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ABSTRACT

This paper introduces the integration of the Social Group Optimization (SGO) algorithm to enhance the accuracy of
software cost estimation using the Constructive Cost Model (COCOMO). COCOMO’s fixed coefficients often limit
its adaptability, as they don’t account for variations across organizations. By fine-tuning these parameters with SGO,
we aim to improve estimation accuracy. We train and validate our SGO-enhanced model using historical project
data, evaluating its performance with metrics like the mean magnitude of relative error (MMRE) and Manhattan
distance (MD). Experimental results show that SGO optimization significantly improves the predictive accuracy
of software cost models, offering valuable insights for project managers and practitioners in the field. However,
the approach’s effectiveness may vary depending on the quality and quantity of available historical data, and its
scalability across diverse project types and sizes remains a key consideration for future research.
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1 Introduction

The ability to accurately estimate the cost of developing software has become a paramount
concern for project managers, stakeholders, and organizations [1–3]. Software cost estimation serves
as the foundation for project planning, resource allocation, and decision-making, and its accuracy
can significantly impact project success and profitability. Accurate estimation significantly enhances
the efficiency and precision of software projects, encompassing aspects like resource allocation,
minimizing project failures, determining the required level of reliability, tool selection, programmer
proficiency, and more [4,5]. There are two types of software cost estimation techniques: algorithmic
and non-algorithmic. It is standard practice to use non-algorithmic techniques like analogy-based
estimating, top-down and bottom-up estimation, Parkinson’s Law, and price-to-win. Additionally,
algorithmic methods include Software Engineering Laboratory (SEL), Constructive Cost Model-
II (COCOMO-II), Halstead, Doty, Putnam, Baily Basil, Walston Filex Model, COCOMO, and
Halstead, Doty, Putnam. One of the most used algorithms for algorithmic estimate is COCOMO-II.
However, its accuracy remains an ongoing concern. To enhance the precision of this model, various
algorithms have undergone rigorous investigation. The field of computational intelligence has made
substantial contributions to improving software cost estimation. Particle Swarm Optimization [6],
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Genetic algorithm [7], Firefly algorithm [8], Differential Evolution [9] and many others have shown
their capability while to estimate software cost.

One such technique that has gained prominence in recent years is the Social Group Optimization
(SGO) algorithm [10]. SGO is a nature-inspired optimization algorithm inspired by the social behavior
of human for solving complex problems. It leverages the collective intelligence of a group of persons
to solve complex optimization problems.

Table 1 presents a summary of research contributions and published papers that have employed
the SGO method, based on information gathered from the literature.

Table 1: Overview of application of SGO method

Study Algorithm Application Outcome

Das et al. [11] Modified Social Group
Optimization (MSGO)

Civil engineering
structure damage
identification

Improved accuracy in
identifying damage

Naik et al. [12] Social Group
Optimization (SGO)

Global optimization of
multimodal functions
and data clustering

Significant results due to
SGO’s excellent
optimization capabilities

Rani et al. [13] SGO-based test
generation method
(SGO-MT)

Software fault detection Achieved expected results
in detecting software faults

Verma et al. [14] Discrete Social Group
Optimization (DSGO)

Traveling salesman
problem

Effectively solved the
traveling salesman problem

Naik et al. [15] Binary Social Group
Optimization (BSGO)

Binary 0–1 knapsack
problem

Achieved high-quality
solutions and
demonstrated superiority
over other binary
algorithms

Naik et al. [16] Modified SGO with
new probability factor
(MSGO)

Short-term
hydrothermal
scheduling

Provided better solutions
compared to other
algorithms

Monisha et al. [17] SGO with Shannon
function

Thresholding for
benchmark RGB images

Verified that SGO
combined with Shannon
functions works best

Reddy et al. [18] Multi-Strategy
Ensemble SGO
(ME-SGO)

Engineering problems
and electric vehicle
optimization

Provided a reliable solution
by overcoming SGO’s
drawbacks

Manic et al. [19] SGO with Tsallis
entropy

Brain MRI abnormal
region segmentation
detection

Enhanced detection
efficiency in brain
abnormality detection

Parwekar et al. [20] SGO for energy
consumption
optimization

Wireless sensor
networks

Reduced transmission
distance and energy
consumption at the node

(Continued)
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Table 1 (continued)

Study Algorithm Application Outcome

Dey et al. [21] SGO-assisted Kapur’s
entropy and
morphological
segmentation

COVID-19 infection
detection from CT
images

Enhanced segmentation
accuracy for COVID-19
detection

Singh et al. [22] Hybrid SGO and
support vector classifier

COVID-19 infection
detection from chest
X-ray images

Improved detection
accuracy using the hybrid
method

Dey et al. [23] SGO-assisted
segmentation

Skin melanoma image
analysis

Enhanced segmentation
and evaluation of skin
melanoma images

Akhtar et al. [24] Hybrid differential
evolution social group
optimization

Non-instantaneous
deteriorating inventory
problem

Optimized inventory
management with time and
price-dependent demand

Kalananda et al.
[25]

Social group whale
optimization algorithm

Numerical and
engineering
optimization problems

Improved optimization
performance for complex
engineering problems

Reddy et al. [26] SGO-assisted
differential evolution

Photovoltaic (PV)
parameter extraction

Enhanced PV parameter
extraction for standard
and modified diode models

Praveen et al. [27] SGO Resource allocation and
task scheduling in cloud
environment

Improved efficiency in
resource allocation and
task scheduling

Kraiem et al. [28] Modified SGO Photovoltaic cell and
module models
parameter identification

Achieved accurate
parameter identification
for PV models

Secui et al. [29] Modified SGO Economic emission
dispatch with wind
power

Solved the economic
emission dispatch problem
with wind power
integration

Tran [30] Multiple-objective SGO
and multi-criteria
decision-making

Time–cost optimization
in construction projects

Optimized time-cost in
construction projects using
multi-objective SGO

Ullah et al. [31] Hybrid SGO-Support
Vector Machine (SVM)

Transformer fault
diagnosis

Developed an optimal
diagnosis model using
improved SGO-SVM

Huynh et al. [32] Multiple objective SGO Construction project
optimization

Optimized
time–cost–quality–carbon
dioxide in construction
projects

(Continued)
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Table 1 (continued)

Study Algorithm Application Outcome

Naik [33] Marine predators social
group optimization

Marine predators and
social group
optimization hybrid

Applied hybrid approach
for marine predators
optimization

Vadivel et al. [34] SGO-assisted MPPT Maximum power point
tracking in PV arrays

Improved MPPT scheme
for partial shaded PV
arrays

Wang et al. [35] Dual-population SGO Optimization based on
human social group
behavior

