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ABSTRACT

The generalized travelling salesman problem (GTSP), a generalization of the well-known travelling salesman
problem (TSP), is considered for our study. Since the GTSP is NP-hard and very complex, finding exact solutions is
highly expensive, we will develop genetic algorithms (GAs) to obtain heuristic solutions to the problem. In GAs, as
the crossover is a very important process, the crossover methods proposed for the traditional TSP could be adapted
for the GTSP. The sequential constructive crossover (SCX) and three other operators are adapted to use in GAs to
solve the GTSP. The effectiveness of GA using SCX is verified on some GTSP Library (GTSPLIB) instances first
and then compared against GAs using the other crossover methods. The computational results show the success of
the GA using SCX for this problem. Our proposed GA using SCX, and swap mutation could find average solutions
whose average percentage of excesses from the best-known solutions is between 0.00 and 14.07 for our investigated
instances.

KEYWORDS
Generalized travelling salesman problem; NP-hard; genetic algorithms; sequential constructive crossover; swap
mutation

1 Introduction

The traditional travelling salesman problem (TSP) is an important combinatorial optimization
problem (COP) in Operations Research and Computer Science. It can be represented as a network of
n nodes (or cities) with a cost (or distance) matrix expressed by C = [cij]. The problem aims to find a
least-cost Hamiltonian tour for the salesperson. Various exact and heuristic methods are present in the
literature to solve this problem. However, in some real-life circumstances, additional restrictions have
to be enforced on this usual TSP that creates some variant TSPs, for example, generalized TSP, multiple
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TSP, TSP with backhauls, TSP with time windows, etc. Amongst different variants, the generalized
TSP (GTSP) is considered to be studied here.

The GTSP was first presented in [1], an NP-hard problem [2]. In addition to the usual TSP, in this
problem, the set of nodes (or cities), denoted by S, is grouped into m sets or clusters, suppose, S1, S2,
. . . , Sm with S1 ∪ S2 ∪ . . . . ∪ Sm = S and Si ∩ Sj = ∅ if i �= j. The problem aims to find a least-cost
Hamiltonian tour that contains exactly one node from every set Si. Fig. 1 shows an example of a GTSP
instance with 13 nodes and 7 sets.

Figure 1: Graphical representation of a GTSP instance with n = 13 and m = 7

The GTSP turns into the usual TSP while the total number of cluster sets and the total number
of nodes are same, and every set has only one node. If the associated cost matrix C is symmetric, then
the GTSP is symmetric; otherwise, it is asymmetric. The clustered TSP is a variant of GTSP where
all nodes in a cluster have to be visited successively before exiting the cluster [3]. The GTSP has many
important real-life applications that include airplane routing, mail delivery [4], etc.

Heuristic/metaheuristic and exact procedures can be used to solve the problem. Branch and bound
[5], dynamic programming [1], lexisearch algorithm [6], etc., are some well-known exact methods for
finding exact solutions. However, finding exact solutions to the problem using these methods becomes
impracticable even for moderate-sized problem instances. Therefore, many researchers used heuristic
procedures to find heuristic solutions to the problem, and largely modern heuristic approaches to
solve such COPs are named metaheuristic procedures. Genetic algorithms [7], ant colony optimization
[8], variable neighborhood method [2], particle swarm optimization [9], etc., are some well-known
metaheuristic methods for finding heuristic solutions. Generally, heuristic/metaheuristic approaches
cannot make sure about exact optimal solutions but can find close to optimal solutions very quickly.
Amongst metaheuristic approaches genetic algorithm (GA) is identified as a better metaheuristic
technique for solving such COPs.

