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ABSTRACT

After the spread of COVID-19, e-learning systems have become crucial tools in educational systems worldwide,
spanning all levels of education. This widespread use of e-learning platforms has resulted in the accumulation of
vast amounts of valuable data, making it an attractive resource for predicting student performance. In this study,
we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds
datasets. The stacking method was employed for modeling in this research. The proposed model utilized weak
learners, including nearest neighbor, decision tree, random forest, enhanced gradient, simple Bayes, and logistic
regression algorithms. After a trial-and-error process, the logistic regression algorithm was selected as the final
learner for the proposed model. The results of experiments with the above algorithms are reported separately for
the pass and fail classes. The findings indicate that the accuracy of the proposed model on the OULAD dataset
reached 98%. Overall, the proposed method improved accuracy by 4% on the OULAD dataset.
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1 Introduction

The widespread adoption of data mining techniques has revolutionized research across various
domains, with educational data mining (EDM) emerging as a prominent area of focus [1]. Within e-
learning specifically, understanding student engagement, interaction patterns, and academic progress
presents significant challenges [2]. Traditional classroom settings allow for relatively straightforward
assessment methods like exams and quizzes. However, e-learning environments introduce a unique
online context that can lead to a lack of well-defined, easily quantifiable, or precise evaluation criteria.

The COVID-19 pandemic further accelerated a remarkable shift from in-person classrooms
to remote e-learning platforms, demanding rapid adaptation from both educators and students
[3—5]. While Learning Management Systems (LMS) have become ubiquitous in education, evaluating
their effectiveness within this evolving landscape is crucial, given the ever-increasing integration of
technology in modern pedagogy [6].
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A persistent research gap exists regarding the prediction of student performance using metrics
that capture their engagement and participation levels in online courses. Early identification of
students who may struggle academically allows for targeted interventions, ultimately improving the
effectiveness of e-learning platforms. These insights benefit not only students by providing them with
additional support, but also educators and institutions, enabling them to refine their approaches and
learning materials more efficiently [7,8].

While numerous studies have explored student performance prediction using various machine
learning (ML) methods, the use of stacking ensembles has been less common in this domain, especially
considering the limited availability of standard datasets. The Deeds and OULAD datasets are the
most widely used in such studies. Notably, a review of previous research revealed a lack of studies
employing stacking methods for student performance prediction, particularly on the Deeds and
OULAD datasets.

Stacking ensembles, a type of ensemble learning technique, combine the predictions from multiple
base models to create a more robust and accurate final prediction [9]. By leveraging the strengths of
multiple models, the stacking approach has the potential to improve the generalizability and accuracy
of student performance predictions in e-learning environments.

This research aims to bridge this gap by proposing a novel model for predicting student perfor-
mance. [t leverages the stacking method on two well-recognized datasets, Deeds and OULAD. Similar
to prior works on these datasets, this study aims to enhance prediction accuracy of performance, but
through the application of the stacking technique. Stacking ensembles have demonstrated the potential
to improve the performance of individual machine learning models [10]. By leveraging the strengths of
multiple models, the stacking approach can potentially lead to more robust and accurate predictions
of student performance in e-learning environment.

The contribution of this paper comprises:

e The utilization of stacking modeling for predicting students’ performance.

e Improving the prediction accuracy of students’ performance on two standard datasets, Deeds
and OULAD.

e Evaluation of K-nearest neighbor (KNN), random forest, simple Bayes, XGBoost, logis-
tic regression, and decision tree algorithms using a trial-and-error approach with stacking
appraoch.

e Best accuracy achieved by selecting Logistic regression as the meta-model and employing KNN,
random forest, simple Bayes, XGBoost, logistic regression, and decision tree as base learners
on the OULAD dataset.

e Best accuracy obtained by selecting decision tree as the meta-model and utilizing KNN, random
forest, simple Bayes, XGBoost, logistic regression, and decision tree as base learners on the
Deeds dataset.

The remainder of the paper proceeds as follows: Previous works are reviewed in Section 2.
Research methodology is presented in Section 3. Section 4 presents the research findings and their
evaluation, followed by the conclusion.