Enhanced performance
with dual-population
strategy

Naik [36] Multi-objective SGO Machining process
optimization

Improved machining
process through
multi-objective
optimization

Tran et al. [37] SGO and smeared
stiffener method

Optimization of
stiffeners for laminated
cylindrical panels

Achieved maximum
fundamental frequency for
stiffened panels

Garg et al. [38] SGO-assisted image
watermarking

Adaptive image
watermarking

Developed a robust and
secured watermarking
method

Rahaman et al. [39] SGO for charger-UAV
scheduling

Wireless rechargeable
sensor networks

Efficiently scheduled
charger-UAVs in wireless
sensor networks

From the literature, we found that no work has been done in the area of software cost estimation
within the field of software engineering. This gap motivated us to address the software cost estimation
problem using the SGO algorithm. Furthermore, the justification for Choosing SGO:

• Efficiency in Complex Search Spaces: SGO’s social learning mechanism makes it highly effective
in navigating complex, multi-dimensional search spaces, which are typical in software cost
estimation models.

• Robust Convergence: SGO has shown strong convergence properties, particularly in avoiding
local optima, which is crucial for achieving accurate and reliable estimates in software projects.

• Flexibility and Adaptability: SGO is adaptable to various types of optimization problems,
including those with varying levels of complexity, which makes it particularly well-suited for
fine-tuning parameters in diverse software cost estimation scenarios.

• Balanced Exploration and Exploitation: The inherent balance between exploration and exploita-
tion in SGO ensures that the search process remains both thorough and efficient, leading to
better overall performance compared to algorithms that might lean too heavily toward one
aspect.

By choosing SGO, the paper leverages an algorithm that not only aligns well with the specific
challenges of software cost estimation but also provides a robust, efficient, and adaptable approach
that can outperform other metaheuristic algorithms in this context.
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The objective of this research is to explore the potential of SGO in optimizing software cost estima-
tion models, aiming to improve their accuracy and adaptability. Numerous well-established derivative-
free methods have been employed to facilitate a fair comparison between the proposed approach
and various other software effort estimation models, such as Doty, Interactive Voice Response
(IVR), Halstead, Bailey Basil, and SEL, etc. Our experimentation leveraged two historical datasets,
COCOMO81 and Turkish Industry software projects. The following are the main contributions of the
paper:

• The SGO algorithm is used for the first time to determine the optimal parameter choices for
COCOMO and COCOMO-II for software cost estimation.

• The experimental results of the proposed methodology are compared with a number of
derivative free methods, such as the Genetic Algorithm (GA), Differential Evolution (DE),
variants of DE, Biogeography-Based Optimisation (BBO), Tabu Search, Flower Pollination
Algorithm (FPA), and Particle Swarm Optimisation (PSO), as well as other models of the same
nature, such as Dosty, IVR, Halstead, Bailey Basil, and SEL.

The remainder of the paper is structured as follows: Introduction is presented in Section 1, related
research about the estimation of software projects is covered in Section 2. In Section 3 the proposed
approach is covered. Finally, the Sections 4 and 5 describe the results analysis, conclusion, and future
directions, respectively.

2 Related Work

Several estimation techniques have been applied to enhance the optimization of coefficients in
the COCOMO model [40,41]. These techniques encompass PSO, GA, Tabu Search, Intelligent Water
Drop (IWD) algorithms, and more. In a separate investigation [42], the cuckoo search algorithm
was employed to fine-tune COCOMO-II coefficients. Experiments were conducted on 18 datasets
extracted from NASA-93 software projects to validate these approaches. The results unequivocally
demonstrated that the cuckoo search algorithm outperformed Baily-basil, Doty, Hallstead, and the
original COCOMO-II models. Building on this research, Kumari et al. [43] proposed an innovative
hybrid approach that combined cuckoo search with artificial neural networks to optimize existing
COCOMO-II parameters. Additionally, a hybrid technique was introduced in the paper [44], incorpo-
rating Tabu Search and GA to optimize COCOMO-II parameters. To improve the performance of the
differential evolution technique, Urbanek et al. [45] combined analytical programming and differential
evolution techniques for software cost estimation. In order to improve the existing coefficients of
COCOMO-II, Dalal et al. [46] presented a generalized reduced gradient nonlinear optimization
approach along with best-fit analysis, reporting better results than the original COCOMO-II model.

In a different context, Santos et al. [47] introduced COCOMO-II for effort estimation, employ-
ing an organizational case study within the aeronautical industry. Their research indicated that
COCOMO-II provided a more accurate estimation technique for real software projects compared to
alternative approaches. Additionally, Hughes [48] reviewed expert judgment as an estimating method
to calculate software project costs. Effendi et al. [49] introduced bat algorithm to optimize COCOMO-
II, while Ahmad et al. [50] devised a hybrid whale-crow optimized-based optimal regression method
for estimating software project costs, relying on data from four software industries. Their results
indicated that the proposed model outperformed other estimation models. Sheta et al. [51] introduced
a soft-computing method for software project cost estimation, utilizing PSO to optimize COCOMO
coefficients and incorporating fuzzy logic to create a set of linear methods over the domain of possible
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software lines of code (LOC). Their algorithms were compared to baseline methods such as HS, WF,
BB, and Doty models, although COCOMO-II still exhibited limitations in terms of accuracy.

Despite various works done in the past to estimate the cost using varied algorithms, methods
and hybrid approach, still there remains a continuing challenge to achieve better accuracy by tuning
the co-efficient of COCOMO model. In this study, we present a novel Stochastic Global Optimization
(SGO) approach for optimizing COCOMO-II coefficients. To validate its effectiveness, we compare the
proposed algorithm with the conventional COCOMO-II model and several other baseline methods.
The simulation results underscore the superior performance of the proposed algorithm in terms of
both Mean Magnitude of Relative Error (MMRE) and Mean Deviation (MD) when compared to the
original COCOMO-II, PSO, GA, and other baseline models. This highlights the potentials of SGO as
a promising avenue for further improving software cost estimation accuracy.

2.1 COCOMO Model

The COCOMO model, initially developed by Boehm in 1981 [52], serves as an algorithmic
approach employed for estimating project costs and effort. This model comprises three layers: basic,
intermediate, and detail. In 1995, Boehm et al. introduced COCOMO-II [53], a refined version of
COCOMO that offers superior software project cost estimation capabilities when compared to its
predecessor. Below Fig. 1 illustrates the comprehensive process of COCOMO-II.

