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ABSTRACT

This paper investigates the application of machine learning to develop a response model to cardiovascular problems
and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely; Z-Score
incorporated with Grey Wolf Optimization (GWO) as well as Interquartile Range (IQR) coupled with Ant Colony
Optimization (ACO). Using a performance index, it is shown that when compared with the Z-Score and GWO
with AdaBoost, the IQR and ACO, with AdaBoost are not very accurate (89.0% vs. 86.0%) and less discriminative
(Area Under the Curve (AUC) score of 93.0% vs. 91.0%). The Z-Score and GWO methods also outperformed
the others in terms of precision, scoring 89.0%; and the recall was also found to be satisfactory, scoring 90.0%.
Thus, the paper helps to reveal various specific benefits and drawbacks associated with different outlier detection
and feature selection techniques, which can be important to consider in further improving various aspects of
diagnostics in cardiovascular health. Collectively, these findings can enhance the knowledge of heart disease
prediction and patient treatment using enhanced and innovative machine learning (ML) techniques. These findings
when combined improve patient therapy knowledge and cardiac disease prediction through the use of cutting-edge
and improved machine learning approaches. This work lays the groundwork for more precise diagnosis models
by highlighting the benefits of combining multiple optimization methodologies. Future studies should focus on
maximizing patient outcomes and model efficacy through research on these combinations.
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1 Introduction

This study paper focuses on heart ailments, which include several cardiovascular problems.
This research examines cardiac diseases, from coronary artery disease to heart failure, to determine
their causes, risk factors, and preventative and treatment options. In addition to the overwhelming
statistics, understanding cardiac disorders is important because they affect individuals, families,
and communities [1]. These illnesses lower the quality of life, increase healthcare costs, and reduce
productivity. Thus, rigorous study is necessary to develop effective methods for preventing, detecting,
and treating cardiovascular diseases, limiting their negative effects on society.

Heart diseases alone are a leading cause of death globally and contribute a lot to the healthcare
budget. Due to the abundance of data and their impact on individuals, families, and communities,
cardiac diseases must be understood [2]. These illnesses reduce sufferers’ well-being and increase
healthcare costs and productivity losses. Therefore, comprehensive research is needed to develop
effective strategies for preventing, early detection, and treating cardiovascular diseases to minimize
their impact on community health.

A vast spectrum of cardiac diseases affects global health. This study examines these illnesses
to uncover their complicated mechanisms, risk factors, and preventative and treatment methods [3].
This study underlines the necessity to understand these phenomena’ complexity to decrease their
widespread impact on people and communities.

One of the major causes of death globally is the diseases related to the heart. This is because most
of the complications are easily treatable, especially when detected early enough to prevent poverty
levels and high mortality rates. Machine Learning (ML) has thereby become an optimal approach for
applying big data analytics in connection to healthcare to anticipate heart disease.

This paper examines how recent treatments and ML techniques have assisted in heart disease
prediction. Traditional systems for heart disease diagnosis involve elaborate and costly tests, such as
the electrocardiogram (ECG). Machine learning is another non-intrusive approach that could save
hundreds of thousands of dollars in research using healthcare data to diagnose patterns of diseases and
possible predictions. Soon, it became clear that the choice of ML-based heart disease prediction models
was constantly developing. Researchers have invested time and effort in testing different algorithms
and feature extraction methods to enhance the prediction capability. However, some drawbacks still
exist, such as the problem of insufficient sample size for model training and testing, the dilemma
between model performance and model interpretability, and the use of real-world settings.

This article intends to help readers comprehend coronary artery disease, heart failure, and related
disorders to better prepare them for heart ailments. It emphasizes the need for a multifaceted approach
that includes lifestyle modifications, improved medical treatments, and public health [4]. The ultimate
goal is to raise awareness of cardiac disease management worldwide and promote measures to lessen
their impact on personal health and society.

1.1 Problem Definition

However, the following technical challenges are barriers to the efficient utilization of ML and
Deep Learning (DL) in heart disease prediction. Different methods used at the moment often use
small sets of instances or sets that are not balanced, thus making the algorithms less reliable when
it comes to various other datasets. Outlier detection methods used in these models often fail to
address the complexities of the data distribution they are applied, making the results congested with
biases and inaccuracies. However, feature selection approaches lag, which is reflected in the usage
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of unsophisticated selection algorithms that potentially fail to produce adequate results, taking into
account all possible features of a dataset. Yet, other issues, including computational efficiency and the
use of adequate and diverse evaluation metrics, remain underdeveloped, slowing down the applicability
of these models in realistic environments.

1.2 Scope of the Study

This research proposes to fill the following technical gaps by framing an effective method,
including outlier detection on heart disease prediction that differs from conventional techniques and
powerful feature selection tools with efficient ensemble modeling. Firstly, data cleaning and balancing
a skewed dataset are applied as major techniques in the systematic approach. The first workflow path
detects outlier values for each independent variable calculated by subtracting the mean from and
dividing by the Standard Deviation of the set of values. In contrast, the second path calculates the
dataset’s Z-Score and IQR. Feature selection includes the strategy of Grey Wolf Optimization and
Ant Colony Optimization, which mimics some natural phenomena. These features train AdaBoost
models with Decision Trees as estimators. These are the following features: the sample rate determines
the number of samples allowed to contribute to the model’s training. The assessment metrics that
are considered in the current study includes accuracy, precision or True Positive (TP) rate, recall or
sensitivity, F1 measure, and AUC.

1.3 Objectives

The objectives of this study are:

• As a result, the data quality is increased by applying the depuration and balancing methods.
• Thus, the paper aims to enhance and present effective outlier detection methods based on Z-

Score and IQR.
• To develop a method that improves feature selection and uses Grey Wolf Optimization (GWO)

and ACO algorithms.
• The performance of the trained models must be examined; thus, the process should involve the

usual evaluation metrics.
• In order to increase the efficiency of both pathways toward reaching the target, the best

scenarios to predict heart diseases must be compared.