2 Related Works

Considerable research has been conducted in the realm of educational data mining, and in this
section, we will delve into relevant literature. Bolliger et al. [11] elucidated educational interaction
theory, drawing from the work of Moore [12]. Moore’s theory delineates three types of interaction
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crucial for student motivation and participation in classrooms: learner-learner, learner-instructor, and
learner-content interactions. Cole et al. [13] identified student isolation as a key challenge in online
learning. They also note that in traditional classrooms, instructors can tailor teaching methods to
foster student interaction and engagement, redirecting attention to the lesson.

Moubayed et al. [14] analyzed student participation rates, emphasizing the necessity of examining
indicators linked to student performance alongside tracking system events. Batool et al. [1] proposed
a neural network-based model for predicting student performance, stressing the significance of
metrics such as time spent watching instructional videos, particularly in video-conferencing-based
classes.

Ali et al. [15], through questionnaire-based research, revealed that 37.8% of participants prefer
e-learning, with a majority suggesting more online practice exams before final evaluations. Con-
volutional neural networks are employed in evaluating student participation, as demonstrated by
Bhardwaj et al. [16], who assesses student engagement in online classes using neural networks.

Semerci et al. [17] employed Convolutional Neural Networks (CNN) to generate heat maps,
with activity and performance as primary research factors. Their study concludes that deep learning
methods are optimal for discerning student activity patterns. Gray et al. [18] proposed criteria for
measuring student interaction in face-to-face classes, noting that students with minimal interaction,
merely present in the classroom, during initial weeks are at risk of course failure.

Lincke et al. [19] examined the correlation between e-learning activities and test performance,
leveraging Rich Context Model (RCM) and ML for performance prediction. Lu et al. [20] investigated
the link between attendance and performance in Technology Enhanced Learning (TEL) courses,
finding that mandatory attendance does not enhance academic outcomes, emphasizing the importance
of motivation and engagement for success.

Mubarak et al. [21] modeled student performance through graph convolution, basing classifica-
tion on video consumption and viewing duration. Hao et al. [22] analyzed e-learning data and predict
student performance utilizing the OULAD dataset and Bayesian theory.

Hussain et al. [23] introduced a model to predict students’ future challenges within the Technology
Enhanced Learning (TEL) system using the Matlab. Brahim [7] demonstrated the predictability
of student performance by analyzing engagement reports from the DEEDs dataset. The study
found that the Random Forest algorithm yielded the highest accuracy at 97%, with an F1 measure
of 97%.

Ahamad et al. [24] assessed the predictive capability of various classification algorithms for
determining students’ knowledge levels. Initiallyy, GNB, MLP, Fuzzy, NN, and Random Forest
algorithms were applied to the UCI dataset. Subsequently, summarization, voting methods, and
different stacking algorithm combinations were employed. Huang et al. [25] utilized the Long Short-
Term Memory (LSTM) method to develop a model for identifying students at risk of failure.

Dermy et al. [26] aimed to illustrate the dynamics of students’ digital behavior, utilizing the
OULAD dataset for its comprehensive session-wise student transaction records, ideal for behavioral
analysis. Jha et al. [27] employed regression and deep learning methods to predict student academic
outcomes, distinguishing between students who remain enrolled and those who drop out. Similarly,
Souai et al. [28] proposed methods for predicting academic failure, utilizing the OULAD dataset
and categorizing performances into Pass, Fail, Withdraw, and Distinguished groups. They applied
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the Bidirectional Long Short-Term Memory (BLSTM) method for modeling. Yang et al. [29] devised
a predictive model for student performance by integrating multiple features. Their approach employed
a deep neural network capable of automatic feature engineering.

In [30], the study explored the connection between student engagement in activities and academic
performance through three approaches: statistical methods, data analytics, and machine learning
(ML), employing methodological triangulation. Findings from this triangulation indicated that
students who have a solid academic foundation from secondary school are more likely to engage in
activities focused on developing generic competencies.

Another study [31], a series of early detection models was introduced to determine suitable
support programs for students entering with suboptimal scores or to initiate interventions for those
facing difficulties. These models are advantageous as they rely on minimal academic history data,
facilitating early identification of students at risk of dropping out and enabling timely implementation
of interventions and retention strategies.

In [32], researchers proposed a study focused on automatically predicting student engagement in
online learning through continuous video streaming. To analyze the videos, they implement a tool
utilizing an ensemble of LSTM to predict engagement levels from, gaze behavior, facial expressions
and head pose.