We are going to develop GA to find heuristic solutions to the problem. In GAs, as the crossover
process performs a very crucial role, the crossover methods proposed for the traditional TSP could
be adapted for the GTSP. The sequential constructive crossover (SCX) [10] and three other operators
are adapted to use in GAs to solve the GTSP. The effectiveness of GA using SCX is verified on some
GTSPLIB instances [11] first and then compared against GAs using the other crossover methods.
The computational results show the success of the GA using SCX for this problem. Our proposed
GA using SCX, and swap mutation could find average solutions whose average percentage of excesses
from the best-known solutions is between 0.00 and 14.07 for our investigated instances. Furthermore,
we showed a relative rank of the four crossover methods for the GTSP. In this study, we aim to test the
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effectiveness of four crossover operators, we do not aim to achieve optimal (or best-known) solutions
to the GTSP instances.

This paper is arranged as below: Section 2 briefly surveys the literature on the GTSP. Genetic
algorithms using four crossover methods are developed in Section 3, while Section 4 reports the
computational experiments of different GAs on asymmetric GTSPLIB instances. At the end, Section 5
describes some comments and closing remarks.

2 Literature Survey

The GTSP was introduced, and a dynamic programming technique was developed to solve the
problem in [1], where the visited clusters identify a state. An integer linear programming technique
was developed to find the solution to the problem and then applied to both non-Euclidean and
Euclidean instances [12]. As reported, the technique solved the instance of size up to 50 cities and 10
clusters. A branch-and-bound technique was developed for solving the problem which was based on
the minimal rooted tree [5]. As reported, the technique solved the instance of sizes up to 52 cities and 13
clusters. A branch-and-cut technique by combining branch-and-bound and cutting plane techniques
was developed to solve the problem [11]. As reported, the technique solved the instance of sizes up to
442 cities and 89 clusters.

A heuristic method, by combining three techniques—initialization, insertion, and improvemen-
was developed to solve the problem [13]. A new GA was proposed and improved by using 2-opt and
swap techniques to solve the problem [14]. The Lin-Kernighan-Helsgaun technique was developed
for finding solutions to the problem [15], and the technique could enhance the solution for some
benchmark instances upon the best existing techniques. A memetic algorithm using breakout local
search method was proposed to solve the problem [16]. Based bioinspired computing model, some
parallel deoxyribonucleic acid (DNA) algorithms were developed to solve the problem [17]. By
combining features of GA, a random-permutation based GA was developed to solve the problem [18].
By merging a core GA using a chromosome enhancement procedure and a shortest path algorithm
with some local search techniques, a memetic algorithm was proposed to find the solution to the
problem [19]. Using an adaptive neighborhood search technique, a heuristic technique was developed
to find the solution to the problem [20]. Three new neighborhoods were illustrated and then integrated
with an iterated local search technique to solve the problem [21]. Furthermore, cluster optimization
was applied. A shortlist of algorithms for solving the problem is reported in Table 1.

Table 1: Algorithms for the GTSP

Algorithms References

Dynamic programming Henry-Labordere [1]
Integer linear programming Laporte et al. [12]
Branch-and-bound method Dimitrijevic et al. [5]
Branch-and-cut technique Fischetti et al. [11]
A fast composite heuristic method Renaud et al. [13]
Genetic algorithm Silberholz et al. [14]
Lin-Kernighan-Helsgaun technique Helsgaun [15]
Memetic algorithm Bontoux et al. [16], Cosma et al. [19]
Parallel DNA algorithm Ren et al. [17]

(Continued)
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Table 1 (continued)

Algorithms References

Random-permutation genetic algorithm Khan et al. [18]
Neighborhood search technique Smith et al. [20], Schmidt et al. [21]

3 Proposed Genetic Algorithm

Based on the survival-of-the-fittest theory among different populations in natural science, Gold-
berg proposed genetic algorithms (GAs) to find solutions to optimization problems. Since GAs
are very flexible, and can encode the solutions easily as chromosomes, they are very popular.
Several chromosomes are produced initially, termed together as the initial population, and then are
processed through three major processes (operators), such as selection, crossover, and mutation, to
achieve a suitable solution to the problem. Better chromosomes are picked probabilistically in the
selection process. Two-parent chromosomes mate to produce suitable offspring chromosome(s) in
the crossover process, while some genetic materials in the chromosomes are randomly altered in the
mutation process. Amongst the operators, the crossover operator is the most powerful and important
process to design and implement the GAs [22]. Therefore, the probability of using crossover is set very
high, whereas the probability of mutation is set very low. The selection and the crossover operators are
capable of speeding up the convergence of solutions.

