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ABSTRACT

Quadrotor unmanned aerial vehicles (UAVs) are widely used in inspection, agriculture, express delivery, and other
fields owing to their low cost and high flexibility. However, the current UAV control system has shortcomings such
as poor control accuracy and weak anti-interference ability to a certain extent. To address the control problem of a
four-rotor UAV, we propose a method to enhance the controller’s accuracy by considering underactuated dynamics,
nonlinearities, and external disturbances. A mathematical model is constructed based on the flight principles of the
quadrotor UAV. We develop a control algorithm that combines humanoid intelligence with a cascade Proportional-
Integral-Derivative (PID) approach. This algorithm incorporates the rate of change of the error into the inputs of
the cascade PID controller, uses both the error and its rate of change as characteristic variables of the UAV’s control
system, and employs a hyperbolic tangent function to improve the outer-loop control. The result is a double closed-
loop intelligent PID (DCLIPID) control algorithm. Through MATLAB numerical simulation tests, it is found that
the DCLIPID algorithm reduces the rise time by 0.5 s and the number of oscillations by 2 times compared to the
string PID algorithm when a unit step signal is used as input. A UAV flight test was designed for comparison with
the serial PID algorithm, and it was found that when the UAV planned the trajectory autonomously, the errors in the
X-, Y -, and Z-directions were reduced by 0.22, 0.21, and 0.31 m, respectively. Under the interference environment
of artificial wind about 3.6 m·s-1, the UAV hovering error in X-, Y -, and Z-directions are 0.24, 0.42, and 0.27 m,
respectively. The simulation and experimental results show that the control method of humanoid intelligence and
cascade PID can improve the real-time, control accuracy and anti-interference ability of the UAV, and the method
has a certain reference value for the research in the field of UAV control.
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Nomenclature

UAV Unmanned aerial vehicle
PID Proportional integral differential
DCLIPID The double closed loop humanoid intelligence PID
PWM Pulse width modulation
MCU Micro control units
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LQ Linear quadratic
LMI Linear matrix inequality
VR Virtual reality
ADRC Adaptive disturbance rejection control
ANN Artificial neural network
ESC Electronic speed controller
TSMC Two-stage matrix converter
HI Humanoid intelligence
CNN Convolutional neural network
OAM Obstacle avoidance method

1 Introduction

Quadcopter UAVs have attracted considerable attention owing to their simple structure, compact
body and flexible flight [1]. As the use of UAVs has become increasingly widespread, the requirements
for machine performance have gradually increased, and the ability to maintain the desired flight
performance is a basic requirement to meet the needs of different users. The advantages of quadcopter
UAVs over hexacopter and octacopter UAVs are their small size and low cost, which are suitable
for low-altitude flights, hovering, and can also be used in most scenarios [2]. Quadcopter UAVs
play an indispensable role in various applications such as agricultural and plant spraying, power line
inspection, aerial photography, 3D rendering, forest monitoring, fire rescue, air quality detection,
and traffic management [3]. The successful implementation of these applications is closely related
to the performance of flight controllers [4]. Many researchers have worked on developing high-
performance flight-control strategies for quadrotors. For example, linear quadratic (LQ) controllers
[5], model predictive controllers [6], adaptive block-controlled backstepping controllers [7], linear
matrix inequality (LMI)-based controllers [8], robust cascade controllers [9], and neural-network-
based controllers [10] have been developed. The UAV obtains an accurate attitude angle by fusing and
solving the attitude information measured by sensors. The attitude angle is used in the flight control
of the quadrotor, and the control system continuously adjusts the rotational speed of the motors to
change the attitude of the airframe to achieve control. The core of the quadcopter design is attitude
solving and flight control. At present, the control technology used by most UAV technology enterprises
is still dominated by conventional (PID) control, owing to the influence of the commercialization
nature [11]. This is mainly because the PID controller itself has high computational efficiency, is
suitable for concurrent processing of onboard microcontrol units (MCUs), and has both robustness
and stability in control, but requires high accuracy of the mathematical model. The accuracy of the
mathematical model directly affects the effectiveness of the PID control algorithm, which cannot cope
well with many real-time problems, in addition to communication delays, dynamic variations, and
external interference [12]. Lopez-Sanchez et al. [13] surveyed applications of PID control structures
in quadrotor UAVs paying attention to linear, nonlinear, discontinuous, fractional order, intelligent
and adaptive schemes. These studies would provide insight into gain tuning and disturbance rejection
when disturbances arise from unmodeled dynamics or external sources. Zarafshan et al. [14] proposed
an adaptive controller based on a feedback linearization algorithm and Liapunov’s design algorithm
and compared it with the optimal controller. They found that the tracking error metrics of the
state variables still converge to zero, but this algorithm requires more accurate mathematical models;
otherwise, it cannot handle unknown perturbations of the system in a timely manner. Zou [15]
proposed a robust cascade control algorithm that used a hierarchical control scheme and robust
compensation technology. The robustness of the UAV control system has been improved to a certain
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extent, but the algorithm is computationally large and the analysis process is complex. Xiong et al. [16]
used the dynamic terminal sliding film control algorithm, and it was experimentally verified that
this algorithm can make the error variable converge to zero quickly; however, the jitter phenomenon
caused by the two-stage matrix converter (TSMC) algorithm is difficult to eliminate. Zhang et al. [17]
proposed a quadrotor control algorithm based on the ADRC (Adaptive disturbance rejection control)
method, which improves the stability and anti-jamming ability of the UAV to a certain extent, but the
method does not take into account the uncertainty and external perturbation of the quadrotor control
system. The core of an artificial neural network (ANN) for realizing its function is the algorithm [18],
Wen et al. [19] used an ANN to study the variable spraying system of a plant-protection UAV, and
the results showed that the training variance of the ANN was 0.003. Rabah et al. [20] proposed a
strategy to integrate and adopt the commonly used object detection and tracking algorithm and UAV
control software to be executed on a heterogeneous resource-limited computing unit on a UAV. Online
real-time adjustment of PID parameters can achieve better results, and the stability and robustness
of this method are verified by numerical simulations. Bechlioulis et al. [21] and others proposed the
predetermined performance control method for constraining the transient steady-state performance
of the system. Yu et al. [22] proposed an integral backstepping active anti-jamming control strategy for
a four-rotor unmanned aerial vehicle attitude control to solve tracking and anti-jamming problems in
flight control, it can track the attitude angle of a four-rotor UAV with high precision. Hua et al. [23]
introduced a predetermined performance control to the translational subsystem for the case with
unknown time-varying loads and gust disturbances but did not apply it to the attitude subsystem.
Zhao et al. [24] designed adaptive predetermined performance controllers for position and attitude
separately for quadrotor UAVs with actuator faults, but could not make the system converge in
finite time. Deng et al. [25] innovatively applied the BCI system based on virtual reality (VR) to the
group UAV a drealized a novel and intelligent group control method, which proposes new ideas and
paradigms for the control of swarm UAVs in the future. Sanguino et al. [26] introduced a compact UAV
harnessing the Coandă effect, The results showed that a Fuzzy controller based on the Sugeno model
is 0.417 s (35.23%) faster than a PID controller. Bernini et al. [27] thoroughly described the choices
in training algorithms, neural net architecture, hyperparameters, and observation space in view of the
different performance metrics, results show that learned controllers exhibit high-quality over a range
of query signals, and are more robust to perturbations than PID controllers.