Kukkar et al. [33] used Recurrent Neural Network (RNN) to forecast students’ performance.
Nonetheless, while current performance prediction systems, based on Deep Learning (DL) technolo-
gies like Recurrent Neural Network (RNN), are more accurate than ML-based systems, they still
encounter challenges such as ignoring relevant features, limited data analysis, and unclear student
records.

Alsulami et al. [34] introduced a model incorporating three conventional data mining algorithms:
random forest, Naive Bayes, and decision tree, augmented by three ensemble approaches: voting,
boosting and bagging. The findings indicated that this approach enhanced accuracy from 0.75 to 0.77
when employing the decision tree with boosting.

Nayak et al. [35] conducted an analysis using two distinct datasets: the Kalboard 360 dataset, a
comprehensive collection encompassing academic, demographic, and class-related behavioral features;
and a dataset from a local institute which, in contrast, does not include behavioral features. Their study
involved the application of various machine learning algorithms such as Random Forest (RF), Naive
Bayes (NB), Decision Tree (J48), and Multilayer Perceptron (MLP) to classify students.

Table | shows a comparison of the related works. The aforementioned studies demonstrate
promising results through the application of machine learning, deep learning, and ensemble methods.
These ensemble techniques have shown superior performance compared to individual classifiers.
However, existing literature lacks clear guidelines on feature selection and combination methods for
ensemble modeling. Moreover, previous studies often rely on survey-based data collection, providing
limited information. In this study, we propose employing ensemble techniques on two scalable and
widely used databases, addressing the scalability issue often overlooked in prior ensemble method
research.
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Table 1: Comparison of the related works
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Reference Dataset

Research method

Highlights

[11]

[27]

[1€]

[15]

[16]

[17]

[19]

20]

[21]

22

Data collection from students,
and faculty members of
American universities

OULAD

The dataset collected from
Banglor University in
England

DEEDs

Data collected from the
university

Data collected from the
University of Ontario,
Canada

ucCl

Dataset collection from
students of face-to-face and
online classes

Collected from two
universities of Fujairah and
Ajman

FER-2013/MES

The dataset collected from
students of computer science
and political science
Hypocampus platform dataset

The dataset collected from
West University in Canada
CAROL

OULAD

Statistical methods,
average and standard
deviation, and
percentage

Gradient boosting
machine

WEKA deep learning,

classification algorithms

ML, LR, ANN, SVM,
GNB

DL and ANN

DN and k-means
algorithm

Using stacking
algorithms

Multiple regression,
statistical analysis of
mean, median, mode,
std deviation
Statistical methods,
percentage, average

Deep learning CNN

CNN deep learning

Deep learning,
XGBoost, Neural
network

Structural equation
model

Graph convolution
network

Bayesian network

Introduction of important
and influential interactions
in class and their analysis

Focus on dropout
probability prediction
Creating HeatMap

Predicting the difficulty of
educational materials for
each student

High accuracy

Identifying behaviors
associated with low
participation

High accuracy

Introduction of
appropriate framework
and parameters

Evaluation of students’
satisfaction with distance
learning

Using facial expressions
emotions

Heatmap created CNN

Differentiated approach
and examining the
relationship between study
and test

Using learning analytics
tools in data collection
Using GCN method

Using the Bayesian
network method

(Continued)
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Table 1 (continued)

Reference Dataset Research method Highlights
[ DEEDs Classification Activity based
algorithms of RFC, classification
SVM, MLP, LR, and
GNB
[25] OULAD LSTM Improved accuracy over
reference models
[26] OULAD PROMPs Focus on student behavior
dynamics
[28] OULAD BLSTM High accuracy
[29] Data collected from FDPN method Automated data
University engineering and using the
factorial method
[30] MOOC GCDA Usage of different models
[31] Student dropout dataset Stacking Focused on weak learner
selection
32] DAISEE LSTM High accuracy

3 Materials and Methods

As illustrated in Fig. 1, this study comprises multiple stages. It predominantly involves integrating
traditional ML techniques with the newly proposed stacking algorithm. While some steps are common
between the two approaches, others exhibit distinctions. The following delineates the sequential stages
of the research.

3.1 Data

The research utilized two primary datasets: the OULAD standard dataset (Kuzilek et al. [36])
and the Deeds dataset [37]. The OULAD dataset comprises 9,859,080 records from 32,592 students,
encompassing diverse data such as student demographics, exam dates and grades, as well as data
regarding student interactions with the Virtual Learning Environment (VLE). This dataset is com-
prised of seven CSV files. On the other hand, the Deeds dataset contains 230,318 records detailing the
time series of student activities across six laboratory sessions in a digital course at the University of
Genoa. Each session is represented by a folder containing student data, with each folder containing
up to 99 CSV files, each corresponding to a specific student’s report during that session. The number
of files in each folder varies based on the number of students present in the session.