3.1 Genetic Coding and the Initial Population

Using a GA to find the solution to a COP, at first, any chromosome representation method
for a solution must be described. The most simple and common representation method is the path
representation of the cities in a sequence. The bipartite chromosome is considered for the GTSP. It
has two rows, where the first row shows the sequence of clusters, and the second row shows the city
chosen from each corresponding cluster. The list of clusters (S1, S2, . . ., Sm) represents the Hamiltonian
cycle {S1−S2−. . .−Sm−S1}. Given a sequence of clusters (S1, S2, . . ., Sm), one of the salesman’s tours
may be as {v1, v2. . ., vm), provided that the city vi ∈ Si, for all i ∈ {1, 2 . . ., m}. For example, suppose
that n = 13 and m = 7, with the cluster sets: S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}, S4 = {7}, S5 = {8, 9},
S6 = {10, 11} and S7 = {12, 13}. If the sequence of cluster sets is (1, 2, 3, 4, 5, 6, 7, 1), then (1, 3, 5, 7,
9, 10, 12, 1) may be a tour, which is displayed in Table 2 and Fig. 2.

Table 2: A chromosome representation for the GTSP

Clusters 1 2 3 4 5 6 7
Cities 1 3 5 7 9 10 12

In Fig. 2, the second row represents a tour of the salesman whose objective cost is the total cost
of the cities that exist in the path. Since the problem is minimization, the fitness cost, suppose fi, of the
i-th chromosome, is calculated as the inverse of the objective cost, oi.

fi = 1
1 + oi

(1)
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Figure 2: Representation of a tour by a chromosome

Thus, at the beginning, a population of pre-fixed size Ps is produced arbitrarily. Once the
population is generated, the fitness of each chromosome is evaluated, and the population is passed
to the next generation.

3.2 Selection Operator

In the selection process, fitter chromosomes are picked and passed to the following generation,
and unproductive chromosomes are removed from the population. This operator upgrades the
performance of GAs and can create diverse results all over generations. Furthermore, it assists in
reliability between exploitation and exploration of the search space.

Various selection methods exist in literature. We consider the roulette wheel selection (RWS) [22]
procedure that uses the fitness proportional law. The RWS is a very popular method that assigns every
chromosome a portion of a roulette wheel, and the area of a portion is determined by the fitness of the
corresponding chromosome. Next, the wheel is spun, and the chromosome that is ultimately pointed
out by the pointer is chosen for the next generation of mating pools. Thus, chromosomes with higher
fitness values have a bigger possibility of being chosen, and those with lower fitness values have a
bigger possibility of being discarded. However, no one can guarantee that chromosomes with higher
fitness values will always be selected. The selection probability pi is calculated for each chromosome
in a population of size Ps as follows:

pi = fi
∑Ps

j=1 fj

; i ∈ {1, 2, . . . , Ps} (2)

Then, the cumulative probability ki, i ∈ {0, 1, .., Ps} for each chromosome is calculated (k0 = 0).
After that, a random number, r ∈ [0,1], is generated. If k(i-1) < r ≤ ki, for i ∈ {1, 2, · · · , Ps}, then the
i-th chromosome is selected. The segment size and probability are kept fixed throughout this selection
method. This is a very easy and simple method that assigns balanced distributed probabilities to all
chromosomes and assigns the highest probability to the best chromosome.
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3.3 Crossover Operators

As the crossover process performs a very crucial role, the crossover methods that were constructed
for the traditional TSP could be adapted to apply to the GTSP. Here, partially mapped crossover
(PMX) [23], ordered crossover (OX) [24], cycle crossover (CX) [25], and sequential constructive
crossover (SCX) [10] operators are modified to apply to the GTSP. We plan to compare the working
of these four crossover operators. For that, we plan to develop GAs using these crossover operators
and run on asymmetric GTSPLIB instances of different sizes. Furthermore, we plan to show a relative
rank of these crossover methods for the GTSP.