1.4 List of Contributions of this Study

The major contributions of the study to cardiovascular heart disease prediction include:

• Enhanced data pre-processing techniques: The work also utilizes other pre-processing steps,
including cleaning and balancing the processed big data, in order to derive the optimal heart
disease dataset for cardiovascular health prediction.

• Outlier detection methods: The use of Best and Worst approaches in the form of Z-Score and
IQR makes it easier to spotlight outlying values with cardiovascular data and eliminate the
biases, enhancing the value of judgments.

• Improved feature selection: GWO and ACO help reach the best-fit features that are significant
for predicting cardiovascular diseases.

• Effective ensemble learning: This paper establishes that the AdaBoost Decision Tree framework
optimizes the outcomes of both AdaBoost and Decision Trees in the analysis of cardiovascular
disease prediction, with significant improvements in accuracy and time.



1088 CSSE, 2024, vol.48, no.5

• Comprehensive performance evaluation: The performance evaluation using metrics like accuracy,
precision, recall, the F1 measure, and the AUC score which give a broader evaluation result of
the forecasted models of cardiovascular heart disease.

Thus, the presented aspects greatly enhance the current approaches to cardiovascular health
diagnostics and patient management and can be viewed as a notable contribution to developing the
respective field and further enhancing the diagnostics accuracy along with improved outcomes in
cardiovascular disease treatment.

The impact of imbalanced datasets on machine learning models for heart disease prediction
needs further study. Further research is needed to determine how imbalances in positive and negative
cases affect model accuracy and generalizability. Understanding the accuracy-F1 Score trade-offs in
imbalanced data is essential for creating robust models that can efficiently handle real-world scenarios
with few positive instances (heart disease patients). Addressing this gap may improve the reliability and
therapeutic relevance of cardiac disease prediction algorithms. This will allow the models to operate
across patient demographics and prevalence rates.

In Section 2, a thorough literature study is presented along with a comprehensive overview of
recent publications. Section 3 presents the proposed methodology. Section 4 presents the experimental
results of the proposed model and discussion. Section 5 presents the conclusion of the study and the
future research directions..

2 Literature Review

One of the major causes of death globally is the diseases related to the heart. This is because most of
the complications are easily treatable, especially when detected early enough to prevent poverty levels
and high mortality rates. ML has thereby become an optimal approach for applying big data analytics
in connection to healthcare to anticipate heart disease. The present review aims to consider papers
within the last five years (2019–2021) that explore using ML algorithms in predicting heart diseases.
The review focuses on articles that address different aspects of the decision-making process for kidney
disease diagnosis while using various ML algorithms, feature selection methods, and performance
evaluation metrics. Based on these criteria, the following papers will be excluded from the review:
Papers that include only a selected patient group will also be excluded, as will papers based on
theoretical models only.

In 2021, Bharti et al. [5] emphasized the life-saving power of accurate cardiac disease prognosis.
The study uses machine learning and deep learning methods on the 14-variable University of
California, Irvine (UCI) Machine Learning Heart Disease dataset to evaluate and measure outcomes.
Evaluation metrics include accuracy and confusion matrix. The study uses the Isolation Forest
approach to remove redundant variables and standardize data to improve results. Multimedia tech-
nologies on mobile devices are also investigated, making predictive models more realistic. The machine
learning K Neighbors classifier analyzes intermediate datasets well. The confusion matrix, accuracy,
specificity, sensitivity, and F1 Score are stressed in the study. Computational efficiency is emphasized
to reduce model deployment time. The study stresses data normalization to reduce overfitting and
maintain model accuracy in real-world settings. Statistics, Gaussian distribution conformance, and
outlier detection with the Isolation Forest algorithm boost the study’s trustworthiness. The research
suggests increasing the dataset, improving deep learning, and using heart-disease-trained models
with multimedia to improve patient-doctor interactions. This work sheds light on the convergence
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of machine learning, deep learning, and multimedia technologies, which could enable cardiac illness
prediction and practical applications.

In 2021, Gárate-Escamila et al. [6] introduced Chi-Square with Principal Component Analysis
(CHI-PCA) to reduce variables and pick the most relevant features to enhance heart disease prediction.
Using the UCI Machine Learning Repository’s 74-feature heart disease dataset, the study validates
its technique. Six Machine Learning classifiers are used. The CHI-PCA approach uses Random
Forests (RF) for high accuracy. The Cleveland dataset has 98.7% accuracy, the Hungarian dataset
99.0%, and the combined Cleveland-Hungarian dataset 99.4%. Cholesterol, maximum heart rate,
chest discomfort, and ST depression are anatomically and physiologically significant. Comparative
analyses utilizing the original data reveal that CHI-PCA outperforms Logistic Regression (LOG) and
Model Predictive Control (MPC) classifiers. The research also examines how imbalanced datasets
affect performance measurements, highlighting accuracy-F1 Score trade-offs. The results show that
CHI-PCA can identify key features and provide medical diagnostic insights. These focus on reducing
data complexity while maintaining accurate predictions.

In 2019, Mohan et al. [7] emphasized cardiovascular disease is a leading cause of mortality
globally, emphasizing the need for early detection approaches. This research uses an innovative ML
approach to increase cardiovascular disease prediction accuracy. The research provides a machine
learning prediction model that incorporates Internet of Things (IoT) advances. Features and classifi-
cation algorithms are tested in the model. The hybrid Random Forest with a Linear Model (HRFLM)
is a promising model with 88.7% accuracy. To detect health risks early and save lives, raw healthcare
data must be analyzed. The study emphasizes the importance of ML in turning unprocessed healthcare
data into useful insights and offers a novel method for heart illness prediction. Early detection reduces
heart disease mortality, and the HRFLM approach has been proven to work. The paper recommends
using real-world datasets in future expansions to avoid theoretical techniques and make results more
realistic. The study also suggests researching machine learning methodologies and developing new
feature-selection methods to improve heart disease prediction models.

