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ABSTRACT

In enterprise operations, maintaining manual rules for enterprise processes can be expensive, time-consuming,
and dependent on specialized domain knowledge in that enterprise domain. Recently, rule-generation has been
automated in enterprises, particularly through Machine Learning, to streamline routine tasks. Typically, these
machine models are black boxes where the reasons for the decisions are not always transparent, and the end
users need to verify the model proposals as a part of the user acceptance testing to trust it. In such scenarios,
rules excel over Machine Learning models as the end-users can verify the rules and have more trust. In many
scenarios, the truth label changes frequently thus, it becomes difficult for the Machine Learning model to learn till
a considerable amount of data has been accumulated, but with rules, the truth can be adapted. This paper presents a
novel framework for generating human-understandable rules using the Classification and Regression Tree (CART)
decision tree method, which ensures both optimization and user trust in automated decision-making processes.
The framework generates comprehensible rules in the form of if condition and then predicts class even in domains
where noise is present. The proposed system transforms enterprise operations by automating the production of
human-readable rules from structured data, resulting in increased efficiency and transparency. Removing the need
for human rule construction saves time and money while guaranteeing that users can readily check and trust the
automatic judgments of the system. The remarkable performance metrics of the framework, which achieve 99.85%
accuracy and 96.30% precision, further support its efficiency in translating complex data into comprehensible rules,
eventually empowering users and enhancing organizational decision-making processes.
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1 Introduction

A rule-based system uses predefined rules to organize, classify, and manage enterprise activities.
Manual rule generation for enterprise operations involves creating and maintaining rules governing
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various aspects of business processes within an organization. These rules are typically developed
based on the specialized knowledge and expertise of individuals familiar with the specific domain
or industry. This manual process can be resource-intensive, requiring significant time and effort
to identify, define, and implement rules that govern workflow management, decision-making, and
compliance with regulations or standards. Manual rule generation may also introduce challenges of
consistency, scalability, and adaptability as business requirements evolve. In contrast to traditional
rule-based systems, which depend on predefined rules, intelligent automation systems can assess data,
learn from it, and make decisions independently. Rule-based automation has been around for quite
a long time to optimize many enterprise processes. These rules are maintained by business process
experts who have in-depth knowledge of that enterprise domain. Rule generation automation for
enterprise operations entails leveraging technology, such as machine learning algorithms and data
analysis techniques, to automatically create and manage rules governing various business processes
within an organization. This automated approach aims to streamline the rule generation process,
reduce manual effort, and improve efficiency and accuracy. This allows for more adaptive and flexible
automation solutions that handle complex scenarios and dynamic environments. Automated systems
can generate rules that govern workflow management, decision-making, and compliance by analyzing
large volumes of data and identifying patterns. These rules are derived from data-driven insights rather
than relying solely on human intuition or expertise.

This work focuses on using Machine Learning (ML) to automate the production of rules for
enterprise operations that include structured tabular data. The proposed strategy improves rule-
based automation by incorporating human experience into a computational framework, solving
typical shortcomings in existing systems such as manual rule generation, lack of interpretability, and
data imbalances. The approach enhances categorization and lowers human error by leveraging the
Classification and Regression Trees (CART) algorithm for enhanced interpretability and allowing for
dynamic rule modifications. The framework extracts rules from noisy structured data and identifies
patterns in massive datasets using data analysis, transforming correlations into actionable rules. This
technique is beneficial for managing unstructured or noisy data, as it overcomes the constraints of
standard rule-based approaches.

The proposed system uses the CART decision tree method to derive rules from structured tabular
input. It builds decision trees using feature vectors generated by binary encoders that interpret
historical data and convert them into actionable rule sets. While one-hot encoding is widely employed,
it might increase dimensionality and sparsity, potentially leading to overfitting in the CART algorithm.
In contrast, label encoding may introduce deceptive ordinal relationships, lowering the quality of
decision tree splits. Binary encoding is especially beneficial for high-cardinality variables since it
reduces dimensionality while increasing algorithm performance. The system additionally uses a count
vectorizer to determine the top k tokens in text variables. The system improves CART performance
by combining binary encoding and meticulously analyzing historical data through encoders to create
feature vectors, allowing the development of decision trees that specify rules for categorizing electronic
texts.