Figure 1: COCOMO-II model

COCOMO is an algorithmic approach employed for the estimation of project costs and effort. It
calculates the development effort by considering the software’s size, measured in KDSI (Thousands of
Delivered Source Instructions), and software cost factors. This model’s calibration was based on data
gathered from approximately 63 projects undertaken by NASA. The estimated development effort is
determined according to the project’s development mode, categorized as Organic, Semi-detached, or
Embedded. COCOMO Model establishes a nonlinear relationship between the project size and the
estimated effort.

The formula for estimating effort (in Man Months, MM) is expressed as:

Estimated effort (MM) = a ∗ (KDSI)b (1)

In the Eq. (1), “a” and “b” represent constants, the values of which depend on the project’s
development mode. KDSI denotes the size of the project in thousands of delivered source instructions.
Table 2 provides the specific values of “a” and “b” for Organic, Semi-detached, and Embedded
projects.
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Table 2: COCOMO models

Model a b

Organic 3.2 1.05
Semi-detached 3 1.12
Embedded 2.8 1.2

The COCOMO Model recognized 15 cost drivers that have the potential to influence the estimated
effort required for a software project. Each of these cost drivers was allocated specific weights that
could be applied to the estimated effort, determined by the rating assigned to the cost driver (ranging
from very low to extra high).

2.2 COCOMO-II

COCOMO-II, introduced by Barry Boehm in 2000, represents a model that incorporates more
precise enhancements in certain cost drivers. It encompasses various software attributes, including 17
Effort Multipliers (EM), 5 Scale Factors (SF), Software Size (measured in Kilo Source Lines of Code,
KSLOC), and the estimated effort, all of which are utilized in the COCOMO-II Architecture Post
Model. The Effort Multipliers are organized into four categories, and there are 5 Factor Scales (SF).

The formula for estimating effort (in Person-Months, PM) within the COCOMO-II model is
represented by Eq. (2):

Estimated effort (PM) = a ∗ (SIZE)E ∗
∏17

I=1
EMi (2)

Here, ‘a’ is a constant multiplier with a value of 2.94, which adjusts effort based on specific project
conditions. ‘SIZE’ denotes the estimated software size in Kilo Source Lines of Code (KSLOC), and
‘E’ represents the effort’s scale expansion factor. E accounts for the exponential factor that considers
the relative economies or diseconomies of scale when dealing with adjustments for the increasing size
of software projects. ‘EMi’ signifies the Effort Multiplier, where i can take values from 1 to 17.

To calculate the Scale Factor, the coefficient ‘E’ is determined using Eq. (3):

E = b + 0.01 ∗
∑5

j=1
SFj (3)

In this equation, ‘b’ is a constant exponential factor with a value of 0.91, and SFj denotes a Scale
Factor, where j can take values from 1 to 5.

3 Proposed Methodology

Software project cost estimation using both COCOMO-I and COCOMO-II is involved with
numerous uncertainties. In both the COCOMO models, the multiplicative constants ‘a’ and ‘b’ require
optimization to enhance estimation accuracy. This study aims to optimize these constants to elevate
the performance of both COCOMO-I and COCOMO-II, employing the SGO method. To assess
the effectiveness of SGO-COCOMO, a comprehensive evaluation is conducted by comparing it with
other optimization methods such as PSO, GA, DE, BBO, FPA, Hybrid, and various variants of DE
algorithms, as well as various cost estimation models including IVR, SEL, Bailey-Basil, Doty, and
Halstead [54–58]. The experiments utilize datasets from COCOMO81 and Turkish Industry software
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projects as input, including project size in terms of KLOC, measured effort, 17 effort multipliers, and
5 scale factors. The output of this optimization process yields new, refined values for ‘a’ and ‘b’ for the
COCOMO-I and COCOMO-II models, enhancing the accuracy of cost estimation.

3.1 Fitness Function

When it comes to estimating the costs of various projects, successful completion is indicated when
the predicted effort closely aligns with the actual effort. Achieving higher accuracy entails aiming for
lower values of MMRE (Mean Magnitude of Relative Error) and MD (Mean Deviation). As a result,
our objective is to minimize MD and MMRE, thereby reducing the disparities between the actual and
predicted efforts. The fitness functions employed in our experiments are defined in Eqs. (5) and (6).

The primary objective of this estimation method is to validate the precision of predictions. It is
essential to minimize the gap between the predicted effort, denoted as Estimate_efforti, and the actual
effort observed in real-world conditions, represented as Actual_efforti. A significant difference between
Actual_efforti and Estimate_efforti can diminish prediction accuracy and have adverse implications for
software system development efforts.

To evaluate the accuracy of estimated effort, this study employs the Magnitude of Relative Error
(MRE) [59], a commonly used criterion in software cost estimation. MRE is calculated for each data
point according to the formula defined in Eq. (4):

MREi = |Actual_efforti − Estimate_efforti|
Actual_efforti

× 100 (4)

Eq. (5) illustrates how MMRE [59] is utilized to calculate the average value of the outcomes from
each unique accuracy prediction value that was measured in the MRE criteria:

MMRE = 1
N

∑N

i=1
MREi (5)

• Reason for Selection: MMRE is widely recognized in the software engineering community due
to its simplicity and effectiveness in providing a straightforward measure of estimation accuracy.
It directly reflects the percentage of deviation from actual values, making it intuitive and easy
to interpret.

• Effectiveness: MMRE is particularly effective in comparing the overall accuracy of different cost
estimation models, as it aggregates the relative error across all projects, giving a clear picture of
the model’s general performance. However, it does have limitations, such as being sensitive to
outliers and providing equal weight to overestimation and underestimation.

The Manhattan distance in Eq. (6) is used to determine the absolute gap between actual effort
and estimated effort.

MD =
∑N

i=1
|Actual_efforti − Estimate_efforti| (6)

• Reason for Selection: MD is chosen because it provides a measure of the total error across
all projects without normalizing by the actual cost. This metric is particularly useful in
understanding the cumulative error, which can be important when the scale of the projects varies
significantly.
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• Effectiveness: MD is effective in scenarios where the absolute error is critical, such as when
budgeting for large-scale projects. It highlights the overall deviation, making it easier to assess
how far off the estimates are from the actual costs in absolute terms.

3.2 SGO Algorithm

Satapathy et al. [10,55] proposed SGO in 2016. It is a stochastic-based computational algorithm
known. The following is the explanation of this optimization algorithm. The SGO algorithm draws
inspiration from human social dynamics to tackle complex problems. In this approach, a social group’s
members represent candidate solutions, each equipped with unique attributes related to their problem-
solving abilities. These individual traits correspond to the various dimensions of the problem’s design
variables. The optimization process comprises two key phases: the Improving Phase and the Acquiring
Phase.

