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ABSTRACT

Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where
quantum bits (qubits) can only interact effectively with their nearest neighbors. This constraint severely impacts
the design and efficiency of quantum algorithms, as arranging qubits optimally can significantly reduce circuit
depth and improve computational performance. To tackle the layout synthesis challenge, we propose an algorithm
based on integer linear programming (ILP). ILP is well-suited for this problem as it can formulate the optimization
objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint. The algorithm
aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum
device. For experimental validation, we outline a clear and feasible setup using real quantum devices. This
includes specifying the type and configuration of the quantum hardware used, such as the number of qubits,
connectivity constraints, and any technological limitations. The proposed algorithm is implemented on these
devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts. By integrating these
elements, our research aims to provide practical solutions to enhance the efficiency and scalability of quantum
computing systems, paving the way for advancements in quantum algorithm design and implementation.
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1 Introduction

Quantum algorithms use the power of quantum superposition states to process multiple qubit
states simultaneously, making them more advantageous and efficient compared to traditional algo-
rithms [1,2]. Consequently, quantum computing is poised to become a major trend in the future. How-
ever, realizing the full potential of quantum computing requires robust electronic design automation
(EDA) systems tailored for quantum circuits.

Fig. 1 shows the architecture diagram of quantum computing Electronic Design Automation
(EDA). Before implementing a quantum algorithm, quantum gates used in the algorithm must be
represented in a gate library—a process known as logic synthesis. The output of logic synthesis is a
series of quantum gates ready for implementation. Subsequently, these gates need to be mapped onto
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qubits within the quantum computer architecture, and their execution schedule must be determined—
a task known as layout synthesis. For typical quantum circuits, the number of possible initial mappings
can grow exponentially with the number of logic gates [3], highlighting the necessity of advanced EDA
systems.

Figure 1: The architecture diagram of quantum computing Electronic Design Automation (EDA)

Layout synthesis aims to generate mappings that adhere to device constraints while realizing the
circuit’s functionality. Typically, commutation optimizations are considered part of logic synthesis. To
refine layout synthesis, it is assumed that exchange-based optimizations have been pre-implemented,
focusing on basic exchange rules with less emphasis on dependencies that dictate gate order. This
approach often involves rearranging phase gates to accommodate two-qubit gates acting on the same
qubit, albeit such gates are infrequent in existing quantum circuits.

Existing research in layout synthesis evaluates solutions based on cost, which correlates with
the degree of optimization applied and additional gate count [4–6]. Current practices often involve
running circuits multiple times and analyzing statistical data to refine layouts [7–9]. From a solution
perspective, approaches can be categorized into two main groups: references [10,11] focus on exact
solutions using solvers for medium-sized instances, while references [12,13] employ pseudo-Boolean
optimization for legalizing two-qubit gates without explicit gate scheduling. Others leverage mixed
integer programming (MIP) and satisfiability modulo theories (SMT) solvers [14], time planners for
quantum approximate optimization algorithms [15], and fidelity maximization using SMT solvers [16].
Approaches in quantum circuit layout synthesis vary in their methods and effectiveness. For instance,
reference [17] divides circuits into levels and inserts gates within these levels to facilitate mappings
between them, though these models may not always achieve optimal solutions. Conversely, references
[18–20] adopt a strategy of breaking circuits into smaller sub-circuits (or levels), optimizing layout
synthesis by transforming mappings between these components. In specific methods, such as those
detailed by [21], swap gates are strategically inserted to move required qubits for subsequent two-qubit
gates along the shortest path. Similarly, references [22,23] consider distances between qubits involved
in other two-qubit gates, while reference [24] emphasizes fidelity in qubit movement. Some approaches,
like [25], employ a cost function combining distances and swap gate counts in an A∗ search, whereas
reference [26] utilizes bidirectional search.

The complexity inherent in evaluating these solutions poses significant challenges. Current
benchmark tests typically employ quantum circuit libraries [27], containing real-world functionalities.
However, researchers can currently only compare methodologies with each other, lacking a definitive
measure of how close these solutions are to optimal. Layout synthesis is crucial in quantum computing
as it addresses the challenge of designing quantum circuits that adhere to device-specific layout
constraints. In our paper, we have developed a benchmark for quantum computing layout synthesis
aimed at evaluating optimal circuit depth and gate count. Our goal is to propose a quantum computing
layout synthesis algorithm focused on optimizing circuit depth while ensuring fidelity is maintained.