3.3.1 Partially Mapped Crossover Operator

The partially mapped crossover (PMX) technique was devised for the TSP that describes an
exchange map substrings between two randomly selected points in parent chromosomes [23]. It
is modified here and then employed on the GTSP as below. Suppose P1 and P2 are two parent
chromosomes with costs 407 and 347, respectively, related to the cost matrix indicated in Table 3 with
n = 13 and m = 7.

Table 3: Cost matrix

Cluster 1 2 3 4 5 6 7

Cluster City 1 2 3 4 5 6 7 8 9 10 11 12 13

1
1 0 41 31 86 25 57 7 13 21 19 41 47 41
2 41 0 38 74 43 98 35 31 11 48 24 69 66

2
3 31 38 0 50 89 7 30 74 69 16 20 58 39
4 86 74 50 0 89 92 34 9 69 13 44 79 61

3
5 25 43 89 89 0 56 28 35 68 86 82 83 19
6 57 98 7 92 56 0 85 52 32 77 31 46 85

4 7 7 35 30 34 28 85 0 59 47 36 42 18 20

5
8 13 31 74 9 35 52 59 0 43 86 81 74 12
9 21 11 69 69 68 32 47 43 0 50 16 95 19

6
10 19 48 16 13 86 77 36 86 50 0 29 8 40
11 41 24 20 44 82 31 42 81 16 29 0 19 94

7
12 47 69 58 79 83 46 18 74 95 8 19 0 66
13 41 66 39 61 19 85 20 12 19 40 94 66 0

These same parent chromosomes, as shown in Table 4, will be used to explain all crossover
methods.

Table 4: The parent chromosomes P1 and P2

P1
2 5 4 6 7 1 3

P2
1 6 3 4 5 2 7

3 8 7 10 13 2 5 1 11 5 7 9 3 13

The PMX operation example is presented in Figs. 3 and 4.
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Figure 3: Steps of building the offspring O1 and O2 from parents P1 and P2 using PMX

Figure 4: Illustration of the PMX. (a) The first parent chromosome P1. (b) The second parent
chromosome P2. (c) The first offspring chromosome O1. (d) The second offspring chromosome O2
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In GAs, generally, the crossover inherits the parents’ characteristics. The crossover operator, which
can preserve good characteristics of parents as offspring, is supposed to be a better operator. The
parent chromosomes are shown in Fig. 4a,d. The bold edges shown in Fig. 4c,d are the edges that
exist in either one of the parent chromosomes. In O1 and O2, only one and three edges respectively
out of seven edges are chosen from either of the parent chromosomes. This means that 14.29% and
42.86% of the edges of the offspring chromosomes are chosen from the parent chromosomes.

3.3.2 Ordered Crossover Operator

The ordered crossover (OX) technique was devised for the traditional TSP that creates off-
springs by picking a subchromosome from a chromosome and saving the relative cluster sequence
with subsequent cities from another [24]. It is modified here and then applied to the GTSP as in
Figs. 5 and 6.

Figure 5: Steps of building the offspring O1 and O2 from parents P1 and P2 using OX

The parent chromosomes are shown in Fig. 6a,b. The bold edges shown in Fig. 6c,d are the edges
that exist in either one of the parent chromosomes. In O1 and O2, only three and four edges respectively
out of seven edges are chosen from either of the parent chromosomes. This means that 42.86% and
57.14% of the edges of the offspring chromosomes are chosen from the parent chromosomes.