Let’s denote the individuals in the social group as Pi, with i ranging from 1 to pop_size. Here,
pop_size represents the number of individuals in the group, and each person, Pi, is characterized by
a set of traits (pi1, pi2, pi3, . . . , piD) that define their dimensions. Additionally, they each have a fitness
value, fi, where i ranges from 1 to pop_size.

3.2.1 Phase 1: Improving Phase

In the Improving Phase, the best-performing individual within the social group, referred to
as ‘gbest,’ which actively shares knowledge with all other members, aiding in their knowledge
enhancement. During this phase, each individual acquires knowledge from ‘gbest.’ The update for
each individual is calculated as follows:

Pnewi = c ∗ Pi + r ∗ (gbest − Pi) (7)

Accept the new solution, Pnewi, if it leads to an improvement in fitness compared to the current
solution. Here, ‘r’ is a random number sampled from a uniform distribution U (0, 1), and ‘c’ is the
self-introspection parameter, constrained within the range (0, 1), with a specified value of c = 0.2.

3.2.2 Phase 2: Acquiring Phase

In the Acquiring Phase, an individual within the social group interacts with the best individual
(bestP) in the group and engages in random interactions with other group members to acquire
knowledge. The Acquiring Phase is expressed as follows:

For i = 1: pop_size

Randomly select one person Pr, where i �= r

If f (Pi) < f (Pr)

Pnewi = Pi + r1 ∗ (Pi − Pr) + r2 ∗ (bestP − Pi)

Else

Pnewi = Pi + r1 ∗ (Pr − Pi) + r2 ∗ (bestP − Pi) (8)

End If

End for

Accept Pnewi if it results in improved fitness compared to the current solution.
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Here, r1, r2 are two independently sampled random values from U (0, 1). These random sequences
introduce stochasticity into the algorithm.

Pseudo code for SGO-COCOMO-II algorithm is given is given below:

Algorithm 1: Pseudo code of SGO-COCOMO-II algorithm
1. Define algorithm parameters: c, population size = pop_size
2. Objective Function f (X) = MMRE or MD, where these are defined in terms of Eqs. (5) and (6)
3. Initialize/generate a random search agent (person) of populations

P =(P1, P2, . . . , Ppop_size)

4. Evaluate f (Pi), i = 1, 2, 3, . . . , pop_size
5. Select the best solution as gbest
6. while iter < Max−iter
7. for i = 1: pop_size
8. Update persons using Eq. (7)
9. end for
10. Select the best solution as bestP

11. for i = 1: pop_size
12. Update persons using Eq. (8)
13. end for
14. Update the current best solution
15. end while

4 Simulation and Experimental Results

4.1 Experiment 1

In this study, we employed the SGO algorithm for software cost estimation to predict the
parameters of the COCOMO model. These estimated parameters will greatly enhance the accuracy of
effort estimation for a wide range of projects, including organic, semidetached, and embedded ones.
We applied Algorithm 1 to compute the COCOMO model parameters as outlined in Eq. (1), and for
guiding the evolutionary process of the SGO algorithm, we utilized the parameter set provided in
Table 3. To evaluate the effectiveness of our model, we conducted performance tests using a dataset
comprising 63 projects (organic (25) projects, semidetached (11) projects, and embedded (27) projects)
from the COCOMO81 software project dataset. You can find specific dataset details in Tables A1–A3.

Table 3: Parameters of software cost estimation-based SGO algorithm

Sl. no. Parameter name Description Value

1 Pop Population size 50
2 ‘a’ Domain for a −5 to 5
3 ‘b’ Domain for b −5 to 5
4 Max_iter Maximum number of iterations 100
5 Dim Dimension 2

(Continued)
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Table 3 (continued)
Sl. no. Parameter name Description Value

6 ‘c’ Self-introspection parameter 0.2
7 S Search space for given application a, b

4.1.1 Evaluation Criteria

The evaluation criteria used to assess the accuracy of the software cost estimates generated by the
proposed model are designed to align with the actual costs incurred during project development in
real-world environments. Detailed information regarding the actual effort and KDSI (Thousands of
Delivered Source Instructions) for all types of projects (organic, semidetached, and embedded) can be
found in the A, B, C, D. Our evaluation process relies on the dataset from previously executed software
projects. Specifically, we focus on the evaluation metric known as MMRE, which is defined in Eq. (5).

4.1.2 Experimental Results and Analysis

To assess the enhanced capabilities of the SGO-based model we developed, experiments were
conducted using the COCOMO81 dataset. These experiments yielded parametric values of a = 2.0764
and b = 1.0706. We then compared this proposed model with existing COCOMO algorithms, including
GA [6], PSO [7], Hybrid Algorithm (Hybrid Algo) [56], Differential Evolution-Based Model (DEBM)
[57], DE [9], and Homeostasis Adaption Based Differential Evolution (HABDE) [58]. The discussion
of results for the COCOMO81 software projects (including organic, semidetached, and embedded
types) is presented below.

4.1.3 Comparison Effort for COCOMO Based Algorithms

Initially, we calculated the effort estimates obtained from Eq. (1) with the actual COCOMO81
dataset. The comparative analysis of effort levels, as presented in Tables 4–6, clearly demonstrates
that our proposed model outperforms other soft computing models. In conclusion, we provide the
following remarks:

• In Table 4, we can find the results of effort estimates produced by seven algorithms for organic
projects. SGO consistently outperforms other algorithms such as GA, PSO, DE, DEBM,
Hybrid Algo, and HABDE in the majority of organic projects, yielding superior effort values.
Likewise, as illustrated in Table 5, SGO delivers superior effort estimates for a significant
portion of semi-detached projects. Additionally, Table 6 reveals that SGO excels in generating
effort estimates for most embedded projects. This indicates that the effort values (expressed in
person-months) derived from SGO exhibit greater diversity and convergence rates in accordance
with the proposed model.
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Table 4: Comparison effort for COCOMO based algorithms on organic projects