The remainder of this paper is organized as follows: Section 2 describes the terminology and
problem formulation related to quantum computing layout synthesis. Section 3 presents the detailed
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methodology of our proposed algorithm for quantum computing layout synthesis. Section 4 discusses
the experimental results obtained from applying our algorithm, providing insights into its perfor-
mance. Finally, Section 5 presents the conclusions drawn from this study, summarizing the findings
and outlining potential future research directions.

2 Terminology and Problem Formulation

We use Quantum Assembly Language (QASM) similar to traditional assembly language to input
a quantum circuit [21]. In this way, a quantum logic gate (or simply quantum gate), represented as g1,
g2,..., gM , is a basic quantum circuit operating on a small number of qubits represented as q1,..., qN.
where M indicates the number of gates and N indicates the number of quantum bits. For example,
in a quantum circuit diagram shown in Fig. 2, N = 3, M = 15. In this diagram, each line represents
a quantum bit. The gates on the same horizontal line are executed from left to right but on vertical
lines do not indicate a specific time order of execution. For instance, gates g8 and g9 can be executed
simultaneously. Additionally, if g is a single-qubit gate, |g| = 1; if g is a two-qubit gate, |g| = 2. In Fig. 2,
g1 ∪ g2 represents a set of quantum bits containing g1 or g2, and g1 ∈ g2 represents a set of quantum
bits containing both g1 and g2. In Fig. 2, q1, q2 ∈ g2, |g6| = 2, |g7| = 1, g1 ∈ g2 = {q2}, g8 ∪ g9 = {q0, q1,
q2}. The controlled gates CX represented as • with the target quantum bit depicted as ⊕ act on 2 or
more qubits for some operation in Fig. 2.

Figure 2: An example of a quantum circuit diagram

We use a graph G = (V , E) to represent the layout of a quantum computing device, where each
node v represents a quantum bit and each edge e represents a connection. This graph specifies how
physical quantum bits are interconnected. Fig. 3 illustrates an example of such a graph represented
the layout of a quantum computing device. Layout synthesis in quantum computing involves two
primary tasks: placement and scheduling. A physical qubit is a tangible unit that operates as a two-state
quantum system within a computer setup. A logical qubit, whether physical or conceptual, functions
according to predefined quantum algorithms or circuits, enduring sufficiently long coherence times
to facilitate utilization by quantum logic gates [28]. The placement task focuses on mapping logical
qubits to physical qubits, as illustrated in Fig. 4.

Figure 3: An example of a graph represented the layout of a quantum computing device
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Figure 4: A placement example of the quantum computing

Each two-qubit gate requires physical qubits that are interconnected in the quantum graph. The
designers typically assume all logical qubits have full connectivity but it isn’t always the case in many
quantum computing architectures. When logical qubits mapped to a two-qubit gate are placed on
physically disconnected qubits, it renders the gate inexecutable. To solve this problem, the two-qubit
swap gates are introduced to establish the necessary connectivity between these physical qubits. The
swap gate is a gate in quantum computing that swaps the states of two qubits. The swap gate is
extremely useful in hardware settings; if two qubits are not physically connected, we can swap one
of those qubits with another that is physically connected to the other qubit. However, deploying
these swap gates is constrained by the quantum device layout, potentially increasing gate depth
and error rates. In quantum computing, circuit depth refers to the maximum time coordinate after
layout synthesis, which directly impacts the stability and efficiency of quantum operations. Given
the current limitations of quantum computers, where physical qubits can operate reliably only for
a limited duration, minimizing circuit depth becomes critical to ensure the stable operation of qubits.
In Fig. 5a, the circuit exhibits a non-optimized depth configuration, potentially leading to increased
operational time and greater susceptibility to errors. Conversely, Fig. 5b illustrates an optimized
depth configuration, where operations are structured to minimize the overall circuit depth. The
layout synthesis can yield quantum circuits with various compositions of gates, resulting in different
depths. It is advisable to select the optimized depth configuration when multiple compositions achieve
the same functionality. This approach maximizes the efficiency of quantum operations, reduces the
risk of errors due to qubit instability, and aligns with the practical constraints of current quantum
computing technologies. Thus, optimizing circuit depth is crucial for realizing reliable and efficient
quantum computations. In the paper, we use fixed discrete time increments assumes a deterministic
approach to time evolution. It overlooks the influence of quantum mechanics, including phenomena
like superposition and entanglement. The assumptions use classical-like models to reflect the quantum
systems effects.