The PID control strategy, which is both efficient and robust, has undergone numerous theoretical
advancements in order to address its limitations. Conventional PID controllers, which are adequate
for simple systems, become insufficient as the complexity of control systems increases. Feedforward
control and gain scheduling were introduced as early improvements to handle the varying system
dynamics. Adaptive PID controllers represent a significant leap, allowing the controller to adjust
its parameters in real-time based on system feedback, thereby improving performance under varying
conditions. In the context of UAVs, researchers have begun integrating optimization techniques, such
as genetic algorithms and particle swarm optimization, to fine-tune PID parameters, ensuring optimal
performance even in the presence of model uncertainties and external disturbances. Machine learning
and artificial intelligence, including techniques such as neural networks and fuzzy logic, have been
employed to create intelligent PID controllers that can learn and adapt to the system behavior, further
enhancing robustness and stability. These theoretical advancements have led to more resilient and
adaptive control strategies that are crucial for the reliable operation of UAVs in dynamic environments.

In summary, research on UAV control has made some progress, but there are still some problems
that need to be solved:
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1) UAVs are usually designed with a small size and low moment of inertia; however, this design
will lead to UAVs being easily affected by environmental disturbances and payloads.

2) When subjected to wind gusts or other external disturbances, the PID parameters cannot be
adjusted according to the actual situation, and the anti-interference ability is weak.

3) To utilize the sliding mode control technique to compensate for the uncertainty of the
model, sliding variables are typically used to formulate the adaptive scheme. Because of
the unavoidable tracking error in practical applications, this technique cannot guarantee the
convergence of the adaptive parameters, which is very likely to lead to control chattering and
render the system unable to maintain its stability [28,29].

The choice of control methods for UAVs in the presence of faults involves a trade-off among
simplicity, performance, and computational demands. PID controllers and their modified versions
are favored because of their ease of implementation and low computational cost; however, they have
limited fault tolerance and handling of nonlinear dynamics. Nonlinear controllers [30,31], such as
sliding mode control, offer better performance in managing UAV nonlinearities and faults but require
more complex design and greater computational resources. Intelligent control methods [32], leveraging
machine learning, provide superior adaptability and fault tolerance but require high computational
power and sophisticated design. Therefore, this study considers a quadrotor UAV as the research
object, and studies the control algorithm combining humanoid intelligence and cascade PID based
on an analysis of the internal control problem in UAV control, considering the underdrivability and
nonlinearity in the quadrotor UAV control system, as well as the influence of external disturbances
on the control performance. The error rate of change is introduced into the input of the serial
PID controller, and the error and error rate of change are used as the characteristic variables of the
UAV control system. A hyperbolic tangent function is used to improve the external loop control of
the controller, and a double-closed-loop humanoid intelligence PID (DCLIPID) control algorithm is
proposed.