In 2018, Gavhane et al. [8] addressed the rising number of young people having heart attacks and
provides a simple, reliable method for early heart disease detection. The study suggests using age, sex,
and pulse rate to predict heart disease risk in the general population as a cheaper alternative to ECGs.
The Multi-Layered Perceptron (MLP) neural network algorithm is chosen for its precision and reli-
ability using machine learning. MLP-based Heart Disease Prediction System predicts cardiovascular
health, including coronary artery disease risk. The MLP is suitable for the proposed system due to its
efficiency, accuracy, and reliability in generating outputs from user inputs. Cutting-edge technology
and widespread adoption of this system may improve people’s understanding of their cardiovascular
health, reducing heart disease deaths as more people learn about their condition.

In 2017, Pouriyeh et al. [9] used data mining classification and Ensemble Machine Learning to
forecast heart illness. This study uses the 303-occurrence Cleveland dataset. The study examines data
enhancement with 10-fold cross-validation. The study analyzes classifiers such as Decision Tree (DT),
Naïve Bayes (NB), Multilayer Perceptron (MLP), K-Nearest Neighbor (K-NN), Single Conjunctive
Rule Learner (SCRL), Radial Basis Function (RBF), and Support Vector Machine Ensemble methods
like bagging, boosting, and stacking increase prediction accuracy. Support Vector Machines (SVM)
outperform other methods with 84.81% accuracy, especially when boosted. SCRL and SVM have
the highest (69.96%) and lowest (84.15%) accuracy. Bagging and boosting prove SVM’s superiority.
However, stacking shows that SVM and MLP attain 84.15% accuracy. This study shows that ensemble
techniques improve classifier performance on a short dataset. SVM is the best classifier, especially
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when it comes to boosting. To provide a more accurate evaluation, the study compares and improves
approaches.

The related literature shows several technical issues evident in current approaches used in the
prediction of heart diseases. Firstly, it must be noted that many Hospital Information System
(HIS) studies involve small and/or unbalanced datasets, which affect the models’ generalizability and
stability. Secondly, most outlier detection techniques do not work well when data is non-linear, and
the distribution is too complicated, leading to biased and inaccurate results. Some of the fundamental
methods implemented are the Chi-Square method and the Principal Component Analysis–though
they are not as advanced to get the best from the dataset. Moreover, these models may not have good
computational efficiency and are not feasible for practical implementation in real-world systems. In
addition, incorporating feature selection using more sophisticated methodologies with the ensemble
learning approaches is still in its infancy. Another issue is the incoherence in the choice of evaluation
criteria: while the accuracy criterion dominates the results of the studies, other essential criteria, such
as precision, recall, F1 coefficient, and AUC, are often left out of consideration. These gaps have
ignited the development of the proposed methodology that utilizes efficient data cleaning techniques,
improved outlier detection techniques, comprehensive feature selection methodology using Grey Wolf
and Ant Colony Optimization techniques, and a wide range of evaluation metrics to enhance the
accuracy and generalization of heart disease models.

3 Proposed Methodology

Fig. 1 illustrates an unprocessed dataset of attributes and heart disease is used. After that, the
dataset is split into training and testing sets for model evaluation. Data cleansing and imbalanced
dataset handling increase data quality during preparation. The workflow then splits into two con-
current pathways. To find outliers, use the Z-Score method to find data points far from the mean.
Features are selected using Grey Wolf Optimization, which mimics grey wolf hunting. The selected
characteristics are used to train an AdaBoost model using a Decision Tree as the estimator. The
second method uses the IQR to find outliers, focusing on data points outside the range. Ant Colony
Optimization, a metaheuristic method inspired by ant foraging, selects pathway attributes. The selected
characteristics are used to train an AdaBoost model. The method culminates with the evaluation of the
trained models from both paths using accuracy, precision, recall, F1 Score, and AUC score. Compare
these parameters to understand each route’s performance. This systematic technique integrates outlier
handling, feature selection, and ensemble modeling to find the best heart disease prediction strategy.

3.1 Pre-Processing

Data cleaning, imbalanced dataset handling, and IQR and Z-Score approaches are used in the
research. The steps are listed below.

3.1.1 Data Cleaning

Machine learning data cleaning ensures the dataset used to train the model is reliable and high-
quality. This difficult operation involves numerous critical techniques to fix data errors. Imputation
or deletion of missing data is the main focus of preventing model distortions. When imputing missing
values using the mean, as shown in Eq. (1):

ximputed = 1
n

∑n

i=1
xi (1)

where xi are the observed values, and n is the number of non-missing values.
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Figure 1: Schematic diagram of the proposed methodology

Duplicate records are found and eliminated to ensure each data point is unique. Outliers, which
differ considerably from the average, can be removed or transformed to make the model more resilient.
Categorical variable data type conversion meets machine learning algorithm requirements. The dataset
is corrected to maintain coherence in categorical labels and numerical limits. Normalizing and scaling
numerical characteristics standardizes their ranges to eliminate scale-related model effects. A common
method is Min-Max Scaling as shown in Eq. (2):

Xscaled = X − Xmin

Xmax − Xmin

(2)

where X is an original value, Xmin is the minimum value of the feature, and Xmax is the maximum value.

Transformations reduce skewed distributions, improving feature distribution symmetry. Encoding
categorical data ensures machine learning compliance. Feature engineering improves dataset infor-
mation by adding or altering features. These processes include integrity checks to verify data meets
standards. These methods create a clean, precise, and well-prepared dataset for machine learning
model training and prediction.