Based on the definitions, we can formulate the problem of depth-optimal quantum circuit layout
synthesis as follows:

Input: A graph G = (V , E) and a set of quantum gates acting on logical qubits, denoted as g1,
g2,..., gM . The number of logical qubits, Q, must be less than or equal to the number of
physical qubits, P, i.e., |Q| ≤ |P|.

Output: A placement mapping MP : Q → P and a schedule of the quantum circuit, composed of a
new gate list g̃1, g̃2,..., g̃M̃ , where each gate has a time coordinate ti.

Constraints:

1. All two-qubit gates in the scheduled circuit must be able to connect two qubits in the graph,
i = 1 to M̃, if |g̃i| = 2, then xi ∈ E.

2. All input gates should be executed in form, i.e., there exists an injection mapping f : {1,...,
M}→{1,..., M̃} such that gi = g̃f (i) for i = 1 to M. An injection mapping in quantum mechanics
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refers to a function that maps elements from M to M̃ such that each element in M is uniquely
mapped to an element in M̃.

3. Dependencies: for i, i ´=1 to M, if i < i ´ and gi ∩ gi ´ 	= ∅, then tf (i) < tf (i ´).

Objective: Minimize the circuit depth, denoted as d, where d is the maximum time coordinate
among all scheduled gates.

Figure 5: Scheduling examples of quantum computing (a) a non-optimized depth configuration (b) an
optimized depth configuration

3 The Layout Synthesis Algorithm

In quantum computing, the physical arrangement of qubits and their connectivity profoundly
influences how quantum circuits are structured and executed. Qubits that interact with each other
form the fundamental connections in a quantum circuit, defining the flow of quantum operations.
However, long-distance interactions between qubits are susceptible to noise, which can introduce
errors and destabilize the system, compromising the accuracy of quantum computations. To mitigate
noise and enhance stability, researchers often adopt methods that transform quantum circuits into
Nearest Neighbor architectures [29]. In this approach, qubits are constrained to interact solely
with their immediate neighbors on a predefined grid. By limiting interaction distances, this strategy
minimizes the effects of environmental and operational noise, thereby improving the reliability of
quantum computations. However, while effective in noise reduction, adhering to a Nearest Neighbor
architecture introduces several trade-offs:

1. Increased Circuit Depth: Conforming to nearest neighbor constraints often necessitates the
introduction of additional quantum gates, such as swap gates, to enable indirect interactions
between qubits that are not adjacent. This augmentation typically increases the overall depth
of the quantum circuit, as operations may need to be spread over more time steps.

2. Higher Gate Count: Implementing required swaps or other operations to maintain nearest
neighbor interactions can lead to a larger number of quantum gates in the circuit. This increase
in gate count complicates the circuit’s complexity and can potentially amplify the risk of errors.

Therefore, while the Nearest Neighbor approach effectively addresses noise-related challenges in
quantum computing, it requires careful consideration of the balance between noise reduction and the
potential drawbacks of increased circuit complexity and performance degradation. Ongoing research
aims to optimize these trade-offs and develop strategies that maximize the overall efficiency and
reliability of quantum circuits under real-world conditions.
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The quantum circuit synthesis algorithm proposed in this paper begins by mapping a quantum
circuit with k qubits onto a graph. However, if k ≥ n, where n is the number of qubits available on
the quantum computer, direct implementation becomes impossible. To address this, we introduce an
algorithm that extracts non-isomorphic subgraphs from the initial graph. This algorithm identifies a
subgraph with k′ qubits that can be implemented on the n-qubit quantum computer, ensuring k′ ≤ n.
The detailed steps of this subgraph extraction algorithm are described as follows:

Input: Graph G, n
Output: a 1ist of k´-vertex non-isomorphic subgraph

L=List();
for i ←1 to attempts do

v = pick a vertex from G randomly;
N.add(v);
while not N.empty() do
vN = N.pop();

if vN /∈|gnew.V | then
gnew.V .add(vN);

Nnew = Choose neighbors of v∈G with probability p, not considered before;
N=N+Nnew

end
if |gnew.V | ≤ n then

break;
end

end
Add edges from G to gnew for the subgraph induced by gnew.V ;
if not IsIsomorphic(gnew, L)then