3.3.3 Cycle Crossover Operator

The cycle crossover (CX) technique was devised for the traditional TSP that creates offspring so
that each cluster (and its position) and the subsequent city start from one of the chromosomes [25]. It
is modified here and then applied to the GTSP as in Figs. 7 and 8.
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Figure 6: Illustration of the OX. (a) The first parent chromosome P1. (b) The second parent
chromosome P2. (c) The first offspring chromosome O1. (d) The second offspring chromosome O2

Figure 7: (Continued)
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Figure 7: Steps of building the offspring O1 and O2 from parents P1 and P2 using CX

Figure 8: Illustration of the CX. (a) The first parent chromosome P1. (b) The second parent
chromosome P2. (c) The first offspring chromosome O1. (d) The second offspring chromosome O2
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The parent chromosomes are shown in Fig. 8a,b. The bold edges shown in Fig. 8c,d are the edges
that exist in either one of the parent chromosomes. In both O1 and O2, only three edges out of seven
edges are chosen from either of the parent chromosomes. This means that 42.86% of the edges of the
offspring chromosomes are chosen from the parent chromosomes.

3.3.4 Sequential Constructive Crossover Operator

The sequential constructive crossover (SCX) technique was devised for the traditional TSP which
produces one offspring only that checks sequentially both parents and picks the 1st untouched
(legitimate) gene from everyone that is seen after the current one. If a legitimate gene is not detected
in a parent, it wraps around the parent and chooses the first legitimate gene. Then the cost of each
legitimate gene from the current gene is computed, and the cheaper one is augmented to the offspring
[10]. This technique was applied successfully to other combinatorial optimization problems ([26–28]).
We adapted this technique to the GTSP and reported in Algorithm 1 [7].

Algorithm 1 : Sequential constructive crossover algorithm
Input: Cost matrix C, Crossover probability Pc, Parent chromosomes.
Output: Offspring chromosome.
Generate a random number r ∈ [0,1].
if (r ≤ Pc) then do

Set t = first cluster, p = first city from first parent.
The offspring includes ‘cluster t’ with ‘city p’.
for i = 2 to m do

In both chromosomes, take the first ‘legitimate cluster’ which is found after the ‘cluster t’.
if no ‘legitimate cluster’ is present in any chromosome, then

Search from start of that chromosome (wrap around) and take the first ‘legitimate
cluster’ that is found after the ‘cluster t’.

end if
Suppose ‘cluster x’ with ‘city α’ and ‘cluster y’ with ‘city β’ are found in the first and
second chromosomes, respectively.
if (cpα < cpβ) then do

The ‘cluster x’ with ‘city α’ is attached to the offspring.
Else

The ‘cluster y’ with ‘city β’ is attached to the offspring.
end if
Rename the current cluster as the ‘cluster t’ and the current city as the ‘city p’, and continue.

end for
end if
Return the offspring chromosome

The SCX operation example is presented in Fig. 9 and 10. The chromosomes P1 and P2 in
Fig. 10a,b, respectively, are the parent chromosomes, while O in Fig. 10c is their offspring. The bold
edges shown in Fig. 10c are the edges that exist in either one of the parents. Five edges of seven edges
are chosen from either of the parents. This means that 71.44% of the edges of the offspring are chosen
from the parents. Out of five edges, there is no common edge selected from either of the parents; only
one edge (7, 10) is chosen from P1, while four edges (13, 1), (5, 70), (9, 3) and (3, 13) are chosen from
P2. The edges (1, 5) and (10, 9) are new edges that have smaller costs. Thus, SCX can preserve better
characteristics of the parents in their offspring. Furthermore, SCX can create various offspring.
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Figure 9: Steps of building the offspring O from parents P1 and P2 using SCX

Figure 10: Illustration of the SCX. (a) The first parent chromosome P1. (b) The second parent
chromosome P2. (c) The only offspring chromosome O

3.4 Mutation Operator

Mutation operators can increase the variety in the population by initiating random variations in
the GA population. It randomly chooses some gene(s) in a parent chromosome and then changes the
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genes(s); thus, changing the information. We apply the swap mutation (SM) technique with probability,
Pmt, that randomly picks two genes from a chromosome and then swaps them [29].