3.2 Data Pre-Processing

This section provides a detailed account of the preprocessing procedures applied to the OULAD
and Deeds datasets. Despite the widespread use of the Deeds and OULAD datasets in various
studies, achieving satisfactory results without fundamental preprocessing of the data from these two
datasets is challenging. Microsoft SQL Server software was employed to preprocess and refine the final
dataset. Given that some features are in VARCHAR format, operations on this type of data cannot
be performed using Python and ML libraries. Therefore, text formats were converted to numeric
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values to facilitate processing. Subsequently, certain data, such as the week_to, week_from, and
Date_unregistration, were eliminated due to a significant number of Null values, which contributed
to data noise. This operation substantially reduced data noise.

[ Dataset Selection ]

[ Data Preprocessing ]

Data Engineering and
Feature Selection

Basic Methods

Choosing the
Most Suitable

K-Nearest

5 Neighbors
Weak Learner Logistic
Regression
Decision Tree
Random Forest
Naive Bayes
Choosing the XGBoost
Most Suitable

Metamodel

Calculate
Accuracy of
Stacking Model

Calculate Accuracy
of Each Classification
Algorithm

Evaluation of Accuracy of
Models
5-Fold Cross Validation

Figure 1: General process of the methodology

In the subsequent step, null values were identified across the entire dataset, and rows containing
these values were deleted. Following this, the desired features for the final dataset were selected
based on the R2 coefficient, encompassing columns such as date, weight, module_presentation_length,
date_submitted, score, region, imd_band, age_band, num_of_prev_attempts, id_site, sum_click, and
activity_type. It is essential to emphasize that the OULAD dataset is vast. Without appropriate
preprocessing procedures, obtaining satisfactory results from model execution is improbable.

To outline the steps taken:

o Integration of seven separate tables provided in the OULAD dataset to form a consolidated
final table.

e Elimination of features containing null or zero values, resulting in the creation of a sparse
matrix.

e Determination of correlation coefficients for the features and subsequent selection of final
features based on this criterion.

It is imperative to note that the OULAD dataset is extensive, and without proper preprocessing
operations, achieving satisfactory results from model execution is unlikely. In summary, the steps
conducted are as follows:
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1. Integration of 7 separate tables provided in the OULAD dataset and creation of a final table.

2. Removal of features with null or zero values and creation of a sparse matrix.

3. Calculation of correlation coefficients for the features and selection of final features based on
this criterion.

Python was also utilized for preprocessing the Deeds dataset. Initially, all data collected from
meeting files, average grades, final grades, and logs were processed. Subsequently, records of students
who did not attend all six sessions were discarded. Among students attending all sessions, those
who did not partake in the final exam were excluded. The average grades table was then merged
with the final grades, followed by cleaning of behavioral data related to students. As the system
stored all student activities in a transactional format, using raw data was impractical due to unrelated
transactions causing noise. Data with “other” or empty values in the activity attribute were removed
to mitigate noise. Additionally, features indicating class start and end times were leveraged to create a
new feature called class duration. Furthermore, the feature of idle time, although accurately recorded,
was deemed unreliable in indicating whether the student was studying or engaging in other activities.
Hence, this feature was removed from the dataset. Finally, the grades table was merged with the table
of students’ behavioral features for the final analysis. It is noteworthy that the limited number of
records in the Deeds dataset makes it particularly susceptible to noise, underscoring the sensitivity
of the preprocessing process for Deeds.

3.3 Classic ML Algorithms

This section delineates the execution of six classic ML algorithms: nearest neighbor, random
forest, decision tree, simple Bayes, logistic regression, and enhanced gradient. The dataset was
partitioned into 70% for training and 30% for testing purposes.

The SKlearn library, along with the KNeighborsClassifier() module, facilitated the execution
of K-nearest neighbor (KNN) algorithm. Logistic regression was implemented using the logistic
regression() module from the SKlearn library. For decision tree and random forest algorithms, the
DecisionTree() and RandomForestClassifier() modules were employed, respectively. The simple Bayes
algorithm was executed using the GaussianNB() module. The Extreme Gradient Boosting algorithm
was implemented using the XGboost library, with the XGBClassifier() module, and executed with its
default hyperparameters.