Sl. no. GA PSO DE DEBM Hybrid algo HABDE SGO
1 0.419895045 0.372687909 0.298150327 0.303098376 0.292245865 0.229036056 0.237566543891928
2 0.173631032 0.154110384 0.123288307 0.129350203 0.126701085 0.100082937 0.102137504907155
3 0.039510482 0.035068475 0.02805478 0.031032256 0.031210965 0.024982 0.024809813029841
4 0.008363829 0.007423517 0.005938813 0.006943662 0.007179986 0.005827258 0.005624112476726
5 0.065131451 0.057808981 0.046247184 0.050250336 0.050090621 0.039915193 0.040006312272578
6 0.021777155 0.019328836 0.015463069 0.017471969 0.050090621 0.039915193 0.014038533981783
7 0.036755316 0.032623061 0.026098449 0.028942919 0.029147193 0.023345171 0.023153452023160
8 0.173631032 0.154110384 0.123288307 0.129350203 0.126701085 0.100082937 0.102137504907155
9 0.036755316 0.032623061 0.026098449 0.028942919 0.029147193 0.023345171 0.023153452023160
10 0.013663962 0.012127777 0.009702221 0.011146712 0.0114255 0.009232355 0.008991339563468
11 0.006060016 0.005378712 0.00430297 0.005089261 0.005292837 0.004308028 0.004133269678976
12 0.0114627 0.010173994 0.010173994 0.009409828 0.009675478 0.007830525 0.007601497245152
13 0.127371045 0.113051223 0.090440978 0.095943614 0.094500061 0.074853687 0.075956108359601
14 0.075723016 0.067209778 0.053767822 0.058108422 0.057768089 0.045971171 0.046204025728732
15 0.08167816 0.072495408 0.057996326 0.062509051 0.062058993 0.049352451 0.049671571397799
16 0.094941077 0.084267228 0.067413783 0.072269866 0.071557002 0.056829348 0.057355382802727
17 0.216281588 0.191965907 0.153572725 0.159864654 0.155977602 0.122967468 0.126000000000000
18 0.062220649 0.055225428 0.044180343 0.048083039 0.04796936 0.038240453 0.038295521045999
19 0.023339844 0.020715838 0.01657267 0.018679436 0.018964439 0.015251102 0.015000000000000
20 0.0114627 0.010173994 0.008139195 0.009409828 0.009675478 0.007830525 0.007601497245152
21 0.009306041 0.008259799 0.006607839 0.007696489 0.00794328 0.006440603 0.006228296597521
22 0.065131451 0.057808981 0.046247184 0.050250336 0.050090621 0.039915193 0.040006312272578
23 0.059324368 0.052654765 0.042123812 0.045922955 0.045853397 0.0365692 0.036589756883968
24 0.014903962 0.013228368 0.010582695 0.012120612 0.012404501 0.010015665 0.009769802129187
25 0.023339844 0.020715838 0.01657267 0.018679436 0.018964439 0.015251102 0.015000000000000

Table 5: Comparison effort for COCOMO based algorithms on semi-detached projects

Sl. no. GA PSO DE DEBM Hybrid algo HABDE SGO
1 1.28539338 1.137900396 1.251690436 1.065845111 0.986180343 0.758600264 0.748783979870568
2 5.784279909 5.262524067 5.788776473 5.499084096 4.560854191 3.508349378 3.621142318472880
3 0.295543542 0.254731191 0.28020431 0.214408413 0.220767032 0.169820794 0.160462927237439
4 0.041765661 0.03473994 0.038213934 0.025362086 0.030107948 0.02315996 0.020648291869038
5 0.00574033 0.004605491 0.00506604 0.002910379 0.003991426 0.003070327 0.002580683312884
6 0.232869459 0.199844042 0.219828447 0.16531908 0.17319817 0.133229362 0.124999930054934
7 0.041765661 0.03473994 0.038213934 0.025362086 0.030107948 0.02315996 0.020648291869038
8 0.078231615 0.065818456 0.072400302 0.050295179 0.057042662 0.043878971 0.039856334771454
9 2.131333716 1.9042004 2.09462044 1.850437962 1.650307013 1.269466933 1.272000000000003
10 0.025158046 0.020734045 0.022807449 0.014589136 0.017969505 0.013822696 0.012139513273215
11 0.097130475 0.082040729 0.090244802 0.063685797 0.071101965 0.054693819 0.050000000000000
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Table 6: Comparison effort for COCOMO based algorithms on embedded projects

Sl. no. GA PSO DE DEBM Hybrid algo HABDE SGO
1 0.78907428 0.762771804 0.73383908 0.32878095 0.39453714 0.289327236 0.264133812219125
2 0.027544993 0.026626826 0.025616843 0.01147708 0.013772496 0.010099831 0.019076007583622
3 0.110746745 0.107055187 0.102994473 0.046144477 0.055373373 0.04060714 0.056732308286247
4 0.160682752 0.15532666 0.149434959 0.066951147 0.080341376 0.058917009 0.075935136605108
5 0.15427706 0.149134491 0.143477665 0.064282108 0.07713853 0.056568255 0.073553508095873
6 0.17362159 0.167834204 0.161468079 0.072342329 0.086810795 0.075236022 0.080684270493033
7 0.206664473 0.199775657 0.19219796 0.086110197 0.103332236 0.089554605 0.092481632726686
8 0.010138396 0.00980045 0.009428709 0.004224332 0.005069198 0.004393305 0.008719166326261
9 0.013889969 0.01342697 0.012917671 0.005787487 0.006944985 0.006018987 0.011157786481149
10 0.02375853 0.022966579 0.022095432 0.009899387 0.011879265 0.010295363 0.016989519977945
11 0.012617891 0.012197294 0.011734638 0.005257454 0.006308945 0.005467753 0.010349104809746
12 2.751716763 2.659992871 2.559096589 1.146548651 1.375858381 1.192410597 0.702678544314391
13 1.841731577 1.780340525 1.712810367 0.767388157 0.920865789 0.798083683 0.513057148970856
14 2.065876733 1.997014175 1.921265362 0.860781972 1.032938367 0.826350693 0.561352370176723
15 0.831155273 0.803450097 0.772974404 0.346314697 0.415577636 0.332462109 0.275105165112695
16 0.600502427 0.580485679 0.558467257 0.250209344 0.300251213 0.240200971 0.213265891484713
17 0.213385091 0.206272254 0.198448134 0.088910454 0.106692545 0.085354036 0.094829197624214
18 0.28243157 0.273017184 0.26266136 0.117679821 0.141215785 0.112972628 0.118116071192240
19 0.006157749 0.005952491 0.005726707 0.002565729 0.003078875 0.0024631 0.005900000785723
20 3.489002526 3.372702442 3.24477235 1.453751053 1.744501263 1.395601011 0.846279223423543
21 0.240615114 0.23259461 0.223772056 0.100256298 0.120307557 0.096246046 0.104183376666385
22 0.116814609 0.112920788 0.108637586 0.048672754 0.058407304 0.046725843 0.059152986870379
23 0.608517996 0.588234063 0.565921736 0.253549165 0.304258998 0.263691132 0.215492519022750
24 0.02469633 0.023873119 0.022967587 0.010290137 0.012348165 0.010701743 0.017512604070445
25 0.141599028 0.13687906 0.131687096 0.058999595 0.070799514 0.061359579 0.068775255122874
26 0.081276026 0.078566825 0.075586704 0.033865011 0.040638013 0.035219611 0.044522416088239
27 0.03839489 0.03711506 0.035707248 0.015997871 0.019197445 0.016637786 0.024743685195371

4.1.4 Comparison MMRE for COCOMO Based Algorithms

For the project under consideration, another popular error computation technique called MMRE
has been utilized, and the results are shown in Table 7. The MMRE value for other compared
algorithms is imported from the paper [58]. From the table it is cleared with decreased MMRE for
SGO algorithm as compared with other COCOMO based algorithms and it is clearly visible through
Figs. 2–4.