Suppose P is a parent chromosome, and the 3rd and 6th positions are randomly picked. Then
cluster 1 with city 1 and cluster 6 with city 10 are exchanged in their positions to create the mutated
chromosome E as follows.

3.5 Simple Genetic Algorithms

We have developed simple GAs using the traditional GA methods and GA procedures. They start
with an arbitrary initial population, choose stronger chromosomes by using the roulette wheel selection
technique, apply a selected crossover technique, and swap mutation technique. A simple GA is defined
in Algorithm 2.

Algorithm 2: Simple genetic algorithm
Input: n, m, C, Ps, Pc, Pmt.
Output: Best chromosome along with its cost.
Create an initial population of pre-fixed size Ps randomly.
Evaluate the population.
Generation = 0.
While the stopping criterion is not achieved.

Generation = Generation + 1.
Select better chromosomes using a selection technique.
Perform a crossover technique with probability Pc.
Perform swap mutation technique with probability Pmt.
Evaluate the population.

end while
Return the best chromosome along with its cost.

4 Computational Experiments

Four simple GAs with the crossover methods–PMX, OX, CX, and SC-with swap mutation (SM)
are encoded in Visual C++ and tested on asymmetric GTSPLIB problem instances [11] executed on
a laptop with the specification as Intel(R) Core(TM) i7-1065G7 CPU@1.30 GHz and 8.00 GB RAM
under MS Windows 11. Every GA is run 50 times for every instance. For each instance, we report the
best-known solution (BKS) reported in [30], the best-obtained solution (BOS), the average obtained
solution (AOS), and the average computational time (ACT) (in seconds) to notice the BOS for the first
time within 50 executions, by all algorithms. Since GAs are dominated by the parameters- population
size (Ps), crossover probability (Pc), mutation probability (Pmt), and a stopping condition.
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First, we check the behavior of the crossover techniques on the asymmetric instances. We set Ps =
100, Pc = 1.0, and at most 10n generations for stopping the GAs. Table 5 shows a comparative study
among different GAs using different crossover methods with no mutation technique. We indicated the
best results by boldfaces.

Table 5: Results by GAs using crossover methods without a mutation method for some instances

Instance BKS PMX OX CX SCX

BOS AOS ACT BOS AOS ACT BOS AOS ACT BOS AOS ACT

4br17 31 31 31.00 0.00 31 31.00 0.00 31 31.00 0.00 31 31.00 0.00
7ftv33 476 476 534.30 0.00 476 501.00 0.00 476 543.75 0.00 476 480.85 0.00
8ftv35 525 545 582.25 0.00 525 561.25 0.00 579 645.25 0.00 525 556.55 0.00
8ftv38 511 554 599.10 0.00 511 535.75 0.00 569 628.30 0.00 511 516.55 0.00
9p43 5563 5563 5570.65 0.00 5563 5564.60 0.01 5564 5572.30 0.00 5563 5565.65 0.00
9ftv44 510 510 562.40 0.00 510 552.45 0.00 567 678.10 0.00 510 522.80 0.00
10ftv47 569 594 672.75 0.00 589 607.90 0.00 697 783.05 0.00 569 606.90 0.00
10ry48p 6284 6547 6905.90 0.00 6339 6583.05 0.00 6987 7468.35 0.00 6320 6481.95 0.00
11ft53 2648 2711 2914.75 0.00 2654 2886.50 0.00 2850 3318.90 0.00 2656 2712.80 0.00
12ftv55 689 751 784.80 0.00 689 714.75 0.00 817 953.55 0.00 689 690.20 0.00
13ftv64 708 793 867.05 0.00 763 821.75 0.00 896 1132.20 0.00 735 777.05 0.00
14ft70 7707 8202 8721.15 0.02 7978 8260.50 0.01 8819 9508.30 0.00 8074 8271.10 0.00
15ftv70 594 687 759.85 0.00 625 726.05 0.00 947 1157.05 0.00 613 652.10 0.00
20kro124p 11203 13808 15975.80 0.01 13549 14963.10 0.01 21667 23278.80 0.00 11999 12753.25 0.00
35ftv170 1205 1515 1773.75 0.03 1532 1743.30 0.06 3377 2772.60 0.01 1359 1463.35 0.01
65rbg323 471 673 765.25 0.13 637 702.55 1.05 950 1014.80 0.02 548 578.65 0.07
72rbg358 693 1033 1090.90 0.10 860 935.20 1.79 1105 1215.85 0.02 803 849.55 0.09
81rbg403 1170 1235 1567.25 0.14 1244 1302.40 3.04 1491 1531.90 0.05 1290 1319.10 0.12
89rbg443 632 920 1187.35 0.34 976 1038.75 3.80 1356 1443.60 0.05 748 799.70 0.20