3.1.2 Handling Imbalanced Dataset

A class imbalance existed before Adaptive Synthetic Sampling (ADASYN) [10,11] oversampling,
with 526 examples in class 1 and 499 in class 0. This disparity may bias model training toward
the dominant class. After ADASYN was implemented, each class had 423 occurrences, balancing
the distribution as shown in Fig. 2. ADASYN prioritizes hard-to-classify circumstances by creating
artificial minority class samples. ADASYN solves the imbalance problem without overfitting by
considering minority class data density distribution. This balanced dataset improves machine learning
models, lowering bias and enhancing prediction accuracy, especially when class distributions vary
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widely. ADASYN, as outlined in Algorithm 1, is beneficial for managing unbalanced datasets and
improving classification algorithms.

Figure 2: Before and after handling an imbalanced dataset (balancing)

The imbalance ratio γ by comparing majority and minority class occurrences is shown in Eq. (3).
The minority class density distribution Dii for each instance xii using Euclidean distance shown in
Eq. (4). The significance weight ωii for each minority class instance, considering its density distribution
shown in Eq. (5). The number of synthetic samples Gii to generate, as shown in Eq. (6):

Algorithm 1: ADASYN for imbalanced dataset
Input:
- Dataset with majority class instances N_majority and minority class instances N_minority
- ADASYN_Ratio (desired balance level)
Output:
- Balanced dataset with original and synthetic samples

γ = Nmajority

Nminority

(3)

For each instance xii in the minority class:

Dii =
∑Nminority

jj=1 dist
(
xii, xjj

)
Nminority

(4)

End For
(Continued)
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Algorithm 1 (continued)∑
D = ∑Nminority

ii=1 Dii for all xii in the minority class
For each instance xii in the minority class:

ωii = Dii∑Nminority
jj=1 Dii

(5)

End For
For each instance xii in the minority class:

Gii = round (ωii ∗ ADASYN_Ratio) (6)

For j = 1 to Gii:
Select a random neighbor xjj of xii from the minority class

xsynthetic = xii + rand (0, 1) ∗ (xjj − xii) (7)

Add xsynthetic to the synthetic samples set
End For

End For
Combine original minority class instances with synthetic samples to form the new dataset
Train machine learning models on the balanced dataset
Return the balanced dataset
where:
Nmajority: The total number of majority class instances.
Nminority: The total number of minority class instances.
Dii: density distribution.

3.1.3 Handling Outliers with Z-Score

A statistical metric called the Z-Score, also known as the standard score or z-value, estimates the
deviation of a data point from the dataset mean in standard deviations. It is often used to find outliers
or data points far from the mean.

The formula for calculating the Z-Score of a data point x with mean μ and standard deviation σ :

Z = (x − μ)

σ
(8)

Z, the standardized value of x in Eq. (8), is calculated by removing the mean (μ) and dividing
by the standard deviation (σ ). This transformation is essential in statistics and data analysis because
it allows meaningful comparisons of variables or datasets of different sizes. x represents the original
variable, with μ as the mean and σ as the standard deviation. Eq. (5) standardizes a distribution with
an average of 0 and a standard deviation of 1 into a standard normal distribution.

The Z-Score is a measure that quantifies the number of standard deviations a data point deviates
from the mean. A Z-Score of 0 shows that the data point’s score equals the mean. A positive Z-Score
indicates a value more than the mean, while a negative Z-Score suggests a value less than the mean
[12,13].

In practice, Z-Scores are typically used to identify outliers or extreme values. Data points having
Z-Scores exceeding a specific threshold are regarded as potential outliers, as shown in Fig. 3:



1094 CSSE, 2024, vol.48, no.5

Figure 3: Before and after removing outliers using Z-Score

3.1.4 Handling Outliers with Interquartile Range

The IQR is a statistical metric employed to evaluate the extent or distribution of a dataset. It is
very beneficial for detecting and addressing anomalies. The IQR is the difference between the third
quartile (Q3) and the first quartile (Q1) of a dataset [14].

The following are the sequential instructions for computing the interquartile IQR:

• Sort the dataset in ascending order.
• Determine the first quartile (Q1) by finding the median of the lower half of the dataset.
• Determine the third quartile (Q3), which corresponds to the median of the upper half of the

dataset.
• Compute the IQR using the formula shown in Eq. (9):

IQR = Q3 − Q1 (9)

The interquartile range quantifies the dispersion of the central 50% of the dataset. Outliers can be
detected by measuring their divergence from the IQR. Specifically, values below Q1 − 1.5 × IQR and
above Q3 + 1.5 × IQR are often considered potential outliers.

The dataset includes demographic, clinical, and focus variables ‘Heart Disease.’ Age, gender, chest
pain Type, resting BP (blood pressure), cholesterol, fasting BS (blood sugar), resting ECG, maxHR
(heart rate), exercise angina, oldpeak, ST_slope, and heart disease binary categorization are the factors
as shown in Fig. 4. Find and remove dataset outliers. Data preparation must identify and remove
outliers to increase analysis and modeling dependability. Data anomalies differ considerably from the
trend and can mislead statistical analysis and harm model performance. In this approach, the dataset
includes age, blood pressure, cholesterol, and other health indicators [15].

Outlier detection and removal methods like IQR are not specified. After reducing outliers, the
dataset’s integrity and dependability should improve. Outliers can distort statistical measurements and
reduce predictive model accuracy. After removing outliers, the dataset should be better for analysis,
ensuring representative and reliable data insights.
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Figure 4: Before and after removing outliers using IQR

3.2 Feature Selection

Feature selection is an essential and critical process in machine learning, particularly when
working with datasets with many features. The objective is to ascertain and preserve the most
pertinent characteristics, which can augment the model’s efficacy, diminish overfitting, and boost
comprehensibility.

GWO and ACO approaches are used in the research for feature selection.

