By employing principal
component analysis to project feature points into a d-dimensional space, the effective reduction in
dimensionality enables the computation time for matching distances of the given query feature point
to be reduced to d

D
TD. Furthermore, with the utilization of a multi-core parallel matching strategy, the

reference feature point set awaiting matching with the query feature point is divided into w subsets,
allowing the query feature point to match simultaneously with the reference feature points in these w
subsets. This further shortens the total matching time to d

Dw
TD. This indicates that the efficiency of the

SUPD is significantly better than that of the BF algorithm.

4.2 Parameter Range

The principal parameters of the SUPD encompass the number of principal components (c)
required to achieve the cumulative contribution rate, the number of nearest neighbors (k) and
adjustment factor (α) for DHF, and the number of subset divisions (w) into which the projected
reference feature point set is partitioned. In this section, we analyze the specific value ranges for these
parameters, thereby laying the groundwork for subsequent parameter setting experiments.

Firstly, when employing Principal Component Analysis for dimensionality reduction, it is essential
to determine the number of retained principal components, namely the reduced dimensionality. Having
too many principal components (large c values) will result in the data still maintaining a relatively
high dimensionality after reduction, increasing computational overhead. Conversely, too few principal
components will result in the reduced-dimensional data being unable to fully capture the characteristics
of the original data. Therefore, the selection of an appropriate number of principal components
is crucial. The retained number of principal components (c) can be determined by calculating the
cumulative contribution rate (μ). According to reference, a typical range for the value of c is between
85% to 95%. This paper suggests selecting the lower limit cl corresponding to μ = 65%, and the upper
limit cu corresponding to μ = 95%. Consequently, the range for the selection of c is set as [cl, cu],
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with the optimal value for c being determined through experimentation, thereby achieving optimal
dimensionality reduction.

Subsequently, the DHP is employed to refine and extract matching point pairs. The size of the
filtering heap is determined by α × k, where k signifies the count of nearest neighbors within the
validation heap. The validation heap serves to confirm the preliminary refined matching point pairs
within the filtering heap; therefore, an excessively large k is inadvisable. In most k nearest neighbors-
based feature matching algorithms, k is commonly set to 2. Accordingly, this paper also designates
k as 2. The adjustment factor α for the filtering heap influences the count of matching point pairs
obtained after initial filtering. If α is set too large, the computational complexity will increase due to
the use of Euclidean distance in the validation heap calculation in the original high-dimensional space.
Conversely, setting α excessively small might lead to erroneous filtering, where a reference feature point
in the PCA space has a distance greater than the maximum value in the filtering heap. However, in the
original space, the distance between that point and the query point is smaller than the maximum value
in the verification heap. This can result in mistakenly filtering out that point during actual matching.
Moreover, when α = 1, the size of the filtering heap is equal to that of the validation heap, and the
role of the filtering heap cannot be demonstrated. Hence, the selection range of α is set as [2,5], and
the most appropriate α value is determined through experiments to achieve the best filtering effect.

Finally, the projected reference feature point set is divided into w subsets for parallel matching. The
count of subsets w impacts whether computational resources can be utilized to the maximum extent.
The quantity of subset divisions determines the granularity of parallel tasks. Smaller task granularity
reduces memory access conflicts, and facilitates load balancing [31–32]. However, excessively small
divisions may lead to frequent communication and synchronization operations, increasing computa-
tional overhead [33–34]. Additionally, while determining the count of subset divisions consideration
should be given to the count of cores on the experimental platform. The count of cores reflects the
upper limit of tasks that can be executed in parallel. Thus, to maximize the utilization of computational
resources, this paper sets the range for the count of subset divisions as [2,C + 2], where C represents
the maximum count of cores on the experimental platform. The optimal value for w is determined
through experimentation, thus achieving the goal of optimizing algorithm performance.

5 Evaluation

5.1 Experimental Setup

5.1.1 Experimental Platform

The hardware platform for this experiment is an AMD Opteron Processor 6376 CPU @ 2.30 GHz
with 16 MB L3 cache, 16 cores, 32 logical processors, and 128 GB of memory. The software platform
consists of a 64-bit Windows 10 operating system, Visual Studio Code, and OpenCV 4.