2 Application of Humanoid Intelligent PID Controller for Quadcopter UAV

In this study, a DCLIPID control algorithm was proposed by combining humanoid intelligence
(HI) and serial PID algorithms. The humanoid intelligence PID controller combines the advantages
of traditional PID controllers and the features of HI to cope with challenges in complex flight envi-
ronments. It can significantly improve flight stability, enhance robustness, and increase the adaptive
capability of the system for quadrotor UAVs in practical applications. For example, Kang et al. [33]
presented an improved Faster R-CNN for autonomous UAV systems for recognizing structural
damage and mapping damage in environments where GPS signals are absent. The system employs
a real-time streaming protocol and multi-processing techniques to significantly reduce the number
of false alarms. Combined with a humanoid intelligent PID controller, the flight stability of the
UAV in windy environments can be further improved so that it can fly more accurately along the
expected trajectory, even in bad weather, thereby improving the efficiency and accuracy of structural
damage detection. In 2021, Reference [34] discussed an autonomous UAV flight method that utilizes
ultrasonic beacons instead of GPS, and combines a deep convolutional neural network (CNN) for
damage detection, which solves the problem of structural health monitoring in areas where GPS
signals fail. Combined with a humanoid intelligent PID controller, the position and attitude of
the UAV can be accurately adjusted to provide more stable and precise data support for the geo-
tagging method, thus improving the accuracy of damage localization. Waqas et al. [35] presented an
autonomous UAV system based on a new obstacle avoidance method (OAM) and localization method
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for structural health monitoring in GPS-deficient regions. The system integrates YOLOv3 and a target-
based UAV localization method. Combined with a humanoid intelligent PID controller, adjustments
can be made quickly when facing sudden obstacles, improving the UAV’s response speed and obstacle
avoidance ability, and ensuring that YOLOv3’s damage segmentation method can work effectively
while improving the overall monitoring quality.

3 Mathematical Modeling of Quadrotor UAVs

The quadcopter UAV system and structure schematic diagram are shown in Fig. 1, in which
the control system is located in the center of the UAV, four motors drive the propeller rotation,
the propeller rotates at high speed to produce a pressure difference, and the UAV movement can be
realized. The UAV flight maneuvers in the air are divided into four categories: vertical lift, horizontal
yaw, horizontal roll motion, and pitching motion.

Figure 1: Quadcopter UAV

The mathematical model of the quadcopter UAV contains four parts: the power system model,
control system model, attitude dynamics model, and position dynamics model. The power system
model describes the lift force generated by the UAV during flight, the magnitude of the rotor torsional
moment, the magnitude of the backward tilting moment, and the relationship between the drag force
and propeller speed. The control system model describes the four control states of aircraft pitch, roll,
yaw, and throttle. The attitude dynamics model and position dynamics model describe the changes in
the attitude and position of the aircraft in the air. The input-output relationship between the model
data consists of four parts (Fig. 2), and the motor speed is obtained according to the linear relationship
between the lift generated by the propeller and motor speed. The control variables of the aircraft were
obtained from the UAV flight state. Using the Newton-Euler formula, the kinematics and dynamics
models of the UAV composed of lift and bending moments are derived, and a mathematical model of
the UAV is established. To simplify the model, the following assumptions were made for a quadrotor
UAV [8]:

1) The center of mass of the quadrotor UAV coincided with the geometric center.
2) Any component in a quadrotor UAV is a geometrically symmetric rigid structure with constant

rotational inertia.
3) The plane of lift generated by paddle waving and the center of gravity lie in the same plane.
4) The square of the motor speed is proportional to the lift and counter torque generated by the

propeller.
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Figure 2: Input-output relationships between models

The coordinate systems in Fig. 3 are the inertial coordinate system and body coordinate system.
The inertial coordinate system is the northeast celestial coordinate system, and the coordinate axes
coincide with the east, north, and celestial directions of Earth. The body coordinate system is a
coordinate system with the center of the UAV as the origin, pointing to the nose, right side of the
body, and directly above the body.

Figure 3: The coordinate systems

The variables are transferred from the b-system to the i-system by using Eq. (1), where q =[
w x y z

]
is the quaternion.

Rb→i (q) =
⎡
⎣1 − 2y2 − 2z2 2 (xy − wz) 2 (xz + wy)

2 (xy + wz) 1 − 2x2 − 2z2 2 (yz − wx)

2 (xz − wy) 2 (yz + wx) 1 − 2x2 − 2y2

⎤
⎦

Ri→b (q) = Rb→i (q)
T

(1)

3.1 Power System Model

The power system model includes the ESC, motor, and propeller. When the pulse-width modula-
tion (PWM) signal is input to the ESC controller, it passes through the controller inside the ESC and
then outputs the voltage, which in turn controls the motor speed. When the ESC receives the drive
signal, there is a delay, and the motor does not reach the target speed immediately, simplifying the
process to a first-order inertial link:

Ω (s) = e−τ s

Tm + 1
Ω0 (s) (2)

where Tm is the time constant, τ is the delay time, Ω (s) is the motor speed after the delay, and Ω0 (s)
represents the motor speed before the introduction of any delay or time-constant effects.
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It is assumed that a linear relationship exists between the PWM signal and the corresponding
speed of the actual motor.