3.2.1 Grey Wolf Optimization (GWO)

GWO is a metaheuristic algorithm inspired by grey wolf social structure and hunting. In feature
selection, GWO finds the best subset of characteristics to maximize an objective function [16]. In the
GWO algorithm, the distance between wolves and their updates to position is crucial for converging
on optimal solutions. The distance is calculated as shown in Eq. (10):

D = ∣∣C.Xp (t) − X (t)
∣∣ (10)

where C and Xp (t) are coefficient vectors and the position vector of the prey (or best solution),
respectively, and X (t) the position vector of the wolf is shown in Eq. (11):

X (t + 1) = Xp (t) − A.D (11)

Here, A and C are coefficient vectors are computed as shown in Eq. (12):

A = 2.a.r1 − a, C = 2.r2 (12)

A linearly decreases from 2 to 0 throughout iterations, and r1, r2 are random vectors in [0, 1].

The algorithm was inspired by a wolf pack’s hierarchical structure—alpha, beta, and delta wolves
as leaders and omega as followers. Optimization involves these steps as shown in Fig. 5.
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Figure 5: The control flow diagram of the GWO algorithm

• Initial phase: Create a population of wolves, with each wolf representing a potential solution in
the form of a feature subset. Assess the fitness level of each wolf by evaluating the goal function.

• Formation of a hierarchy: Determine the alpha, beta, and delta wolves by analyzing their fitness
levels. Allocate each wolf a spot within the search space based on their hierarchical ranking.

• Search for prey: Wolves cooperate to locate and capture prey, aiming for the most efficient
outcome. Revise the location of each wolf according to their rank in the hierarchy and a random
component of exploration.

• Revise the positions of Alpha, Beta, and Delta: Revise the locations of the alpha, beta, and delta
wolves in accordance with their hunting tactics. Promote exploring by maintaining a balance
between global and local exploration through updated positions.

• Surround the target and launch an assault: Surround the prey (the most effective solution) by
modifying the placements of the wolves. Model the assault on the prey, illustrating the process
of approaching the most favorable outcome.

• Update the positions of the wolves: Revise the locations of all wolves, including the alpha, beta,
delta, and omega individuals. Manage the delicate balance between exploring new possibilities
and exploiting existing knowledge to ensure a harmonious local and global search combination.

• Repeat: Iterate the operation for a designated number of cycles or until the convergence
requirements are satisfied.

The GWO algorithm is an optimization algorithm using the social behavior of grey wolves in
hunting and is one of the metaheuristic methods. To solve the problem, the genetic algorithm is used,
which involves testing a population of wolves and moving the wolves to the hunting population to
achieve the best solution possible. High-ranking wolves and breeding pairs introduce the alpha, beta,
and delta wolves as the best individuals in the population to drive the search. They head together
to search for the prey; an effect that would lead to the most optimal benefit to the pack. They even
reallocate their positions. It may be noted that the algorithm provides an appropriate trade-off between
exploration and exploitation of the solution space for a satisfactory solution, per the requirements
of the problem. It means that a certain point in a solution space is chosen to mark the end of the
optimization if specific criteria are fulfilled. Otherwise, iterations continue until the values stabilize
and reach a certain level known as convergence level or until another condition halts the process. It is
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showing excellent results in numerous optimization problems on account of its simplicity and efficiency
in yielding optimal solutions.

The hyperparameters of the GWO algorithm are:

Population size (N), Number of iterations (T), Coefficient vectors (a, A, C), Dimension of the
problem (D), Lower and upper bounds, and Fitness function.

The mentioned hyperparameters are significant in hopes of regulating and defining the associated
behaviors and performance of the GWO algorithm. From the equation, the population size (N) and the
number of iterations (T) define the exploration and convergence rate of the algorithm. While parameter
a satisfies the successful exploration of the search space during the optimization process, C encourages
the exploitation of iteration point A at the right time. The range of the problem that has to be solved
defines the range of the solution space, the dimension of the problem (D), and the lower and upper
boundaries. It determines the adequacy of the solutions to be improved upon in an effort to select
the best feature subsets. Specifically, they are the number of particles, the current, the conjugate, and
the inertia coefficients, which, if well-chosen and regulated, can optimize GWOs on feature selection
pertaining to heart disease prediction probabilities.

3.2.2 Ant Colony Optimization (ACO)

The metaheuristic algorithm ACO is based on ant foraging. ACO is used in combinatorial
optimization and feature selection to mimic ants’ ability to find the shortest route between their colony
and a food source [17]. ACO to find the best graph pathways. The way ants find their way to food-
inspired it. The two equations that are essential for the ACO method are listed below:

1. Probability of Choosing a Path

In ACO, the probability pk
ij (t) that an ant k will choose to move from node i to node j depends on

the amount of pheromone present on the edge connecting these nodes and the movement’s visibility
(or desirability). This probability is shown in Eq. (13):

pk
ij (t) =

[
Tij (t)

]∝
.[nij]β∑

lεNk
i

[
Tij (t)

]∝
.[nij]β

(13)

where:

Tij (t) is the amount of pheromone on edge (i, j) at time t.

nij is the visibility or attractiveness of the move from node i to node j, often defined as
1

distanceij

,

if the distance is the measure of cost.

α and β are parameters that control the influence of Tij (t) and nij, respectively.

Nk
i is the set of feasible neighborhoods of node i for ant k.

2. Pheromone Update Rule

After all ants have done their tours, edge pheromone levels are changed to reflect their route
preferences. The typical pheromone updating rule is shown in Eq. (14):

Tij (t + 1) = (1 − ρ) .Tij (t) + ΔTij(t) (14)
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where:

Tij (t + 1) is the amount of pheromone on edge i at time t + 1.

ρ is the rate of pheromone evaporation, a parameter that prevents the unlimited accumulation of
pheromone.

ΔTij (t) is the amount of pheromone deposited, typically calculated as a sum of contributions from
all ants that used edge i,j in their tour Eq. (15):

	Tij (t) =
∑

k : ant k uses edge i,j

Q
Lk

(15)

where:

Q is a constant.

Lk is the length of the tour completed by ant k.