L.add(gnew)
end

end

For the extracted subgraph, we use a Linear Nearest Neighbor (LNN) algorithm to design
a quantum circuit architecture that adheres to a linear layout while minimizing gate costs. Fig. 6
demonstrates the generation of nearest neighbor compliance. In this paper, we propose an Integer
Linear Programming (ILP) approach for synthesizing LNN, aiming to reduce circuit complexity.
Specifically, our method focuses on minimizing the number of swap gates needed to transform a given
gate-level quantum circuit into an equivalent LNN configuration. Fig. 6a shows an extracted subgraph
and a graph represented the layout of a quantum computing device shown in Fig. 6b. Subsequently,
by using swap gates to satisfy the nearest neighbor mapping requirements, each qubit in Fig. 6a is
mapped to a node in Fig. 6b as shown in Fig. 6c. Given an extracted subgraph, the nearest neighbor
algorithm employs swap gates to ensure that all qubits align with their corresponding positions in the
graph represented the layout of a quantum computing device.
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Figure 6: An example the generation of nearest neighbor compliance (a) an extracted subgraph (b) a
graph represented the layout of a quantum computing device (c) the nearest neighbor mapping results

The integer linear programming (ILP) involves optimizing a linear objective function subject to
linear constraints, where some or all decision variables are restricted to integer values. The objective is
to maximize or minimize the linear function, typically representing costs, profits, or resource utilization
[30]. By applying ILP techniques, we can systematically optimize the placement and connectivity of
qubits in the quantum circuit layout. This optimization ensures that qubits are positioned linearly,
which can enhance the circuit’s efficiency and reduce the total gate count required for operations.
Overall, our approach contributes to achieving a more cost-effective implementation of quantum
circuits by streamlining the use of swap gates in the transition to the LNN architecture. The proposed
ILP method is described in detail as follows:

Objective Function:

Minimize
∑k

i=0

∑C

t=0
t · αi, t (1)

where αi, t is a probability to represents the scheduling of quantum gates in period t for level i.

Constraints:

1. Layered scheduling constraint: Each layer needs to be scheduled once, and only one layer can
be scheduled at a time.
∑k

i=0
αi, t = 1; 0 ≤ i ≤ k,

∑C

t=0
αi, t = 1; 0 ≤ t ≤ C (2)

2. Swap gate blocking constraint: When all quantum gates in level i have been scheduled, no swaps
involving qubits in communication in level i can be executed. When i ≤ i′, i′ can only proceed
after level i has been completely scheduled.

ebi′ , t = ai, t ∧
(
1 − mi′ , t

)
(3)

0 ≤ i ≤ k − 1, i + 1 ≤ i′ ≤ k, 0 ≤ t ≤ C (4)

bq, t = ∨i

(
ai, t ∨ edi, t

)∀i∃q ∈ Ii, 0 ≤ t ≤ C (5)
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bv, q, t = bq, t ∧ xv, q, t 0 ≤ t ≤ C (6)

sbm, n, t = ∨q

(
bm, q, t ∨ bn, q, t

) ∀q ∈ Q, 0 ≤ t ≤ C (7)

3. Chronological communication constraint: Communication i must be satisfied before commu-
nication i-1, ensuring a chronological order.

mi,t+1 − mi, t ≥ 0 0 ≤ t ≤ C − 1, 0 ≤ i ≤ k (8)

mi+1,t − mi, t ≥ 0 0 ≤ t ≤ C, 0 ≤ i ≤ k − 1 (9)

4. Nearest neighbor constraint: If two qubits, p and q, are located at positions v and w, or w and
v, respectively, then the qubits p and q are considered nearest neighbors. Here, P (p, v), (q, w),
t denotes that qubit p is at position v, and qubit v is at position w in the cyclic structure t.

p(p, v), (q, v), t = xv, p, t ∧ xw, q, t (10)

p(p, w), (q, v), t = xw, p, t ∧ xv, q, t; (11)

np, q, t = ∨(v, w)∈Gε (p(p, v), (q, v), t ∨ p(p, w), (q, v), t) (12)

5. Quantum bit position update constraint: If quantum bit q is located at position v in cycle t and
no swap operation is performed involving q, or if quantum bit v is at the nearest position w to
v and a swap is executed between v and w, then quantum bit v is located at position v in cycle
t+1.