Ωi = kΓi + p (3)

where Γi is the throttle amount (i = 1, 2, 3, 4), p is the hovering throttle, and k is the scale factor.

3.2 Control System Model

The control system model is used to describe the four control states of aircraft pitch, roll, yaw, and
ascent or descent, and its mathematical model depends on the UAV structure. This study adopts the
“x” structure UAV, which is subject to gravity, tension, and moment. Among them, the pull force is the
vertical upward force generated by the rotation of the propeller-driven by the rotation of the motor; the
torque is composed of the lifting moment generated by the rotation of the rotor, the counter-torque of
the rotor, and the gyroscopic moment generated by the rotor advancement of the motor. The above pull
force produces acceleration in three directions and the moment produces rotation in three directions.
The gravity force on the UAV in the body coordinate system is:

Fb
g = Ri→b (q) · Fi

g (4)

where Fb
g is the force on the UAV in the body coordinate system, Fi

g is the force on the UAV in the
inertial coordinate system, Rb→i (q) is the rotation matrix, and q denotes the quaternion.

Based on the fact that the lift force generated by the propeller is linearly related to the motor speed,
the pull force generated by a single motor is:

Fb
t,i = cT · �2

i (5)

where cT is the integrated tension coefficient, Ωi is the speed of the individual motors, i = 1, 2, 3, 4.

Thus, the sum of the pull forces generated by the four motors is:

Fb
g =

4∑
i=1

cT · �2
i (6)

Similarly, the torque generated by the four individual motors in the yaw direction can be expressed
as:

τψ =
4∑

i=1

cQΩ2
i (7)

where cQ is the integrated torque coefficient and τψ is the moment in the yaw direction.

In addition to the moments generated in the yaw direction, there are four motors whose pull force
causes the center of the drone to generate moments. Each motor’s steering is different to produce a
moment in different directions, and the moment produced by the four motors in the direction of the
traverse roll can be expressed as:

τr = −LcT · Ω2
1 + LcT · Ω2

2 + LcT · Ω2
3 − LcT · Ω2

4 (8)

where cT is the integrated tension coefficient, τr is the moment in the direction of the traverse roll,
L = l sin (π/4), and l describes the length of the UAV arm (m).

τp = LcT · Ω2
1 − LcT · Ω2

2 + LcT · Ω2
3 − LcT · Ω2

4 (9)

where τp is the moment in the pitching direction.
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Then, the total torque generated by the four motors can be expressed as:

Tb =
⎡
⎣−LcT LcT LcT −LcT

LcT −LcT −LcT LcT

cQ cQ cQ cQ

⎤
⎦

⎡
⎢⎢⎣

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎤
⎥⎥⎦ (10)

3.3 Dynamics Model

The dynamics model includes an attitude dynamics model and a position dynamics model, which
describe the changes in the UAV’s position and attitude in the air, respectively. A quadrotor UAV is an
underdriven system with six state variables (x, y, z, θ , φ, ψ) and four control inputs

(
u, τθ , τφ, τψ

)
. The

total pull force and total torque generated by the four motors are derived from the control efficiency
model, and the dynamic equations [16] of attitude are modeled using the following mathematical
expressions:

ωb = I−1
(
Tb − ωb × (

I · ωb
))

(11)

where I is the moment of inertia of the body, which can be experimentally measured using the following
expression:

I =
⎡
⎣Ixx 0 0

0 Iyy 0
0 0 Izz

⎤
⎦ (12)

The acceleration of the UAV consists of the tensile and gravitational forces from the motors, and
the expression of the dynamic equation for its position is:

ξ̈ i = −gi + Rb→i (q)

[
0 0

Fb
g

m

]T

(13)

where ξ i = [x, y, z]T ; Position under the i-system (m); gi = [0 0 g]T ; The gravitational constant under
the i-system (N · kg−1).

4 Design of a Quadcopter UAV Controller

4.1 Structure of the Controller

The existing PID algorithm is a simple linear combination of control methods, and it is difficult to
obtain efficient and high-precision control when controlling a multi-input-output underdriven system,
such as a quadrotor UAV. While parameter tuning is a key link in the design of PID control systems,
the traditional PID method not only requires the system to be tilted to the desired value in parameter
tuning to satisfy the accuracy but also suppresses the overshoot and vibration to satisfy the stability. In
this study, a DCLIPID controller was designed for the position and attitude controllers, and the overall
structure of the controller is shown in Fig. 4, where the user releases the desired position. The sensor
calculates the current position of the UAV and sends it to the position controller, and sends the desired
roll angle, pitch angle, and total pull force to the attitude controller and the control distributor. The
desired motor speed is then calculated using the attitude controller and sent to the control distributor
to control the flight of the UAV.
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Figure 4: Overall structure of the controller

4.2 Design of Position Controller

The position loop of the DCLIPID controller replaces the P-controller of the outer loop with a
nonlinear controller, which in this study is a hyperbolic tangent function. Its nonlinear characteristics
can effectively reduce the control error and provide a better control effect for quadrotor UAVs. The
inner loop is controlled by PID control and the outer loop is controlled to form a serial control of the
position loop, and the PID algorithm [36] is:

u (t) = Kpe (t) + Ki

∫ t

0

e (t) dt + Kd

de (t)
dt

(14)

The P term plays the main control role, and the output is proportional to the error. I is the integral
term, which eliminates the static error by integrating the error. D is the differential term, which mainly
adds damping to the system. A schematic of the position controller design is shown in Fig. 5.