3.4 Stacking Algorithm

In the initial stages of the research, attempts were made to utilize the StackingClassifier module
from both the mlxtend.classifier and sklearn.ensemble libraries. However, upon implementing this
method, it was observed that, despite various efforts, the highest accuracy achieved using these
modules did not significantly surpass that of the basic models (weak learners). Furthermore, these
libraries are designed in a manner that consumes considerable system resources such as RAM and
processor. Consequently, this results in long processing times; for instance, executing a stacking
algorithm on the OULAD dataset required 49,781 s, equivalent to approximately 13 h and 50 min.
These timeframes were recorded using a system with the specifications detailed in Table 2. To address
these issues, efforts were made to rewrite the stacking algorithm to be more lightweight.

As mentioned before we rewrite and improve the stacking algorithm. For this at first, the basic
models or weak learners were defined; then, six classifiers of logistic regression, decision tree, random
forest, simple Bayes, nearest neighbor, and enhanced gradient were performed. After this, the final
learner of the model was defined to start the stacking process (Fig. 2).
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Table 2: Hardware specifications

Specification of the system

CPU Intel(R) Core(TM) i5-11400H CPU @ 2.70 GHz, 2688 MHz,
6 Core(s), 12 Logical processor(s)

RAM 3200 SO-DIMM-16 GB DDR4

GPU GeForce RTX 3050 GDDR6
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Figure 2: The proposed stacking model components

Stacking begins with employing the K-fold cross-validation method for each classifier in the
ensemble of weak learner models. Subsequently, the training data outputs serve as the input for the
final learner model, while the test data outputs are designated as the test data for the final learner
model. In other words, instead of aggregating or averaging the outputs of weak learners, these outputs
are utilized as inputs for another model. It should be noted that for regression problems, the outputs
of weak learners are in the form of real values, whereas for classification problems, the outputs can
be probability values or class labels. Given that this research deals with a classification problem, class
labels are utilized for the outputs. Weak learners often comprise models with high complexity and
varied nature, while meta-models typically consist of models with low complexity. For instance, logistic
regression algorithms are employed for classification tasks, and linear regression algorithms are used
for regression tasks. However, depending on the nature of the problem and the data, any algorithm can
be employed. In implementing this stage, it is crucial to recognize that unlike Bagging, which utilizes
multiple weak learners, and unlike Boosting, which utilizes only one model to combine weak learners,
Stacking employs multiple weak learners and only one model for combining them.

4 Result

In this section, we present the results of both this stacking method and traditional ML methods
using the OULAD and Deeds datasets in e-learning. Additionally, we compare the obtained results.
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We utilized the GridSearchCV module in all sections to determine the best parameters. Four metrics—
F1 Score, Precision, Recall, and Accuracy—have been taken into account in executing simple data
mining algorithms. Figs. 3 to 6 illustrate the calculation of F1 Score, Precision, and Recall metrics for
both “failed” and “pass” classes. Although k-fold cross-validation commonly relies on accuracy as
the primary evaluation metric, it is not the only metric used. Accuracy, which defines the proportion
of correctly classified instances relative to the total dataset, is preferred for its simplicity and
comprehensive reflection of model performance. Additionally, it serves as a widely used benchmarking
metric across various studies. Therefore, to ensure comparability and validity in evaluating one’s work
against others, accuracy remains a commonly used evaluation metric. In this study, accuracy is also
selected as the primary evaluation metric to enable meaningful comparisons with existing literature.

Evaluation metrics for OULAD Failed Class

1.2
B Accuracy M Precision ®Recall ®F1-Measure

1
0.
0.
0.
0.
0
KNN GNB DTC LR XGB RFC

Algorithms

Evaluation Metric Value
E [e)} oo}

]

Figure 3: Precision, recall, and F1 measure for the failed class (OULAD)

Evaluation metrics for OULAD Pass Class
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Figure 4: Precision, recall, and F1 measure for the pass class (OULAD)