5.1.2 Datasets

To meet the research requirements, this paper utilized a self-constructed dataset comprising 100
sets of local road images with a certain degree of overlap. The images are sized at 1000 pixels × 700
pixels and are formatted as JPG. The dataset covers various road scenarios, including urban roads,
rural lanes, highways, etc. It exhibits significant diversity in perspectives, lighting conditions, and
weather conditions to better reflect the complexity of real road environments.
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5.1.3 Evaluation Metrics

1) Total Matching Time (total_time): The sum of feature extraction Te and feature matching time
Tm, where the feature matching time includes the time spent on excluding incorrect matches
and performing local optimizations. Its definition is shown in Eq. (10).

tota_time = Te + Tm (10)

2) Matching Accuracy (matching_accuracy): As an evaluation metric for algorithm precision,
matching accuracy is the percentage of correctly matched point pairs Nc out of the total
matched point pairs Ns. Its definition is shown in Eq. (11).

matching_accuracy = Nc

Ns

· 100% (11)

3) Root Mean Square Error of Matches (MERD): The root means square error between the
coordinates (xi, yi) of query feature points and the coordinates

(
x′

i, y′
i

)
of reference feature

points transformed by the projection transformation model fh(x). MERD can effectively assess
the matching quality of the overall point pairs between query images and reference images. A
smaller MERD indicates better overall matching quality, while a larger MERD indicates poorer
overall matching quality. Its definition is shown in Eq. (12).

MERD =
√√√√ 1

Ns

Ns∑
i=1

∥∥(xi, yi) − fh

(
x′

i, y′
i

)∥∥2
(12)

5.2 Parameter Determination

This section establishes the precise values of each parameter when the algorithm achieved optimal
performance through experimentation, based on the parameter ranges analyzed in Section 4.2. Before
the experiments were conducted, the evaluation criteria for parameter selection were first defined as
follows:

a) Speedup Ratio: Matching time of brute-force matching divided by the matching time of the
algorithm proposed in this paper.

b) Acceleration Ratio: Serial matching time of the algorithm divided by parallel matching time.
c) Comprehensive Efficiency Index: This index is obtained by multiplying the speedup ratio with

the matching accuracy rate, thereby comprehensively considering the algorithm’s runtime and
matching precision.

According to the analysis in Section 4.2, it is calculated that the number of principal components
corresponding to the cumulative contribution rates of 55% and 95% for the dataset are 5 and 20,
respectively. Therefore, this study analyzes the number of principal components, denoted as c, within
the range of [5, 20] to evaluate their impact on algorithm performance. Additionally, considering that
the number of principal components, c, and the adjustment factor α of the filter heap may mutually
influence each other within different ranges of values, while the subset partition number, w, remains
relatively independent. Thus, with the assumption of w = 10, the experimental analysis is conducted
to investigate the effects of the number of principal components, c, and the adjustment factor α on
algorithm performance.

The experimental results are shown in Fig. 4, demonstrate a similar trend between the compre-
hensive efficiency index and the number of principal components under different conditions of the
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filter heap adjustment factor α. Within the specified range, smaller values of α correspond to larger
overall comprehensive efficiency index values. Simultaneously, as the number of principal components,
c, increases, the retained feature information also increases correspondingly, leading to a significant
increase in matching accuracy and thereby an increase in the comprehensive efficiency index. However,
when the value of c exceeds a certain threshold, the improvement in matching accuracy gradually
stabilizes, while the matching time increases accordingly, resulting in a decrease in the comprehensive
efficiency index. Therefore, based on the experimental results, the optimal (c, α) for the dataset in this
paper is determined to be (14, 2).
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Figure 4: Influence on the performance of the algorithm for the number of principal components (c)
and adjustment factor (α)

Considering the relatively high independence of the number of subset divisions (w), which is
unaffected by the number of principal components and the adjustment factor of the filtering heap,
this study will conduct separate experiments to analyze its influence on algorithm performance.

The experimental results are depicted in Fig. 5. With the increase of w, the acceleration ratio
demonstrates a rising trend. When w reaches the maximum number of cores available on the
experimental platform, the acceleration ratio reaches its peak. This indicates optimal utilization
of computational resources, resulting in minimized matching time. However, it is noteworthy that
surpassing the maximum number of cores may lead to parallel computing issues, such as increased
scheduling overhead and load imbalance. Consequently, this may cause a gradual decline in the
acceleration ratio and a corresponding extension of the matching time. Therefore, based on the
experimental findings, the most suitable subset number, w, is determined to be 16.