Figure 5: Schematic structure of the position controller

4.3 Attitude Controller Design

The outer ring of the attitude loop in the DCLIPID controller uses hyperbolic tangent function
and the inner ring uses intelligent PID control algorithm, which consists of two parts: intelligent
control and PID control. The input variables of the humanoid intelligent controller are the error and
the amount of error variation, and these two variables are computed to induce variables that can
express other characteristics, providing more characteristic information for designing the DCLIPID
controller. A typical step response curve has time t as the independent variable as a function of f (t)
and the change of the error of the control system is judged according to the nature of the first-order
derivative of the function: when f (t) · f ′ (t) > 0, the system error is gradually increasing. When
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f (t) · f ′ (t) < 0, the system error is gradually decreasing. According to the state of the first-order
derivative of the function at the moment of t and (t + 1) to determine whether there is an extreme
value of the error situation of the control system, i.e., when f ′ (t) · f ′ (t + 1) < 0, it means that there is
no extreme value; when f ′ (t) · f ′ (t + 1) > 0, it means that there is an extreme value.

The prototype formula [37] for the humanoid intelligent algorithm is as follows:

IF e · �e > 0 ∪ e = 0 ∩ �e �= 0

THEN Kp · e + k · Kp ·
n−1∑
i=1

em,i

IF e · �e < 0 ∪ �e = 0

THEN k · Kp ·
n∑

i=1

em

(15)

where e is the system error, �e is the system error transformation amount, em,i is the ith peak value of
the input, and k is the inhibition coefficient.

Based on the theoretical derivation above, the error e and error transformation amount 
e of the
control system are two parameters that reflect the performance of the system. Assuming that Mmax is
a larger value of the error and Mmin is a smaller value, the following method is designed:

1) When |e (t)| ≤ Mmin, the static error of the system is eliminated based on the original control.
2) When |e (t)| ≥ Mmax and e (t) · �e (t) > 0, increase the control of the system.
3) When e (t) · �e (t) > 0 and Mmin ≤ |e (t)| ≤ Mmax, increase the control of the system.
4) When |e (t)| ≥ Mmax and e (t) · �e (t) < 0, �e (t) · �e (t + 1) < 0, keep the output of the

controller unchanged.
5) When |e (t)| ≥ Mmax and e (t) · �e (t) < 0, �e (t) · �e (t + 1) > 0, increase the control of the

controller.
6) When Mmin ≤ |e (t)| ≤ Mmax and e (t) · �e (t) < 0, �e (t) · �e (t + 1) > 0, reduce the control of

the controller.
7) When Mmin ≤ |e (t)| ≤ Mmax and e (t) · �e (t) < 0, �e (t) · �e (t + 1) > 0, increase the control

of the controller.

Taking the error e and error variation �e as the inputs of the controller, and constantly
detecting the inputs, the control parameters Kp, Ki, and Kd are adjusted in real time to meet the
control requirements of different scenarios, in which the humanoid-intelligent attitude controller is
constructed as shown in Fig. 6.

Figure 6: Schematic diagram of the attitude controller structure
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The system control is divided into three phases bounded by Mmin and Mmax, and the control
strategy is based on the magnitude of the error and error derivatives to rectify the PID parameters.
The implementation is divided into the following three steps:

1) Characterize the state of the system

� = {λ1, λ2, λ3, λ4, λ5, λ6, λ7}
λ1 : |e (t)| ≤ Mmin

λ2 : |e (t)| ≥ Mmax && e (t) · �e (t) > 0
λ3 : Mmin ≤ |e (t)| ≤ Mmax && e (t) · �e (t) > 0
λ4 : |e (t)| ≥ Mmax && e (t) · �e (t) < 0 && � e (t) · �e (t − 1) < 0
λ5 : |e (t)| ≥ Mmax && e (t) · �e (t) < 0 && � e (t) · �e (t − 1) > 0
λ6 : Mmin ≤ |e (t)| ≤ Mmax && e (t) · �e (t) < 0 && � e (t) · �e (t − 1) < 0
λ7 : Mmin ≤ |e (t)| ≤ Mmax && e (t) · �e (t) < 0 && � e (t) · �e (t − 1) > 0

(16)

2) Control modes

Λ = {γ1, γ2, γ3, γ4, γ5, γ6}
γ1 : u (t) = u (t − 1)

γ2 : u (t) = u (t − 1) + Kp [e (t) − e (t − 1)] + Ki · e (t)
γ3 : u (t) = u (t − 1) + k1 · Kp · em (t)
γ4 : u (t) = u (t − 1) + k2 · Kp · em (t)
γ5 : u (t) = u (t − 1) + Kp · e (t) + Ki · e (t) + Kde (t)
γ6 : u (t) = u (t − 1) + k1 · [