4.1 The Results of Implementing Traditional ML Algorithms

This section presents the outcomes of applying traditional ML algorithms to the OULAD dataset.
Figs. 3, 4, Tables 3 and 4 depict the precision, recall, and F1 measure criteria results for the KNN,
simple Bayes, decision tree, logistic regression, enhanced gradient, and random forest algorithms
concerning the OULAD dataset. As illustrated in Figs. 3, 4, Tables 3 and 4, the random forest
algorithm achieves the highest precision result of 95% in the pass class, while the KNN attains the
best performance with 98% precision in the failed class. Regarding recall, the random forest algorithm
demonstrates the best results in both pass and fail classes, with 92% and 98%, respectively.
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Additionally, the F1 measure yields the highest outcomes for the random forest algorithm with
94% in the pass class and for both the KNN and random forest algorithms with 98% in the failed class.
Figs. 5 and 6 and Tables 5 and 6 display the results of the Deeds dataset, wherein the KNN algorithm
and the Naive Bayes classifier exhibit the highest accuracy of 65%.

Evaluation metrics for DEEDs Failed Class

1.2
° ® Accuracy M Precision ®Recall ®F1-Measure
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Figure 5: Precision, recall, and F1 measure for the failed class (DEEDs)

Evaluation metrics for DEEDs Pass Class
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Figure 6: Precision, recall, and F1 measure for the pass class (DEEDs)

Table 3: Precision, recall, and F1 measure for the failed class (OULAD)

KNN GNB DTC LR XGB RFC
Accuracy 0.96 0.83 0.9 0.83 0.83 0.96
Precision 0.98 0.86 0.91 0.83 0.94 0.98
Recall 0.98 0.96 0.99 1 0.98 0.98

F1 measure 0.98 0.91 0.95 0.91 0.96 0.98
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Table 4: Precision, recall, and F1 measure for the pass class (OULAD)

KNN GNB DTC LR XGB RFC
Accuracy 0.96 0.83 0.9 0.83 0.83 0.96
Precision 0.91 0.55 0.89 0 0.88 0.95
Recall 0.91 0.26 0.51 0 0.69 0.92
F1 measure 0.91 0.35 0.65 0 0.77 0.94

Table 5: Precision, recall, and F1 measure for the failed class (DEEDs)

KNN GNB DTC LR XGB RFC
Accuracy 0.65 0.65 0.51 0.64 0.43 0.43
Precision 1 0.5 0.22 0.33 0.33 0.33
Recall 0.25 0.75 0.22 0.5 0.5 0.5
F1 measure 0.4 0.6 0.5 0.4 0.4 0.4

Table 6: Precision, recall, and F1 measure for the pass class (DEEDs)

KNN GNB DTC LR XGB RFC
Accuracy 0.65 0.65 0.51 0.43 0.43 0.43
Precision 0.7 0.8 0 0.6 0.6 0.6
Recall 1 0.57 0 0.43 0.43 0.43
F1 measure 0.82 0.67 0 0.5 0.5 0.5

4.2 The Results of Stacking Algorithm

This section delineates the outcomes of various combinations utilized for implementing stacking
on both the OULAD and Deeds datasets. Numerous models were generated through trial and error by
combining six traditional ML algorithms. As trial and error failed to provide insights into the optimal
values for the parameters and hyperparameters of each algorithm, the GridSearchCV module from the
scikit-learn library was employed. Fig. 7 and Table 7 illustrate the models yielding the highest accuracy
in the OULAD dataset. The highest accuracy in the OULAD dataset was achieved when logistic
regression was utilized as the metamodel, alongside KNN, random forest, simple Bayes, XGBoost,
logistic regression, and decision tree algorithms serving as weak learners. The accuracy rate for both
the training and testing sections reached 98%.

Fig. 8 presents the confusion matrix of the final model, obtained through 5-fold validation. It
provides insight into the true positives, false positives, true negatives, and false negatives.
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KNN+RFC+GNB+XGB+LR+DTC--> KNN
KNN+RFC+GNB+XGB+LR+DTC--> GNB
KNN+RFC+GNB+XGB+LR+DTC--> RFC
KNN+RFC+GNB+XGB+LR+DTC--> DTC
KNN+RFC+GNB+XGB+LR+DTC--> LR
KNN+DTC+RFC--> DTC
KNN+DTC+RFC--> LR

ithms

Combination of ML Algor

M test M train

Figure 7: Accuracy in different stacking combinations in the OULAD dataset

Table 7: Accuracy in different stacking combinations in the OULAD dataset

0% 10%20%30%40%50%60%70% 80%90%1 00%
Accuracy Percentage

Accuracy Train Test
KNN+DTC+RFC—> LR 95% 96%
KNN+DTC+RFC—> DTC 87% 89%
KNN+RFC+GNB+XGB+LR+DTC—> LR 98% 98%
KNN+RFC+GNB+XGB+LR+DTC—> DTC  97% 96%
KNN+RFC+GNB+XGB+LR+DTC—> RFC  89% 90%
KNN+RFC+GNB+XGB+LR+DTC—> GNB  82% 89%
KNN+RFC+GNB+XGB+LR+DTC—> KNN  75% 75%