Table 7: Comparison of MMRE for proposed algorithm on the COCOMO81 dataset

Dataset SGO GA PSO DE DEBM HYBRID HABDE

MMRE (Organic) 0.5371 0.6721 0.6280 0.5704 0.5817 0.5777 0.5388
MMRE (Semi-detached) 0.5057 0.5462 0.5347 0.5428 0.5228 0.5241 0.5084
MMRE (Embedded) 0.6639 0.7630 0.7484 0.7484 0.7306 0.7211 0.7253
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Figure 2: MMRE of proposed SGO, GA, PSO, DE, DEBM, HYBRID, HABDE using organic
datasets

Figure 3: MMRE of proposed SGO, GA, PSO, DE, DEBM, HYBRID, HABDE using semi-detached
datasets

4.1.5 Parameter of COCOMO Based SGO Algorithm

According to Eq. (1), the rate of convergence parameters (a and b) shows how quickly an
estimating model approaches the intended value. The findings shown in Fig. 5 demonstrate that the
proposed COCOMO-based SGO model has a higher rate of convergence since the SGO algorithm is
capable of identifying the ideal value for parameters “a” and “b” after only 25 iterations.

4.1.6 Discussion

We can see that the SGO algorithm improves performance more than GA, PSO, DE, Hybrid
Algorithm, DEBM, and HABDE. Once more, we can observe that the SGO method can calculate a
parameter’s value with less iterations. The proposed technique decreases the number of iterations and
error rate. In general, existing methods’ complexity rises since they generate less diversity.
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Figure 4: MMRE of proposed SGO, GA, PSO, DE, DEBM, HYBRID, HABDE using embedded
datasets

Figure 5: Convergence graph for parameter ‘a’ and ‘b’

4.2 Experiment 2

In this experiment, we employed the SGO algorithm for software cost estimation to fine-tune the
parameters of the COCOMO-II model. Algorithm 1 was executed to estimate the COCOMO-II model
parameters, as detailed in Eq. (2). We maintained consistency by utilizing the same set of parameters as
in Experiment 1 to guide the evolutionary process of the SGO algorithm. To evaluate the performance
of our developed model, we conducted tests using a latest dataset from the Turkish Software Industry.
This dataset comprises information from five distinct software companies across various domains,
encompassing data from a total of 12 projects. Each project is characterized by 25 attributes, including
Project ID, 5 Scale Factors, 17 Effort Multipliers ranging from Very Low to Extra High, Measured
Effort as the actual effort, and Project Size measured in KLOC. You can find specific dataset details
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in Table A4. All project data points were employed for calibration, and the results obtained from this
calibration can serve as valuable insights for future projects within a similar category.

4.2.1 Evaluation Criteria

The evaluation criteria employed for assessing the accuracy of software cost estimates in the
proposed model are designed to align with the actual costs incurred during real-world project
development under live environmental conditions. For Experiment 2, two key evaluation criteria are
used: MMRE (Mean Magnitude of Relative Error) and MD (Absolute Difference).

4.2.2 Experimental Results and Analysis

This section describes the experiment and the outcomes that were attained after applying the
suggested method to the dataset. The primary goal of the optimization is to use the SGO approach
to minimize uncertain parameters from a COCOMO-II model’s coefficients (‘a’ and ‘b’), and then
compare the new findings to those from the general Tabu Search [60] and PSO Method [2] coefficients.

The Fig. 6 illustrates the convergence process of SGO over multiple iterations with varying
population sizes. Populations of 10, 20, 30, 40, and 50 were examined to evaluate the process’s
performance. Remarkably, each experiment involving SGO exhibited the same minimum error during
convergence. After several iterations, we successfully obtained newly optimized coefficient values: a
= 4.3950 and b = −0.1834, which differ from the original COCOMO-II values of a = 2.94 and b =
0.91. The results, calculated using these newly optimized coefficient values for effort, are presented
in Table 8. Additionally, we imported results for COCOMO-II, Tabu Search, and PSO from paper
[2] for comparison. The Fig. 7 displays the effort graph, demonstrating that SGO yields smoother
and more accurate effort estimates when compared to efforts estimated using the basic COCOMO-II
coefficients, Tabu Search, and the PSO Method.

Figure 6: Best cost of MMRE with various population sizes, population size 10, 20, 30, 40, and 50

The results plotted in Fig. 8 which show that the proposed COCOMO based SGO model has
better convergence rate as within 20 iteration SGO algorithm able to determine the best value for
parameter ‘a’ and ‘b’.
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Table 8: Computed mean MRE (MMRE) and Manhattan distance (MD)

Model input Model output MMRE MD

COCOMO-II model Effort 733.1400 585.9266
Tabu Search Effort 139.0699 90.5797
PSO Effort 34.1939 43.2477
Proposed SGO Effort 34.1922 43.2508

Figure 7: Effort graph for actual effort, COCOMO-II, Tabu, PSO and SGO

Figure 8: Convergence graph for parameters ‘a’ and ‘b’ in case of COCOMO-II based SGO model

The accuracy of the experiment is evaluated using fitness functions outlined in Eqs. (5) and (6). The
experimental results are presented in Table 9, providing estimated effort values for all the compared
algorithms. Notably, for Project Nos. 2, 8, and 11 with actual efforts of 2, 5, and 1, respectively,
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the proposed SGO method yielded highly accurate estimates of 2, 5, and 0.9789. This indicates a
substantial reduction in error, with improvements of 0.00%, 0.00%, and 2.11%, respectively.