5.3 Experimental Results

To verify the performance of the SUPD, this paper divides the data set into 5 groups according
to the complexity of color and texture, and the complexity of the experimental group increases from
1 to 5. For each experimental group, the average values of matching total time, matching accuracy,
and MERD were calculated. Additionally, comparative experiments were conducted with traditional
SIFT and SURF to obtain more comprehensive performance comparison results. Both SIFT and
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SURF algorithms were paired with the built-in brute-force matching algorithm in OpenCV for feature
matching.
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Figure 5: Influence on the performance of the algorithm for the number of subset divisions

5.3.1 Total Matching Time

Total matching time as a significant metric effectively measures the real-time performance of
algorithms. Fig. 6 presents a comparison of the total matching time between the SUPD and two
other traditional algorithms. It is evident that the SUPD outperforms the conventional SIFT and
SURF in terms of total matching time, reducing the time by 77% to 80%. This improvement in real-
time performance stems from the specific design of the SUPD. The algorithm employs Principal
Component Analysis to perform dimensionality reduction on feature descriptors, effectively reducing
computational complexity. Additionally, the SUPD introduces a multi-core parallel matching strategy,
allowing multiple processing cores to simultaneously execute matching operations. This not only
accelerates the computation process but also enhances system throughput, significantly boosting the
overall algorithm’s running speed.

5.3.2 Matching Accuracy

Matching accuracy effectively reflects the precision and robustness of feature matching algo-
rithms. Its calculation method is shown in Eq. (11). Fig. 7 illustrates the comparison results of
matching accuracy between the SUPD and two other traditional algorithms. The comparison reveals
that compared to traditional SIFT and SURF algorithms, the SUPD improves accuracy by 5% to 15%.

To provide a more intuitive representation of the contrasting matching accuracy, this paper takes
the matching results of the first experiment in the third group as an example to analyze the relative
performance of the SUPD against the traditional SIFT and SURF in terms of matching accuracy, as
shown in Fig. 8.
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Figure 7: Matching accuracy of SIFT, SURF and SUPD

From Fig. 8c,d, it can be seen that traditional SIFT and SURF exhibit a significant number of
issues like cross-matching and repetitive matching, leading to lower matching accuracy. In contrast,
the matching effect of the SUPD is shown in Fig. 8e. The algorithm filters and refines the matched
point pairs using the two maintained filtering heaps in the DHF algorithm. This process effectively
reduces false matching and ensures a high level of matching accuracy.
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(a) query image (b) reference image

(c) SIFT

(d) SURF

(e) SUPD

Figure 8: Matching results of different algorithms. (a) The query image. (b) The reference image. (c)
SIFT algorithm (d) SURF algorithm. (e) SUPD algorithm

5.3.3 Matching Error Root Mean Square

In order to provide a more intuitive representation of the overall matching quality between feature
point pairs, this paper introduces the Matching Error Root Mean Square (MERD) as an evaluation
metric. A smaller MERD value indicates higher overall matching quality between feature point pairs,
whereas a larger MERD value suggests poorer matching quality. The calculation formula for MERD
is given in Eq. (12). Fig. 9 illustrates the comparison results of the SUPD and two other traditional
algorithms in terms of MERD. It can be observed that the MERD values of the SUPD are consistently
lower than those of the SIFT and SURF, with reductions ranging from 12% to 32%. This indicates
that the SUPD exhibits superior performance in matching feature point pairs overall, enabling more
accurate matching of high-dimensional features between local road images.



CSSE, 2024, vol.48, no.5 1345

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

M
ER

D

Experimental Group ID

 SIFT  SURF   SUPD
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6 Conclusions

Addressing the inefficiencies of traditional image feature matching algorithms in handling high-
dimensional feature points within partial road images, this paper proposes a high-performance dimen-
sionality reduction and parallel matching algorithm that combines Principal Component Analysis
(PCA) and Dual-Heap Filtering. Through PCA, the algorithm projects the feature point set into
a lower-dimensional space and employs squared Euclidean distance for rank estimation, effectively
reducing the computational complexity during the matching process. Furthermore, to ensure the
accuracy of feature matching, the proposed algorithm employs the Dual-Heap Filtering for refining
matched point pairs. In addition, the algorithm utilizes a parallel structure to fully leverage compu-
tational resources, enhancing the overall matching speed. Experimental results demonstrate that the
proposed algorithm holds distinct advantages over traditional image feature matching algorithms in
terms of total matching time, matching accuracy, and MERD. Thus, the algorithm strikes a balance
between matching accuracy and real-time performance, making it suitable for efficient matching of
high-dimensional feature points in partial road images.

Despite the advantages presented by this algorithm, there are challenges that might arise when
it is applied to extremely large datasets, especially within environments constrained by limited
computational resources. In response to these challenges, future research will be directed towards
the development of more effective strategies and optimization techniques. This includes plans to
update the experimental equipment and to conduct experiments with a broader range of datasets
to enhance the scalability and robustness of the algorithm in complex environments. Furthermore,
the integration of machine learning methods for the automatic adjustment and optimization of the
algorithm’s parameters is under consideration. Such steps are anticipated to improve the adaptability
and performance of the algorithm in various application scenarios.
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