Kp · e (t) + Ki · e (t) + Kde (t)
]

(17)

3) Strategy selection

� = {θ1, θ2, θ3, θ4, θ5, θ6, θ7}
θ1 : IF λ1 THEN γ2

θ2 : IF λ2 THEN γ6

θ3 : IF λ3 THEN γ5

θ4 : IF λ4 THEN γ1

θ5 : IF λ5 THEN γ3

θ6 : IF λ6 THEN γ4

θ7 : IF λ7 THEN γ1

(18)

Based on the mathematical derivation above, it is concluded that the UAV will produce different
errors and error change rates when receiving different signals, at which time the UAV will choose
different strategies to carry out the most suitable control mode for the current situation, and then use
numerical simulation to verify the effectiveness of the program.

5 Numerical Simulation Analysis

The Simulink model of the quadcopter UAV and the DCLIPID controller were constructed in
MATLAB for simulation test analysis. The structural design of the control system based on the serial
PID method is illustrated in Fig. 7. A step signal and sine wave signal are fed to the controller to test
the delay time, overshoot, and tracking of the controller, respectively, and compared with the serial
PID method under the same conditions.
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Figure 7: Control system structure of DCLIPID

In the design of the control system based on the PID method, the first consideration is how to
design the control inputs of the system by defining a set of virtual control input variables as follows:

u = [
ux, uy, uz, uθ , uφ, uψ

]T = [
ẍ ÿ z̈ θ̈ φ̈ ψ̈

]T
(19)

Combined with the quadcopter UAV model, the actual control inputs can be obtained as [4]:

u1 = g + uz

cos φ cos θ

u2 = uθ − θ̇ ψ̇

(
Jz − Jx

Jy

)
− Jr

Jy

φ̇ω

u3 = uφ − θ̇ ψ̇

(
Jy − Jz

Jz

)
− Jr

Jx

φ̇ω

u4 = uψ − φ̇θ̇

(
Jx − Jy

Jz

)
(20)

The left reference inputs in Fig. 7 are three step signals, three sinusoidal signals, and the resulting
desired quadrotor attitude value can be denoted as (xd, yd, zd). From left to right in Fig. 7 are the
computation of the error value between the desired attitude and the actual attitude of the quadrotor,
the PID controllers for the position control and the angular control, and the computation of the actual
control outputs (x, y, z) from the actual control inputs and the feedback data acquisition, respectively.
The numerical simulation parameters are listed in Table 1 and the control system parameters are listed
in Table 2.

Table 1: Control system parameters

Symbol Value Unit

J
(
diag

(
Jx, Jy, Jz

))
diag (0.0108634, 0.0108634, 0.0124605) kg · m2

Jr 1.00 kg · m2

α 3.13 × 105

β 7.50 × 10−7

m 2.00 kg
g 9.80 m · s−2

ξ (0)
(
[x (0) , y (0) , z (0)]T)

[0, 0, 0]T m

(Continued)
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Table 1 (continued)

Symbol Value Unit

η (0)
(
[θ (0) , φ (0) , ψ (0)]T)

[0, 0, 0]T °
ξd

(
[xd, yd, zd]T)

[1, 1, 1]T m

Table 2: Control system parameters

Direction Description Value

x Position in x-axis direction Kp = 0.8
Velocity in x-axis direction Kp = 0.2, Ki = 0.02, Kd = 0.016

y Position in y-axis direction Kp = 0.8
Velocity in y-axis direction Kp = 0.2, Ki = 0.02, Kd = 0.016

z Position in z-axis direction Kp = 1.0
Velocity in z-axis direction Kp = 0.4, Ki = 0.15, Kd = 0

Roll Roll angle Kp = 0.95
Roll angular velocity Kp = 0.2, Ki = 0.1, Kd = 0.008

Pitch Pitch angle Kp = 0.95
Pitching angular velocity Kp = 0.2, Ki = 0.1, Kd = 0.008

Yaw Yaw angle Kp = 1.5
Yaw angular velocity Kp = 0.2, Ki = 0.15, Kd = 0.15

The numerical simulation results obtained based on MATLAB are shown in Fig. 8, where a), b), c)
denote the tracking of the quadrotor UAV in the X -direction, Y -direction, and Z-direction when the
reference signal is a step signal; d), e), f ) denote the tracking of the quadrotor UAV in the X -direction,
the Y -direction, and the Z-direction when the reference signal is a sine wave signal. The black and
green lines in Fig. 8 indicate the step reference signal and the sinusoidal reference signal, respectively;
the blue and red lines indicate the tracking of the reference signal by the serial PID controller and the
DCLIPID controller, respectively.