uv, q, t+1 = (∧(v, w)∈Gε (1 − Sv, w, t)
) ∧ xv, q, t (13)

cv, q, t = ∨(v, w)∈Gε sv, w, t ∧ xw, q, t (14)

xv, q, t+1 = uv, q, t+1 ∨ cv, q, t+1 (15)

6. Quantum bit position and swap constraint: In any given cycle, a quantum bit q can be located
exactly at one position. In a given cycle, a position can participate in at most one swap.
∑

v∈Gv
xv, q, t = 1; 0 ≤ t ≤ T , q ∈ Q (16)

∑
(v, w)∈Gε

Sv, w, t ≤ 1; 0 ≤ t ≤ T , v ∈ Gv (17)

The meaning of ILP constraint variables is detailed in Table 1.

Table 1: Meaning of ILP constraint variables

Variable Meaning

ai, t A probability to represents quantum gate scheduling for level i in period t
cv, q, t Quantum bit q is at position v in period t
mi, t Quantum bit q in position v cannot participate in swaps in period t
np, q, t Quantum bit q remains at position v in period t
xv, q, t Quantum bits p and q are nearest neighbors in period t
bv, q, t Communication i occurs in period t
uv, q, t No swaps allowed between positions m and n in period t
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By formulating the quantum circuit layout synthesis problem as an Integer Linear Programming
(ILP) problem, we can use existing solutions [31,32] to achieve a mapping that meets Nearest Neighbor
requirements. The process begins from an initial vertex and iteratively evaluates neighboring vertices.
If a neighboring vertex offers a lower objective function value, the algorithm moves to that vertex
and continues this process until no neighboring vertex has a lower value. This method ensures the
determination of an optimal solution for the mapping.

4 Experimental Results

This study analyzes quantum computing devices from three leading hardware vendors: Google’s
Sycamore, IBM’s Tokyo and Rochester, and Rigetti’s Aspen-4. These devices, detailed in Fig. 7,
feature 54 qubits for Sycamore, 53 for Rochester, 16 for Aspen-4, and 20 for Tokyo. They are at the
forefront of quantum technology, with Sycamore and Tokyo demonstrating enhanced connectivity.
The research focuses on two specific gate density vectors: one derived from Google’s pivotal quantum
experiment circuit [10] and another from Toffoli gate circuits [33], widely used in quantum logic
synthesis algorithms. The paper explores various gate density configurations and benchmarks their
impact.

Figure 7: Representative devices from quantum computing hardware vendors

Google, IBM, and Rigetti lead in superconducting quantum computing research, each providing
frameworks (Cirq, Qiskit, and pyQuil, respectively) equipped with layout synthesis tools. However,
pyQuil lacks complete compilation decomposition into optimization and layout synthesis, precluding
its use in this experiment. Qiskit offers precise control over its transpiler, segmented into individual
passes, enabling users to configure a pass manager utilizing diverse transpilation modules.

In addressing the layout synthesis challenge, we utilize the tket library [34]. Initially, it employs the
Dense Layout module to map logical qubits onto regions of the device graph that exhibit dense con-
nectivity. Subsequently, the Stochastic Swap module introduces perturbations to the distance matrix
of physical qubits and conducts heuristic searches to insert swap gates, facilitating the execution of
double-qubit gates. These components, dense layout and stochastic swap, constitute the experimental
framework depicted in Fig. 8, enabling comprehensive exploration of various configurations.
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Figure 8: Experimental framework form by dense layout and stochastic swap

Integer Linear Programming (ILP) problems are indeed known to be NP-hard, indicating that
finding optimal solutions can be computationally challenging, especially as problem size grows. This
complexity is particularly pertinent in the context of large-scale quantum circuits, which involve
numerous qubits and gates, potentially leading to impractically high computational demands. Despite
these inherent challenges, ILP algorithms offer significant advantages in terms of improving efficiency,
scalability, and the ability to address complex optimization problems.

The outputs of our system include:

1. Physical Layout Diagram: These diagrams illustrate the physical connections between qubits
and gates, taking into consideration specific constraints of quantum computing architectures.

2. Logical-to-Physical Mapping: This involves mapping logical qubits to physical qubits and
identifying the specific paths and connections needed to execute gate operations on the
quantum computer.