Observing the boldfaces in Table 5, the GA using SCX is shown to be the topmost one. Observing
the best-obtained solution, GAs using PMX, OX, CX, and SCX, could obtain the BKS (minimum
once in 50 runs) for four, seven, two, and eight instances respectively. So, we can say that SCX, OX
and PMX are the topmost, second topmost and third topmost crossover methods, while CX is the
most inferior one. Furthermore, observing the average obtained solution in the table, one can draw
the same conclusion. Fig. 11 shows the percentage of the excess of the average obtained solution over
BKS, which is calculated by the formula: Average Excess (%) = 100 × (AOS/BKS − 1). Looking at
the figure, we have the same observation. So, this figure also validates the success of GA using SCX.

We further conducted a two-tailed Student t-test with a 5% significance level between GA
using SCX and GAs using other crossover operators for the above instances to verify our above
interpretations. We reported the results in Table 6. As presumed, SCX is the best-ranked crossover,
OX is the second-best, PMX is the third-ranked, and CX is the most inferior.
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Figure 11: Average Excess (%) by crossover methods without a mutation for some instances

Table 6: Results of the t-test on antisymmetric GTSPLIB instances

Crossover Inferior crossovers

SCX PMX, OX, CX
OX PMX, CX
PMX CX

We now run the GAs using crossovers and the swap mutation operator. Naturally, setting the same
mutation probability for every instance is a very difficult job. After so many trials, we set Pc = 0.90, Pmt

= 0.25, and at most 20n generations for stopping the GAs. We reported a comparative study amongst
the GAs using various crossover techniques and SM in Table 7.

Table 7: Results by GAs using different crossover methods and SM for some instances

Instance BKS PMX OX CX SCX

BOS AOS ACT BOS AOS ACT BOS AOS ACT BOS AOS ACT

4br17 31 31 31.00 0.00 31 31.00 0.00 31 31.00 0.00 31 31.00 0.00
7ftv33 476 476 488.12 0.00 476 486.20 0.00 476 511.50 0.00 476 476.00 0.00
8ftv35 525 525 560.30 0.00 525 554.20 0.00 525 565.30 0.00 525 534.80 0.00
8ftv38 511 513 531.00 0.00 511 518.60 0.00 516 541.00 0.00 511 512.45 0.00
9p43 5563 5563 5563.80 0.00 5563 5564.65 0.00 5563 5563.90 0.00 5563 5563.00 0.00
9ftv44 510 510 539.20 0.00 510 534.20 0.00 543 550.65 0.00 510 517.10 0.00
10ftv47 569 578 589.20 0.00 573 583.70 0.00 575 602.25 0.00 572 580.60 0.00
10ry48p 6284 6319 6484.95 0.01 6309 6435.45 0.01 6309 6450.75 0.00 6284 6309.95 0.00
11ft53 2648 2683 2780.75 0.01 2673 2729.55 0.01 2674 2734.35 0.01 2651 2668.65 0.00
12ftv55 689 689 698.55 0.00 689 693.55 0.00 689 715.05 0.01 689 690.13 0.00
13ftv64 708 756 820.20 0.01 735 800.20 0.01 751 829.65 0.01 708 733.45 0.00
14ft70 7707 7980 8283.20 0.01 7960 8233.20 0.01 7965 8226.40 0.01 7922 8047.25 0.01
15ftv70 594 646 693.55 0.01 636 643.55 0.01 647 676.30 0.01 594 604.40 0.00
20kro124p 11203 13564 15867.85 0.04 13564 14767.85 0.04 13572 14493.50 0.05 12108 12779.50 0.01
35ftv170 1205 1502 1595.32 0.31 1414 1485.65 0.31 1636 1807.85 0.33 1281 1370.55 0.38