1263

Additionally, Fig. 9 illustrates the ROC curve, showcasing the classifier’s ability to achieve a high
true positive rate while simultaneously maintaining a low false positive rate across various thresholds.
This performance culminates in an AUC of 0.9, signifying the classifier’s strong discrimination

capability.

Models with the highest accuracy in the Deeds dataset are depicted in Fig. 10 and Table &. The
best accuracy in the Deeds dataset was obtained when the decision tree was a metamodel, and the
KNN, random forest, simple Bayes, logistic regression, and decision tree algorithms were used as weak

learners.

Fig. 11 displays the confusion matrix of the final model developed for the DEEDs dataset,
employing 5-fold validation. Within this figure, one can observe the values denoting false negatives,
true negatives, false positives and true positives. The model achieves an accuracy of 87% during

training.
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Figure 8: Confusion matrix of final model (5-fold validation)
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Figure 9: ROC of proposed model (5-fold validation)

As depicted in the ROC curve (Fig. 12), for smaller datasets such as DEEDs, adjustments in
threshold values correspond to larger proportions of the dataset, resulting in more pronounced
steps. Conversely, in larger datasets like OULAD, the ROC curve tends to appear smoother due
to the availability of more threshold points. Furthermore, certain classifiers, particularly those with
binary decision-making mechanisms such as decision trees, produce outputs that are not continuous
probabilities but rather distinct classes. Consequently, when these outputs are employed to construct
ROC curves, the transitions between various true positive rates (TPR) and false positive rates (FPR)
are characterized by abrupt shifts.
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Figure 10: Accuracy in different stacking combinations in the deed dataset

Table 8: Accuracy in different stacking combinations in the DEEDs dataset

Accuracy Train Test
KNN+GNB+RFC—> LR 54% 52%
KNN+gNB+RFC—> DTC 69% 67%
KNN+RFC+GNB+XGB+LR+DTC—> LR 76% 77%
KNN+RFC+GNB+XGB+LR+DTC—> DTC  87% 84%
KNN+RFC+GNB+XGB+LR+DTC—> RFC  82% 83%
KNN+RFC+GNB+XGB+LR+DTC—> GNB  81% 80%
KNN+RFC+GNB+XGB+LR+DTC—> KNN  82% 79%
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Figure 11: Confusion matrix of DEEDs final model (5-fold validation)
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4.3 Comparison of Stacking Results with Traditional ML Algorithms

Fig. 13 and Table 9 illustrate that in the OULAD dataset, the highest performance among the
presented classification algorithms was attributed to KNN with 94% accuracy, which surged to 98%
accuracy when employing the stacking algorithm. The proposed stacking approach enhanced accuracy
by 4% compared to the conventional method in the OULAD dataset. Additionally, the stacking
technique achieved an 87% accuracy rate in the Deeds dataset, indicating a 22% increase in accuracy
compared to the KNN and simple Bayes algorithms.
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Figure 13: Comparison of all algorithms implemented on OULAD and deeds datasets
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Table 9: Comparison of all algorithms implemented on OULAD and deeds datasets

Model Accuracy
OULAD DEEDs

KNN 0.96 0.65
GNB 0.83 0.65
DTC 0.9 0.51
LR 0.83 0.43
XGB 0.83 0.43
RFC 0.96 0.43
STC 0.98 0.87

4.4 Comparison of Stacking Results with the Related Works

The results were assessed based on accuracy, precision, recall, and F1 Score criteria, revealing
enhancements in the outcomes for the OULAD dataset. Both conventional and proposed methods
were employed on identical data for result comparison. The primary assessment metric, accuracy,
reached 98% in the OULAD datasets. This signifies a 4% and 2% improvement in results compared
to traditional methods and alternative modeling approaches in the OULAD dataset, respectively. In
the Deeds dataset, the highest accuracy achieved was 87%, indicating a notable 22% enhancement
attributed to the stacking method over traditional methods, surpassing other models as well. The
superior performance of the stacking methods on the OULAD dataset can be attributed to their
broader scope and inclusivity. Unlike Deeds, which merely stored data from 6 class sessions in a
transactional format, OULAD encompasses information from various courses across consecutive
semesters. [t is essential to note that data preprocessing significantly impacts the results directly. Fig. 14
and Table 10 illustrate a comparison of preprocessing techniques applied to the Deeds dataset.