Ant Colony Optimization in brief as shown in Fig. 6.

Figure 6: The control flow diagram of the ACO algorithm

• Inspiration from Ant Foraging: Ant collective foraging, where ants deposit pheromones on the
ground as they travel, inspired ACO. Pheromone attracts other ants to shorter trails since they
accumulate more.

• Solution Representation: Combinatorial optimization uses ACO for problems with pathways or
combinations. Feature selection solutions represent subsets of features.

• Pheromone Update: The technique employs a pheromone matrix to encode the answers and their
respective quality. After each cycle, the pheromone is updated according to the quality of the
solutions that have been discovered. Solutions that are shorter or more efficient are rewarded
with a greater concentration of pheromones.

• Solution Construction: Ants build solutions by repeatedly choosing characteristics depending
on the pheromone matrix. The selection likelihood of a specific feature is controlled by the
concentration of pheromones associated with that characteristic.

• Local Search and Exploration: Local search algorithms can improve solution quality and
solution space exploration. Ants may base their decisions on heuristics or other information.

• Pheromone Evaporation: Pheromone concentrations are evaporated to prevent the algorithm
from converging to suboptimal solutions. Evaporation makes unreinforced routes less appeal-
ing.

• Iterative Process: Multiple generations of the algorithm refine solutions. The pheromone matrix
converges to an optimal or near-optimal solution.
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• Application to Feature Selection: ACO is used to pick features that maximize a parameter, like
model correctness or another performance metric. Pheromone-guided construction selects or
excludes features.

3.2.3 Application to Feature Selection

ACO is used to pick features that maximize a parameter, like model correctness or another
performance metric. Pheromone-guided construction selects or excludes features.

Fig. 6 illustrates the cycle of ACO with ants constructing solutions derived from pheromone, and
the algorithm converting these solutions through pheromone evaporation and neighborhood search,
assessing convergence at each step [18]. This occurs until divergence stops and the defined convergence
criteria are realized.

The hyperparameters of the ACO algorithm are:

Number of Ants (m), Pheromone Persistence (ρ), Pheromone Intensity (Q), Heuristic Informa-
tion (η), Pheromone Update Rule, Exploration-Exploitation Trade-off (α, β), Convergence Criteria.

The hyperparameters mentioned above are important for controlling and determining the behav-
ior and performance of the ACO algorithm to a certain extent. Hence, their meticulous selection and
adjustment are the keys to this algorithm’s efficiency in feature selection for heart disease prediction.

3.3 Model for Heart Failure Prediction

3.3.1 AdaBoost

AdaBoost, also known as Adaptive Boosting [19], is an effective ensemble learning method
designed to enhance weak learners and build a precise classifier. First, a base or weak learner is
trained on the original dataset, usually a classifier that outperforms random chance. After each
repetition, AdaBoost adjusts the weights to account for the weak learner’s accuracy. Incorrectly
classified instances are weighted more, focusing the system on difficult situations. Weighted voting
merges the predictions of many weak learners to form a robust learner. The best model prioritizes
competent weak learners’ predictions, creating a flexible classifier [20]. This strategy involves careful
consideration of noise susceptibility and weak learner selection.

AdaBoost adapts instance weights to prioritize difficult situations and calculates weak learner
weights based on accuracy, as the formulas show. The final projection is a mix of weak learners’
forecasts, with high-performing learners having more impact. AdaBoost helps weak learners construct
a powerful and adaptive classifier, as shown in Eqs. (16) through (20).

3.3.2 System Model

i) Given a training set (x1, y1), (x2, y2), . . . , (xm, ym) where xii ∈ R
n and yii ∈ {−1, +1}

ii) Initialize weights D1 (ii) = 1
m

for ii = 1, 2, 3, . . . , m

iii) For t = 1, 2, 3, . . . , T (where T is the total number of weak classifiers):
• Train weak Learners

Train a weak learner ht using the weighted training data Dt

• Calculate Error
Compute the error of ht as shown in Eq. (16):

εt =
∑m

ii=1
Dt (ii) .I (ht (xii) �= yii) (16)
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where I (.) is the indicator function that is 1 if ht(xii) �= yii and 0 otherwise.
• Compute Classifier Weight

Calculate the weight ∝t of the weak learner ht as shown in Eq. (17):

αt = 1
2

ln
(

1− ∈t

∈t

)
(17)

• Update Weights
Update the weights Dt+1(ii) for the next iteration.

Dt+1 (ii) = Dt (ii) exp (−αt.yii.ht (xii))

Zt

(18)

Zt =
∑m

ii=1
Dt (ii) exp (−αt.yii.ht (xii)) (19)

iv) Final Strong Classifier
The final strong classifier H(x), is a weighted majority vote of the T weak classifiers.

H (x) = sin
(∑T

t=1
αt.ht(x)

)
(20)

where:
• Dt (ii) used to emphasize the importance of each training instance.
• εt This measures the proportion of the training instances that are incorrectly classified

by the weak learner.
• αt This indicates the importance of the weak learner in the final strong classifier.
• Zt This ensures that the weights Dt (ii) Sum up to 1, making Dt as a valid probability

distribution.

4 Result and Discussion

4.1 Performance Assessments

4.1.1 Experimental Setup

This section provides the proposed network setting for conducting the experiments, which forms
part of this research. All the experiments were performed with the Google Colab environment, which
provides the cloud-based interface and free access to the GPU (Graphics Processing Unit) resources by
the choice of computational power during the machine learning model development and validation.