When a step signal is input, in Fig. 8a, the rise time of the step response of the DCLIPID and serial
PID controllers are 0.75 and 0.95 s, the overshoot is 20% and 23%, and the number of oscillations are
1 and 3, respectively; in Fig. 8b, the rise time is 0.70 and 1.5 s, the overshoot is 20% and 5%, and
the number of oscillations are 1, respectively; in Fig. 8c graph, the rise times are 0.8 and 1.3 s, the
overshoots are 20% and 18%, and the number of oscillations are all 1 time. When a sinusoidal signal
is input, the time delays of the DCLIPID and serial PID controllers are 0.30 and 1.0 s in Fig. 8d, and
the maximum error values are 0.08 and 0.10, respectively; in Fig. 8e, the time delays are 0.10 and 1.2 s,
and the maximum error values are 0.03 and 0.1, respectively; in Fig. 8f, the time delays are 0.30 and
1.3 s, the maximum error values are 0.04 and 0.12, respectively.
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Figure 8: Simulation results of the control system
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The MATLAB simulation test results show that when a step signal is input, the cascade PID
method has an average longer rise time of 0.50 s and two more oscillations in the three directions than
the DCLIPID method. When a sinusoidal signal is input, the cascade PID method has an average
delay of 0.63 s more than the DCLIPID method in the three directions, the maximum error value is
0.056 more, and the overall effect is somewhat worse than that of the DCLIPID controller. Therefore,
the DCLIPID control has more stable and accurate response characteristics than the cascade PID
control.

6 Quadcopter UAV Experimental Design

6.1 Test Platform Construction

A four-axis, 400 mm wheelbase aircraft is used, the control system of this UAV is developed based
on the STM32F103 processor with a main frequency of 72 MHz. The attitude control system mainly
uses two ICM20689 IMUs as sensors. The hardware equipment includes the remote control, ground
station (Q Ground Control, QGC) and the quadrotor UAV equipped with the control system, the
test system realizes the communication between the ground and the ground using data transmission,
the overall system of the aircraft is shown in Fig. 9. The quadrotor frame used in the flight test was
made of carbon fiber, and the hardware parameters are listed in Table 3. The sensors built into the
flight controller, such as the level, gyroscope, and magnetic compass, need to be calibrated before the
UAV flies to ensure that it can fly properly. NVIDIA Nano represents a top-tier embedded computing
platform designed for high-performance applications. This device connects to the flight controller
via a serial port and employs the MAVLINK protocol to transmit the controller’s status in real time,
as well as to receive commands from upper layers. By offering an efficient and flexible means for
UAVs to validate control algorithms, the Nano accelerates the development process and experimental
validation, which ultimately contributes to a more streamlined algorithm development process.

Figure 9: UAV control test system
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Table 3: Hardware parameters

Equipment name Model

Frame 400 mm wheelbase, carbon brazed frame
Flight controller PIXHAWK4
WIFI data transmission AMOV data transmission
Power battery Format 4 s (5300 mA)
Motor T-MOTOR 2216 880 KV
Onboard computer NVIDIA Nano
Outdoor mapping device Intel T265 Binocular Camera
Outdoor positioning device M8N GPS Module
Remote control FOSS i6s

6.2 Autonomous Trajectory Planning Experiment

Without giving a specific trajectory, the UAV power-up position is taken as the origin, and the
designated spatial coordinate point is taken as the target point for the UAV to plan itself to the target
position, and the flight strategy is as follows:

1) The outdoor flight environment is shown in Fig. 10.
2) Take the UAV power-up position as the origin and specify the spatial position (5, 5, 5) in metres.
3) Using autonomous control, the UAV is allowed to fly autonomously by cutting into offboard

mode using remote control.

Figure 10: Outdoor flight environment

The trajectory test data of the UAV planning to the target position by itself is shown in Fig. 11,
and the red, green, and blue lines indicate the flight trajectories of the traditional PID, serial PID, and
DCLIPID control algorithms, respectively.

Under the conditions of natural wind level 2, this test was conducted for a total duration of 45 s,
during which the UAV position changed. As depicted in Fig. 11a, the trajectories planned by the three
methods—DCLIPID, cascade PID, and PID—all led to the desired position, but their trajectories,
time spent, and accuracy differed. The trajectory planned by DCLIPID was the most efficient, taking
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only 15.5 s and maintaining an error fluctuation between 0.1 and 0.3 m upon arrival at the target
point. The trajectory planned by cascade PID, though longer than PID, had a negligible overshoot
upon arrival at the target point, taking 22.3 s and maintaining an error fluctuation between 0.2 and
0.4 m. Finally, the trajectory planned by PID was the shortest but had a significant overshoot after
reaching the target point, taking 39 s and maintaining an error fluctuation between 0.6 and 1 m.
The experimental results demonstrate that the accuracy of the double-closed-loop intelligent control
method is significantly higher than that of traditional PID and cascade PID methods.

Figure 11: UAV autonomous planning trajectory data

6.3 Anti-Interference Test

A fan was used to simulate the artificial wind disturbance, and the fixed-point mode was set by
remote control to allow the UAV to hover in the wind field, which is described as follows:
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1) The indoor flight environment is shown in Fig. 12.
2) Take the UAV power-up position as the starting point, and specify the position in meters at the

spatial location (0, 0, 2) in meters.
3) After the drone hovers, the wind speed of the control fan is gradually increased, and the wind

speed produced by the electric fan ranges from: 1 m · s−1∼3.6 m · s−1

4) Using fixed-point control, remote control is used to enter the fixed-point mode; in this state,
let the drone hover at the specified space position.