(Continued)
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Table 7 (continued)

Instance BKS PMX OX CX SCX

BOS AOS ACT BOS AOS ACT BOS AOS ACT BOS AOS ACT

65rbg323 471 695 756.70 1.03 625 683.32 1.03 636 678.10 1.88 500 531.10 3.78
72rbg358 693 987 1037.55 1.77 878 908.63 1.59 869 900.60 2.65 708 749.80 7.11
81rbg403 1170 1357 1388.40 2.25 1267 1298.40 2.15 1317 1349.55 3.77 1271 1300.40 9.34
89rbg443 632 893 1134.75 2.79 897 986.24 2.79 910 987.85 3.89 632 688.60 6.48

Observing the boldfaces in Table 7, the GA using SCX and SM is proven to be the topmost GA.
Observing the best-obtained solution, the GA using PMX and SM, the GA using OX and SM, the
GA using CX and SM, and the GA using SCX and SM, could obtain the BKS (minimum once in
50 runs) for six, seven, five, and eleven instances respectively. From this examination, we can confirm
that the GA using SCX and SM is the topmost GA, the GA using OX and SM is the second topmost,
the GA using PMX and SM is the third topmost, and the GA using CX and SM is the most inferior.
Furthermore, observing the average obtained solution in the table, we can draw the same conclusion.

Looking at the average obtained solutions in Table 7, we can have a conclusion. GA using SCX
and SM is the best one, GA using OX and SM is the second best, GA using CX and SM is the third
best, and GA using PMX and SM is the worst. The results shown in Fig. 12 also prove the success of
GA using SCX and SM.
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Figure 12: Average Excess (%) by crossover methods with SM operator for some instances

5 Conclusions and Future Work

We have modified ordered crossover (OX), sequential constructive crossover (SCX), partially
mapped crossover (PMX), and cycle crossover (CX) for genetic algorithms (GAs) to find solutions to
the generalized traveling salesman problem (GTSP). We then illustrated the working of the crossover
techniques using an example and encoded the GAs using these crossover methods in Visual C++. Then
a comparative study among PMX, OX, CX, and SCX for some asymmetric GTSPLIB instances. On
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the basis of solution quality, it is followed that crossover PMX is better than crossover CX, crossover
OX is better than crossover PMX, and crossover SCX is the topmost. Furthermore, GAs using four
crossover techniques and the swap mutation (SM) were compared and found that GA using PMX
and SM is the most inferior and GA using SCX and SM is the topmost. Thus, SCX with or without
a mutation technique is the topmost crossover technique. Our GA using SCX and SM could find
average solutions whose average percentage of excesses from the best-known solutions is between 0.00
and 14.07 for our investigated instances.

In this current study, we aimed to compare the solutions by four crossover techniques to find
solutions to the GTSP. Our aim was not to increase the solution quality by a GA using any crossover
technique merged with a mutation technique. So, we did not utilize any local search method in GAs
to increase the solution quality, and so, we could not find optimal/best-known solutions for many
problem instances. However, the integration of a better local search method into the algorithm might
solve those instances optimally that is under our future investigation. Furthermore, our SCX can also
be modified to apply to other combinatorial optimization problems, which is also under our next
investigation.
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