4.1.2 Outcome of Feature Selection Using GWO

Key prognostic factors were identified using the results from the GWO on the heart disease
dataset. The GWO research found “thalach,” or maximum heart rate, to be the most important factor.
Its fitness score of 604.927870 and unbelievably low p-value of 1.418912e−133 showed its remarkable
outcome prediction ability. In addition to fitness ratings, ‘oldpeak’ (the amount of ST depression
caused by exercise relative to rest), ‘ca’ (the number of major vessels colored by fluoroscopy), and
‘cp’ (chest pain kind) showed low p-values as shown in Fig. 7 and Table 1.
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Figure 7: A line graph denoting selected features with scores using GOW

Table 1: Selected features and fitness scores using GWO

Feature Fitness Score p-value

thalach 604.927870 1.418912e−133
oldpeak 215.699763 7.841807e−49
ca 189.108999 4.975304e−43
cp 186.475859 1.869011e−42
chol 130.589760 3.044494e−30
exang 124.157623 7.781044e−29
age 77.134711 1.596860e−18
sex 27.787438 1.354024e−07
slope 26.348263 2.850751e−07
trestbps 21.030029 4.521411e−06
thal 19.320821 1.104949e−05
restecg 14.221229 1.625266e−04
fbs 1.311548 2.521145e−01

These data supported keeping these features in the model. Fasting blood sugar (FBS) had the
least effect on the prediction model. It fit the least and had a high p-value, indicating little effect.
This technique lets me focus on the prediction model’s most critical components, perhaps boosting
heart disease detection. This technique improves the data collection, model reliability, and clinical
importance, resulting in better results.
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4.1.3 Outcome of Feature Selection Using ACO

After the ACO method was applied to the heart disease dataset, our study concentrated on
evaluating the importance of the produced characteristics. By applying the ACO algorithm—which
takes its cues from the effective navigation of ants—researchers could determine which heart disease
markers are most important. With a significance score of 0.095369, the study found that the feature
‘trestbps’ (resting blood pressure) is the most significant. The parameters ‘ca’ (the number of major
vessels visible during fluoroscopy) and ‘thalach’ (the greatest heart rate obtained under stress), with
scores of 0.088210 and 0.089583, respectively, were attentively followed. ‘Sex’, ‘age’, and ‘thal’ are a
few more noteworthy attributes that also showed significant relevance, indicating their value in the
prediction model as shown in Fig. 8 and Table 2.

Figure 8: A line graph denoting selected features with importance using ACO

Table 2: Selected features and fitness scores using ACO

Feature Importance

trestbps 0.095369
ca 0.089583
thalach 0.088210
sex 0.083519
age 0.076295
thal 0.075361
slope 0.073916
restecg 0.073287
fbs 0.072518
exang 0.072208
oldpeak 0.070708

(Continued)
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Table 2 (continued)
Feature Importance

chol 0.066425
cp 0.062602

These results allow me to order these crucial features in my modeling efforts, increasing the final
models’ efficacy and precision. This method makes feature selection easier and helps me learn more
about the fundamental causes of heart disease, which will help to develop more focused and effective
treatments.

4.1.4 Z-Score Outlier Detection and GWO with AdaBoost

Z-Score Outlier Detection, GWO for feature selection, and AdaBoost classification provide
promising heart disease prediction results. The accuracy of the test is 89.0%, which indicates good
precision in predicting positive and negative cases. Precision, which measures positive prediction
accuracy, is 89.0%, showing few false positives. The model’s recall rate is 90.0%, indicating its ability
to recognize heart disease patients.

The harmonic mean of precision and memory, the F1 Score, is 89.0%, showing a balanced
performance in precision and recall. The model’s AUC value of 93.0% indicates high discrimination
between positive and negative cases, as shown in Table 3, Figs. 9–11. The confusion matrix shows 84
correctly identified negatives, 97 correctly identified positives, 12 wrongly identified positives, and 11
incorrectly identified negatives.

Table 3: Z-Score outlier detection and GWO with AdaBoost results

Metrics Values

Accuracy 89.0
Precision 89.0
Recall 90.0
F1 Score 89.0
AUC score 93.0

The confusion matrix shows that the model accurately classifies scenarios as either having heart
disease or not. However, false positive and false negative values suggest model errors and must be
addressed. One can research ways to reduce false positives and negatives to increase model accuracy.



1104 CSSE, 2024, vol.48, no.5

Figure 9: Bar graph shows Z-Score outlier detection and GWO with AdaBoost performance metrics

Figure 10: Confusion matrix for Z-Score outlier detection and GWO with AdaBoost
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Figure 11: ROC for Z-Score outlier detection and GWO with AdaBoost

4.1.5 IQR Outlier Detection and ACO with AdaBoost

With IQR Outlier Detection and ACO for feature selection and AdaBoost classification, heart
disease prediction results are promising. With 86.0% accuracy, the model makes accurate predictions.
Positive predictions had 84.0% precision, indicating few false positives. A 90.0% recall rate shows the
model can detect positive heart disease patients.

The F1 Score, the harmonic mean of precision and recall, is 87.0%, showing a balanced perfor-
mance in predicting positive instances and limiting false positives. The model’s AUC score is 91.0%,
indicating strong discrimination. Confusing matrix analysis helps explain model effectiveness. The
model successfully classifies patients with and without heart disease with 97 true positives, 78 true
negatives, 18 false positives, and 11 false negatives. Optimizing the model’s parameters may enhance
precision and recall even when false positives and negatives are low, as shown in Figs. 12–14 and
Table 4.
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Figure 12: The bar graph shows IQR outlier detection and ACO with AdaBoost performance metrics

Figure 13: Confusion matrix for IQR outlier detection and ACO with AdaBoost
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Figure 14: ROC for IQR outlier detection and ACO with AdaBoost

Table 4: IQR outlier detection and ACO with AdaBoost results

Metrics Values

Accuracy 86.0
Precision 84.0
Recall 90.0
F1 Score 87.0
AUC Score 91.0

IQR Outlier Detection, ACO for feature selection, and AdaBoost perform well in heart disease
prediction. Balanced performance indicators and a decent AUC score highlight the model’s real-world
potential. Use case-specific fine-tuning and modification can improve model forecast accuracy.