3. SWAP Gate and Physical Gate Generation: When logical qubits are not directly connected, our
system generates sequences of SWAP gates to achieve logical gates. These sequences optimize
paths and distances between physical qubits to minimize time and energy consumption during
quantum computer operations.

4. Delay and Energy Consumption Estimation: These features assist designers in selecting
optimal design solutions by simulating and testing the effects of various layouts and gate
sequences.

5. Performance Analysis and Optimization: These capabilities enable designers to assess and
refine design solutions by simulating and testing different layouts and gate sequences, aiming
for optimal performance.

Table 2 shows the comparison results with previous related studies. One of the methods compared,
developed by Wille et al. [21], utilizes a pseudo-Boolean optimizer and SMT solver to minimize addi-
tional gate costs. Another comparison is made with the t|ket〉 method introduced by Seyon et al. [35] for
quantum computing layout synthesis. The results indicate that the proposed method achieves notable
performance improvements in optimizing circuit depth.

We also evaluated our proposed method using Quantum Error Correction Codes (QECC)
benchmark circuits [36]. Table 3 compares the latency and runtime of these benchmark circuits
between our method and a method described in the literature [37]. The first three columns list the
names of the benchmarks, along with their respective numbers of gates and qubits. The “Latency”
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column displays results achieved by the previous layout synthesis method in the first entry, and by
our proposed method in the second entry. The “Imp” row indicates the improvement achieved by our
method compared to the previous approach, showing an enhancement of approximately 12.63%. The
runtime overhead is approximately 7.19%. These improvements in latency and runtime highlight the
effectiveness of our approach in managing the complexities of the layout generation process.

Table 2: Comparison of depths with the Wille et al. and t|ket〉
Benchmarks Proposed method Wille et al. t|ket〉
Or 9 9 9
Adder 16 18 27
Qaoa5 15 15 17
Mod5mile 26 28 34
4gt_13_92 39 39 64
4mod5_v1_22 16 16 29
Total 121 125 180

Comparison 1 +3.3% +48.8%

Table 3: The latency and runtime of benchmarks achieved by the proposed method compared with the
previous literature [37]

Benchmark Latency (μs) Run time (s)

Circuit name Number of
gates

Number of
qubits

The previous
literature

Our
approach

The previous
literature

Our
approach

[7, 1, 3] 18 7 331 280 0.42 0.31
[10, 3, 3] 44 10 960 653 0.53 0.45
[13, 1, 5] 64 13 1281 945 0.88 0.63
[16, 3, 5] 89 16 1757 1256 0.92 0.58
[18, 1, 7] 102 18 1612 1054 1.1 0.98
[21, 1, 7] 140 21 3068 2862 1.6 1.53
[25, 1, 9] 168 25 4491 3869 1.7 1.62
[24, 3, 7] 205 24 4584 3962 1.9 1.78
[27, 1, 9] 244 27 5687 4589 3.9 3.56
[33, 1, 9] 316 33 9036 8621 4.0 3.85
[31, 11, 6] 339 31 7362 6495 5.1 4.89
[36, 7, 6] 395 36 9805 8874 5.9 5.68
[30, 20, 4] 411 30 8626 7245 5.6 5.20
[40, 3, 10] 483 40 11405 10458 6.1 5.74

Total 70005 61163 39.65 36.80

Imp (%) 12.63% 7.19%
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5 Conclusions

Because quantum computations involve superposition and entanglement, it is crucial to ensure
that a quantum gate layout leads to the correct computational result. The proposed methods aim
to determine whether a quantum circuit can generate the desired outputs in quantum computing.
Coherence issues arise from factors such as noise and errors in controlling quantum systems. These
issues can lead to errors in gate operations, resulting in incorrect computations or outcomes. The
proposed method ensures that the layout can be verified or simulated to reliably predict outcomes,
despite the probabilistic nature of quantum operations. Quantum gates must operate within the
coherence time of the quantum system, which dictates how long quantum states can be maintained
without significant decoherence. The proposed design minimizes decoherence effects and optimizes
gate sequences to reduce errors.

In summary, despite the inherent probabilistic nature and sensitivity to environmental interactions
of quantum systems, the approach utilizes integer linear programming to achieve depth-optimized
results while satisfying various constraints. Experimental testing demonstrates that compared to
existing studies, the proposed method can achieve performance improvements in circuit depth ranging
from 3% to 48%.
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