Accuracy on DEEDs

120%

100%

80%
60%
40%
20%

0%

Accuracy

Stacking Ahmad Hussain et al Sriram Brahim
(Proposed
Model)

Other Works

Figure 14: Comparison of the proposed and Ahmad et al. [24], Hussain et al [23], Sriram et al. [38] and
Brahim [7] results for the DEEDs dataset [38]
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Table 10: Comparison of the proposed and the literature models results for the DEEDs dataset

Research Accuracy
Stacking (Proposed model) 87%
Ahmad et al. [24] 95%
Hussain et al. [23] 80%
Sriram et al. [38] 85%
Brahim [7] 97%

Additionally, Fig. 15 and Table 11 show the accuracy of the proposed model with that of previous
works on the OULAD dataset. Overall, the results indicate a 2% enhancement in accuracy compared
to the model presented by Souai et al. [28].

Accuracy on OULAD
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(Proposed
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Other Works

Figure 15: Comparison of the proposed and results for the OULAD dataset

Table 11: Comparison of the proposed and the literature models results for the OULAD dataset

Research Accuracy
Stacking (Proposed model) 98%
Huang et al. [25] 83%
Jha et al. [27] 93%
Souai et al. [28] 96%
Yang et al. [29] 86%

Our findings shed light on the differences between conventional data mining methods and
stacking approaches implemented on distinct databases. While traditional algorithms were initially
deployed and compared with the stacking model results, it became evident that the latter yielded more
reliable outcomes. Moreover, through feature selection, particularly in theOULADdataset, our model
demonstrated stacking methods’ competitiveness with deep learning approaches.However, it is crucial
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to interpret the results cautiously due to certain limitations. The sample size in theDEEDs dataset was
relatively small, making it challenging to identify significant associations in the data. Consequently,
our model’s efficiency on theDEEDs datasetwas compromised. On the other hand, although accuracy
improvement was achieved on the OULAD dataset, further optimization of feature selection methods
is warranted.

5 Conclusion

The aim of this study was to develop a stacking machine learning model for predicting student
performance in e-learning based on class activities. Given the importance of feature nature reflecting
student behaviors, the OULAD and Deeds datasets were deemed suitable options. After thorough data
cleaning and preprocessing, relevant features were selected and analyzed. A predictive model for e-
learning student scores utilizing stacking and behavioral data analysis was introduced. Subsequently,
the KNN, random forest, decision tree, logistic regression, simple Bayes, and XGBoost algorithms
were implemented. Following the recording of results using basic ML models, the stacking algorithm
was applied, involving the definition of weak learner models and metamodels. After a trial-and-error
process, the logistic regression algorithm was selected as the final learner for the proposed model.
The modeling outcomes demonstrated improved performance of the proposed model compared to
previous approaches.

A key limitation of this research lies in the high resource consumption associated with the
utilization of pre-built stacking models, such as the StackingClassifier from the mixtend and SKlearn
libraries. This consumption of hardware resources results in prolonged processing times, thereby
impacting the efficiency of the implementation process. Furthermore, the research is hindered by the
lack of reliable datasets. Not only is there a scarcity of trustworthy datasets available, but the quality
of the existing data poses challenges, necessitating extensive cleaning and preprocessing efforts.

For future research directions, we suggest exploring the use of neural networks as both weak
learners and metamodels within the stacking framework. Additionally, enhancing the preprocessing
stage could yield more effective features. Further research focusing on different faculties can also
yield interesting results because some studies like [39] have shown that the factors contributing to
the success of e-learning may vary across different faculties. Additionally, integrating autoencoders
for dimensionality reduction or feature extraction and employing Generative Adversarial Networks
(GANs) for synthesizing data to augment training datasets could serve as promising avenues for future
research. These endeavors hold potential to propel the state-of-the-art in stacked models, enhancing
their efficacy, efficiency, and applicability across diverse problem domains.
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