4.1.6 Comparative Performance of Z-Score and IQR Outlier Detection with GWO and ACO in
AdaBoost-Based Heart Disease Prediction

In the classification results, there are significant differences in identifying heart disease using
Feature Selection with AdaBoost combined with Z-Score and GWO on the one hand, and the use
of IQR and ACO on the other. The GWO and Z-Score achieved higher training and testing accuracies
than the proposed IQR and ACO methods, as it was observed at 91.00% in training and 89.00% in
testing accuracies for the GWO and Z-Score method and 88.00% in training and 86.00% in testing
accuracies for the IQR and ACO method. This implies that the combination of Z-Score and GWO is a
better fit for the training data and performs more optimally when making predictions on actual, unseen
data. Moreover, it can be seen that the accuracy of the Z-Score and GWO methods is slightly higher,
being 89.0% compared to IQR and ACO method accuracy of 84.0%, thus reducing the false positive.
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It shows that each technique has 90.0% recall. However, the F1 Scores of the Z-Score technique are
89.0% and 87.02%, respectively. In contrast, GWO is 87.02% and 90.0%, respectively, proves that GWO
is more sensitive and selective in terms of parameters.

Comparing the miss rates, the number indicating the false negative cases, the training and testing
miss rate of both methods is 10.0% based on 90.0% recall. This means that both methods’ miss rate is
equally efficient in predicting actual positive cases of heart disease. Nevertheless, given that the Z-Score
and GWO method possesses higher overall performance than other methods concerning precision, F1
Score, and AUC, it ensures the correct identification of positive cases. It reduces the number of FPs
and the ability to differentiate classes. Thus, using the AdaBoost with Z-Score and GWO demonstrates
better accuracy, balanced performance, stronger characteristics, and better generalization to the
unseen data set, making it perfect for heart disease predictability that is tabulated in Table 5 and the
corresponding graphs are shown in Fig. 15.

Table 5: Comparative performance of Z-Score and IQR outlier detection with GWO and ACO in
AdaBoost-based heart disease prediction

Algorithm Train accuracy Test accuracy Precision Recall F1 Score AUC score

Z-Score and
GWO with
AdaBoost

91.0 89.0 89.0 90.0 89.0 93.0

IQR and ACO
with AdaBoost

88.0 86.0 84.0 90.0 87.02 91.0

Figure 15: The bar graph shows a performance comparison of Z-Score and IQR outlier detection with
GWO and ACO in AdaBoost-based heart disease prediction
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4.1.7 Comparative Performance of Z-Score and IQR Outlier Detection with Existing Counterparts

Table 6 compares outlier identification strategies, including existing methods, and the proposed
model. The accuracy of outlier identification for each method indicates its efficacy. The “Our Work”
method employs AdaBoost, Z-Score, and GWO to find outliers with 91.0% accuracy. This improves
outlier detection. Since it uses Random Forest (RF) and Genetic Algorithms, Rani et al.’s algorithm
stands out. This algorithm beats the specified method with 86.6% accuracy. Other methods, such as
regularization with Random Forest (RF) and Genetic Algorithms (GA) with Radial Basis Function,
achieve 84.98% to 85.40% accuracy.

Table 6: Comparative performance of Z-Score and IQR outlier detection with existing counterparts

Reference Algorithm Accuracy

Doppala et al. [21] GA with RBF 85.40%
Rani et al. [22] GA with RF 86.6%
Panda et al. [23] Lasso with RF 84.98%
Panda et al. [23] Ridge with RF 85.31%
Reddy et al. [24] Chi-squared with NB 83.49%
Pathan et al. [25] ANOVA with SVC 75.00%
Spencer et al. [26] Chi-squared with the BayesNet 85.00%
Sarra et al. [27] Chi-squared with SVM 89.7%
Our work Z-Score and GWO with

AdaBoost
91.0%

Interestingly, the proposed strategy accurately identifies dataset irregularities better than any other
method. This implies that Z-Score, GWO, and AdaBoost can locate outliers effectively, improving
predictive analytics for cardiovascular health and other fields.

Limitations of this research indicate that the difference in performance is presented with different
datasets where the quality and characteristics of datasets influence the methodology’s effectiveness.
The analyzed methods, GWO and ACO, are computationally expensive depending on the size of the
dataset or the number of iterations set, which could be a drawback of these algorithms in terms of
time consumption. Adjustment of AdaBoost is most often overfitting, and it pays too much attention
to outlier detection along with some feature selection, which causes worse results for unseen data.
The selection of features through GWO and ACO may be prone to certain bias levels if the specified
algorithms fail to adequately cover the feature domain concerning identifying informative features.
However, it should be noted that the balancing techniques may not address all problems linked with
imbalanced data. Its symptoms may cause the model to predict largely towards the largest class.

5 Conclusions

In conclusion, advanced machine learning methods, Z-Score Outlier Detection with GWO and
IQR Outlier Detection with ACO, integrated with AdaBoost, improve heart disease prediction. Our
research intended to boost diagnostic precision in addressing the significant problem of cardiovascular
disorders worldwide. With 89.0% accuracy, precision, F1 Score, 90.0% recall, and 93.0% AUC, the Z-
Score and GWO with AdaBoost performed well. The IQR and ACO with AdaBoost performed much
worse. They had 86.0% accuracy, 84.0% precision, 87.02% F1 Score, and 91.0% AUC. Considering the
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small compromises between the two strategies is key. Z-Score and GWO with AdaBoost had greater
precision, but IQR and ACO had excellent recall, demonstrating their capacity to identify positive
cases. Considering the use-case requirements and reducing erroneous predictions is important while
choosing various approaches. Our research helps optimize heart disease prognostic models, improving
therapy and patient outcomes. Further studies should also focus on developing better balancing
mechanisms of the data, unique approaches to detecting outliers, and feature selection techniques
that will improve the performance and transferability of the models in the future.
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