Table 9: Experimental result of estimated effort

Project no. Size (KLOC) Actual effort COCOMO-II
effort

Tabu Search
effort

PSO effort SGO effort

1 3.0000 1.2000 3.4881 1.9316 1.5679 1.5688
2 2.0000 2.0000 2.8568 1.8909 2.0001 2.0012
3 4.2500 4.5000 9.3041 4.4202 2.8581 2.8589
4 10.0000 3.0000 33.9773 11.0776 4.0969 4.0962
5 15.0000 4.0000 63.1555 17.2261 4.8891 4.8875
6 40.5300 22.0000 27.7316 4.8844 0.7244 0.7239
7 4.0500 2.0000 2.2887 1.1106 0.7411 0.7413
8 31.8450 5.0000 147.0897 28.8072 5.0012 4.9976
9 114.2800 18.0000 297.6050 33.2193 2.5041 2.5008
10 23.1060 4.0000 63.9962 14.4335 3.0896 3.0881
11 1.3690 1.0000 0.9239 0.7226 0.9789 0.9797
12 1.6110 2.1000 2.0424 1.4868 1.8112 1.8125

MMRE for each methodology signifies its overall accuracy. The MMRE values for the
COCOMO-II model, Tabu Search, PSO, and SGO stand at 733.1400, 139.0699, 34.1939, and 34.1922,
respectively. These values signify that SGO reduces errors significantly, by 698.9494% compared to the
COCOMO-II model, 104.8793% compared to Tabu Search, and 0.0033% compared to PSO. Similarly,
when examining MD (Absolute Difference), COCOMO-II exhibits an MD of 585.9266%, Tabu Search
has an MD of 90.5797%, PSO has an MD of 43.2477%, and SGO has an MD of 43.2508%. These
figures demonstrate that SGO can reduce errors by the value 542.68% compared to COCOMO-II,
47.3310% compared to Tabu Search, and 0.0011% compared to PSO, as presented in Table 7 and
Fig. 6. In summary, the results for MMRE and MD indicate that the effort estimation provided by
the proposed SGO method offers a significantly improved solution when compared to the COCOMO-
II model, Tabu Search, and the PSO method, as illustrated in Fig. 9.

Figure 9: Comparison of MMRE and MD (in %) for COCOMO-II, Tabu Search, PSO, and SGO
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4.2.3 Discussion

In this experiment, we investigated the effectiveness of employing the SGO method to optimize the
parameters of the COCOMO-II model, aiming to enhance its accuracy. The SGO method was applied
using the Turkish Software Industry dataset, and its performance was rigorously evaluated. The
evaluation results clearly demonstrate the superiority of SGO, with a remarkable 698.9494% reduction
in MMRE and a substantial 542.68% decrease in MD compared to the standard COCOMO-II model
coefficient parameters. Furthermore, SGO outperforms Tabu Search with a 104.8793% lower MMRE
and a 47.3310% lower MD, while it achieves an almost negligible 0.0033% MMRE and 0.0011%
MD reduction compared to the PSO model. Overall, optimizing the parameters of the COCOMO-
II model with the SGO method significantly enhances estimation accuracy when compared to the
basic COCOMO-II model.

4.3 Experiment 3

This experiment is identical to Experiment 2, with the sole distinction being the comparison of the
SGO algorithm’s performance against BBO-COCOMO-II, PSO, GA, IVR, SEL, Bailey-Basil, Doty,
Halstead and PPF (Past Present Future) algorithm [61,62].

4.3.1 Experimental Results and Analysis

The value of parameters ‘a’ and ‘b’ for our proposed SGO algorithm and some other methods is
given in Table 10. The Table 11 presents the Magnitude of Relative Errors for estimates obtained using
SGO, COCOMO-II, and other models applied to Turkish Industry software projects. Meanwhile,
Table 12 provides a comparative analysis of MMRE (mean MMRE) and MD (Manhattan distance)
for the proposed SGO, BBO, PSO, GA, PPF and several other models using datasets from the Turkish
Industry. For our proposed SGO, experiment is carried out by using MATLAB, while for other models
are reported from the paper [48].

Table 10: Value of parameters ‘a’ and ‘b’ for different model using Turkish Industry software projects

Models ‘a’ ‘b’

Proposed SGO 4.3950 −0.1834
BBO-COCOMO-II 4.2826 −0.1757
GA 4.719 −0.858
PSO 4.2366 −0.1682
PPF 4.4625 −0.1885

Table 11: Magnitude of relative errors for estimations using SGO, PPF, BBO, COCOMO-II and others
models using Turkish industry datasets

Project id SGO BBO COCOMO-II PSO GA FPA SEL Halstead IVR Doty B-Basil PPF

1 0.3073 0.2817 1.9070 0.2819 0.3310 0.1918 2.2409 2.0610 9.0228 12.9206 15.3924 0.3200
2 0.0006 0.0198 0.4282 0.0253 0.3269 0.0314 0.3337 0.0100 2.7725 4.4631 5.1451 0.0124
3 0.3647 0.3739 1.0676 0.3739 0.7429 0.3951 0.1949 0.3629 2.9895 4.3456 5.5475 0.3597
4 0.3654 0.3543 10.325 0.3630 0.6899 0.489 2.9719 6.3786 15.0090 18.6413 25.4997 0.3702
5 0.2219 0.2157 14.7888 0.2273 0.7889 0.2187 3.3434 9.1666 18.1392 21.5216 30.8103 0.2236

(Continued)
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Table 11 (continued)

Project id SGO BBO COCOMO-II PSO GA FPA SEL Halstead IVR Doty B-Basil PPF

6 0.9671 0.967 0.26069 0.9664 0.9971 0.881 0.9904 7.2099 9.9144 10.593 17.3215 0.9672
7 0.6294 0.6349 0.14142 0.6350 0.8451 0.634 1.5705 1.8527 7.4923 10.4385 12.9309 0.6263
8 0.0005 0.0003 28.4174 0.0155 0.8960 0.0133 5.9982 24.158 35.3920 38.6284 59.9426 0.0029
9 0.8611 0.8596 15.5334 0.8561 0.9939 0.887 5.3792 46.5090 42.9412 40.9482 73.5306 0.8623
10 0.2280 0.2293 14.999 0.2194 0.9003 0.2095 5.4913 18.4368 30.4560 34.4040 51.5077 0.2286
11 0.0203 0.0430 0.0761 0.0511 0.1489 0.0522 0.849 0.1213 3.8791 6.3469 6.9175 0.0069
12 0.1369 0.1559 0.0275 0.1619 0.3282 0.1667 0.0387 0.3184 1.8017 3.1486 3.5538 0.1258

Table 12: MMRE (mean MMRE) and MD (Manhattan distance) comparison for proposed SGO,
PSO, GA, PPF and other various models using Turkish industry datasets

Model MMRE MD

SGO 34.1922 43.2508
PPF 34.2148 43.2846
COCOMO-II 733.13 585.9424
PSO 34.800 43.3571
GA 66.57 60.0558
SEL 245.23 201.1912
Halstead 971.30 1254.72
IVR 1498.41 1459.898
Doty 1719.98 1520.708
Baily Basil 256.749 2504.08
FPA 34.54 43.3417
BBO-COCOMO-II 34.47 43.2952

Above Figs. 10 and 11 depict the comparisons of MMRE and MD between the proposed SGO
method, PPF, BBO, and various other cost estimation techniques applied to Turkish Industry software
projects, respectively.