Figure 12: Indoor flight environment

With the addition of an artificial wind field, the hovering trajectory data of the three algorithms,
traditional PID, cascade PID, and DCLIPID, are shown in Fig. 13a–d denote the curves of the three
algorithms in the X-, Y -, and Z-directions, respectively, of the UAV’s positional data with respect to
time. The red line indicates the tracking of the PID algorithm, the green line indicates the control of
the cascade PID algorithm, and the blue dotted line indicates the control of the DCLIPID algorithm.

Figure 13: (Continued)
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Figure 13: Hovering error in three directions under artificial wind disturbance

As can be seen from Fig. 13, in the case of artificial wind interference, the total length of the test
is 100 s, and the difference between the current position ξ i

t of the UAV and the hovering position ξ is
used to obtain the amount of error �et in the current state of the UAV, and the experimental data of
the maximum error is shown in Table 4.

� et = ∣∣ξ i
t − ξ

∣∣ (21)

where ξ i
t = [x, y, z]T ; Position of the UAV under the inertial system at time t (s). ξ = [x, y, z]T ; Set the

position of the UAV’s designated target point (m).

Table 4: Experimental data of external artificial wind field

Maximum error in X -,
Y -, Z-directions

Level 1 wind Level 2 wind Level 3 wind

Conventional PID (0.26, 0.23, 0.29) Starting to shake, drone
landing

–

Cascade PID (0.12, 0.14, 0.17) (0.26, 0.24, 0.35) Starting to shake,
drone landing

DCLIPID (0.05, 0.08, 0.08) (0.14, 0.13, 0.22) (0.24, 0.42, 0.27)

It is found that in the level 1 wind (wind speed 1 m/s), the traditional PID and cascade PID
algorithms have obvious fluctuations, oscillating at about 0.2 m, while the DCLIPID algorithm
fluctuates at about 0.05 m. Compared with the traditional PID method, the errors of the UAV in
the X -, Y -, and Z- directions are reduced by 0.21, 0.15, and 0.21 m, respectively. Compared with the
cascade PID method, the errors of the UAV in the X -, Y -, and Z-directions were reduced by 0.07, 0.06,
and 0.09 m, respectively.

When the wind speed increases to 2.5 m/s at 40 s, the traditional PID algorithm starts to
disperse gradually, and the fluctuation of the cascade PID algorithm is more obvious, oscillating at
approximately 0.3 m; The fluctuation of the DCLIPID algorithm oscillates at approximately 0.1 m,
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and compared with the cascade PID method, the error of the UAV in the X -, Y -, and Z-directions
is reduced by 0.12, 0.11, and 0.13 m, respectively. When the wind speed increased to 3.6 m/s at
90 s, the cascade PID algorithm began to disperse, and the UAV gradually became out of control.
The DCLIPID algorithm fluctuations in the Y -direction also gradually began to disperse, but the
vibrations in the X - and Z-directions were still controllable. Experimental results show that the anti-
interference ability of the DCLIPID algorithm is significantly higher than that of the traditional and
serial PID algorithms.

7 Conclusion

In this study, a DCLIPID control algorithm is innovatively proposed by combining humanoid
intelligence and a serial PID algorithm, and the effectiveness of this method is verified by MATLAB
numerical simulation and quadrotor UAV flight experiments. The main conclusions are as follows:

(1) The mathematical model of the quadrotor UAV is constructed according to the principle of
flight, the error rate of change is introduced into the input of the serial PID controller, the
error and the error rate of change are used as the characteristic variables of the UAV control
system, and the hyperbolic tangent function is utilized to improve the outer-loop control of the
controller, and a dual closed-loop humanoid intelligent PID (DCLIPID) control algorithm is
innovatively proposed.

(2) Based on MATLAB, the Simulink model of the quadcopter UAV and the DCLIPID controller
were constructed and analyzed in simulation tests, and the results showed that the rise time of
the DCLIPID algorithm was reduced by 0.50 s and the number of oscillations was reduced by
2 times in comparison with that of the cascade PID algorithm.

(3) A quadrotor UAV controller test system was built and flight tests were conducted. The results
of the autonomous planning trajectory test show that the error of the UAV in the X -, Y -,
and Z-directions is reduced by 0.22, 0.21, and 0.31 m, respectively, in comparison with the
string-level PID algorithm. The anti-interference test results show that, compared with the
cascade PID algorithm, the cascade PID controller gradually diverged under an artificial wind
of approximately 3.6 m/s, and the DCLIPID controller was still able to maintain hovering; at
this time, the UAV’s hovering errors in the X -, Y -, and Z-directions were 0.24, 0.42, and 0.27 m,
respectively.

The simulation and experimental results verify that the dual closed-loop humanoid intelligent PID
(DCLIPID) control algorithm can improve the real-time performance, control accuracy, and anti-
jamming ability of UAV, and the method has a certain reference value for research in the field of UAV
control.
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