4.3.2 Discussion

In this experiment, the SGO-based algorithm was employed to optimize the existing parameters
of COCOMO-II. The proposed SGO method was rigorously assessed using datasets from the Turkish
Industry’s software projects. The simulation results clearly demonstrate the superior performance of
the proposed SGO-based approach compared to conventional COCOMO-II, as well as other methods
such as BBO, PSO, GA, PPF, and FPA, along with various other cost estimation techniques.
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Figure 10: MMRE for proposed SGO, PPF, BBO, PSO, GA, COCOMO-II and others models using
Turkish industry datasets

Figure 11: MD for proposed SGO, PPF, BBO, PSO, GA, COCOMO-II and others models using
Turkish industry datasets

4.4 Scalability, Applicability, Limitations and Challenges of SGO-Based Approach

4.4.1 Scalability and Applicability

While the SGO-based approach has demonstrated significant improvements in software cost
estimation accuracy, it is essential to consider its scalability across different types and sizes of software
projects. Our experiments primarily focused on datasets like COCOMO81 and Turkish industry
projects, which provided a strong foundation for validating the method. However, further investigation
is needed to assess how well the SGO algorithm adapts to larger, more complex projects or those in
diverse industry domains.

The adaptability of SGO to various project sizes is promising, but it may require adjustments
or fine-tuning when applied to very large-scale or small-scale projects. The computational overhead
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associated with SGO could be a concern in scenarios where projects involve massive datasets or require
real-time estimation. This is an area where balancing accuracy and computational efficiency will be
crucial.

4.4.2 Limitations and Challenges

Generalizing the SGO-based approach presents several challenges. One potential limitation is
the dependency on the quality and quantity of historical data used for training. In environments
where historical data is scarce or of poor quality, the effectiveness of the SGO algorithm might be
compromised. Additionally, while SGO has shown superiority over other optimization techniques, its
performance may vary depending on the specific characteristics of the software project, such as the
development methodology, team structure, and project complexity.

Furthermore, the need for fine-tuning the SGO parameters for different types of projects could
limit its immediate applicability, requiring domain expertise and iterative experimentation to achieve
optimal results. These challenges highlight the importance of ongoing research to refine and adapt the
SGO-based method for broader use cases.

5 Conclusion

In this study, we introduced the Social Group Optimization (SGO) algorithm to optimize the
parameters of the COCOMO and COCOMO-II models. Testing on COCOMO81 and Turkish Indus-
try software projects showed that SGO outperformed conventional approaches, including COCOMO-
II and other optimization algorithms like PSO, GA, BBO, and PPF. The results highlight SGO’s
effectiveness in improving software cost estimation accuracy.

Looking ahead, we plan to apply evolutionary algorithms to optimize not only COCOMO
coefficients but also those of the Constructive Quality Estimation Model (CQEM). This will lead to a
more comprehensive framework for both cost and quality estimation, enhancing project planning and
resource allocation. Further, we explore the integration of SGO with other optimization techniques,
such as hybrid algorithms or machine learning models, to further enhance its performance and
adaptability in complex environments.

In conclusion, the success of SGO in this study underscores its potential as a valuable tool for
software cost estimation, paving the way for more accurate and cost-effective software development.
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Appendix A

Table A1: Dataset of COCOMO based algorithms on organic projects

Sl. no. Actual _Effort KLOC

1 0.243 0.132
2 0.24 0.06
3 0.033 0.016
4 0.043 0.004
5 0.079 0.025
6 0.088 0.0094
7 0.055 0.015
8 0.047 0.06
9 0.012 0.015
10 0.008 0.0062
11 0.008 0.003
12 0.006 0.0053
13 0.045 0.0455
14 0.083 0.0286
15 0.087 0.0306
16 0.106 0.035
17 0.126 0.073
18 0.176 0.024
19 0.122 0.01
20 0.014 0.0053
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https://doi.org/10.1007/s42235-023-00340-2
https://doi.org/10.22061/jecei.2016.556
https://doi.org/10.1002/smr.1765
https://doi.org/10.1016/j.jksuci.2018.05.009
https://doi.org/10.1109/TSE.2011.55
https://doi.org/10.3233/IDT-200103


CSSE, 2024, vol.48, no.6 1667

Table A1 (continued)
Sl. no. Actual _Effort KLOC

21 0.02 0.0044
22 0.13 0.025
23 0.07 0.023
24 0.057 0.0067
25 0.015 0.01

Table A2: Dataset of COCOMO based algorithms on semi-detached projects

Sl. no. Actual _Effort KLOC

1 1.6 0.293
2 6.6 1.15
3 0.539 0.077
4 0.098 0.013
5 0.0073 0.00214
6 1.063 0.062
7 0.082 0.013
8 0.036 0.023
9 1.272 0.464
10 0.041 0.0082
11 0.05 0.028

Table A3: Dataset of COCOMO based algorithms on embedded projects

Sl. no. Actual _Effort KLOC

1 2.04 0.113
2 0.008 0.0069
3 1.075 0.022
4 0.423 0.03
5 0.321 0.029
6 0.218 0.032
7 0.201 0.037
8 0.06 0.003
9 0.061 0.0039
10 0.04 0.0061
11 0.009 0.0036
12 11.4 0.32
13 6.4 0.229
14 2.455 0.252

(Continued)
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Table A3 (continued)
Sl. no. Actual _Effort KLOC

15 0.724 0.118
16 0.453 0.09
17 0.523 0.038
18 0.387 0.048
19 0.0059 0.00198
20 0.702 0.39
21 0.605 0.042
22 0.23 0.023
23 0.156 0.091
24 0.018 0.0063
25 0.958 0.027
26 0.237 0.017
27 0.038 0.0091

Table A4: Dataset from Turkish software industry

Project no. Size (KLOC) Actual effort Effort multiplier Scale factor

1 3.0000 1.2000 0.3508 19.9200
2 2.0000 2.0000 0.4538 18.8300
3 4.2500 4.5000 0.6473 18.6800
4 10.0000 3.0000 1.1213 10.3100
5 15.0000 4.0000 1.0841 19.2800
6 40.5300 22.0000 0.2379 8.4100
7 4.0500 2.0000 0.1965 7.4200
8 31.8450 5.0000 1.0837 19.7300
9 114.2800 18.0000 0.3734 27.2300
10 23.1060 4.0000 0.6500 20.8200
11 1.3690 1.0000 0.2250 15.3600
12 1.6110 2.1000 0.4109 19.1100
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