The remainder of the paper is organized as follows. Section 2 discusses related work on automated
rule-generation systems using machine learning models. Section 3 explains a general rule-based
framework. Section 4 describes an automated rule proposal architecture based on the CART algo-
rithm. Section 5 shows the experimental setup, results, and performance evaluation of the proposed
framework. Finally, Section 6 presents conclusions by giving directions for future work.
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2 Literature Survey

Manual rule generation for enterprise operations is time-consuming and frequently involves
specialized knowledge to ensure rules stay current and compliant. Inconsistent rules can cause
confusion and inefficiencies inside businesses. To address these issues, academics are concentrating on
automated rule-generation systems based on machine learning. For example, Bharatiya [1] proposed
a method based on RULES-6 that uses transfer learning to utilize knowledge from other domains,
improving search efficiency and accuracy in rule discovery. This novel approach, known as the Rule
Extraction System with Transductive Learning (RULES-TL), enhances specialization and lowers
error rates for whole and incomplete datasets. Another work by Adilova et al. [2] described the
reasoning behind big interpretable models using a collection of logical rules. Still, it needs to address
the development of human-understandable rules from structured tabular data using machine learning.

Litao et al. [3] have proposed a novel method for learning interpretable decision rule sets by train-
ing a neural network in a two-layer architecture in which each neuron in the first layer maps directly
to an interpretable if-then statement. The output neuron represents a disjunction of the first-layer
rules. It also provides a sparsity-based regularization strategy to balance classification accuracy with
the simplicity of the resulting regulations while using state-of-the-art neural net training approaches
for accurate classification models. It tests the proposed method using publicly accessible binary
classification datasets, comparing it to other rule-learning algorithms and uninterruptable black-box
machine-learning systems with comparable prediction accuracy. The Stable and Interpretable Rule
Set (SIRUS) [4] addresses the essential need for interpretable machine learning models in high-stakes
decision-making applications by ensuring transparency and accessibility. Based on random forests,
SIRUS provides a symbolic representation of tree pathways for rule extraction. SIRUS provides a
simple and robust rule-learning technique, making it a realistic option for producing concise and
interpretable rule sets from random forests, improving the reliability and usefulness of machine-
learning models in numerous real-world applications. The stability metric is empirically derived based
on the average fraction of standard rules between models of different folds in cross-validation, and it
may not fully describe the stability of the algorithm for all cases.

While Decision Trees (DTs) are widely regarded as interpretable models, new research has
challenged this assumption by demonstrating that DT paths can contain insignificant literals, which
can obscure their clarity. A linear time test [5] developed in this paper identifies unnecessary literals,
allowing polynomial-time computation of Probabilistic Independence (PI) explanations to improve
DT interpretability. This study reveals that conventional DT algorithms can generate explanations
that lack coherence due to path redundancy, calling into doubt the intrinsic interpretability of DT
classifiers. Further investigation in [6] compares standard hierarchical agglomerative clustering to
semi-supervised algorithms, indicating that the latter can create higher-quality clusters, especially
when prior information is used. Bogdanova et al. [7] presented an Explainable Data Collaboration
Framework for remote machine learning that uses KernelSHAP to reduce user feature attribution
discrepancies. Despite developments, the framework needs to prioritize creating human-readable
rules for structured tabular data. As businesses move toward intelligent organizations, the change
to automation through machine learning and rule-based systems stresses the importance of clarity
and verifiability in decision-making processes, with rule-based systems frequently perceived as more
trustworthy than black-box ML models. Table 1 presents a comparative analysis of related works in
the Rule Generation Framework.
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Table 1: Comparative analysis of related works in rule generation framework

Aspect Traditional
manual rule
generation

Automated
rule
generation

Transfer
learning
approaches

Interpretable
models

Neural
network
innovations

Explainable
data col-
laboration

Efficiency Labor-
intensive
and time-
consuming

Streamlined
process

Reduces
search time
significantly

Enhances
transparency

Balances
accuracy
with
simplicity

Addresses
feature
attribution
discrepan-
cies

Knowledge
Dependency

Requires
specialized
domain
knowledge

Less
dependency
on human
input

Leverages
knowledge
from other
domains

Focuses on
user trust

Maps
neurons to
interpretable
rules

Does not
generate
rules,
focuses on
explana-
tions

Interpretability Often lacks
clarity

Varies by
the model
used

Improves
rule
discovery

High inter-
pretability

Provides
clear
explanations

Model-
agnostic,
but not
rule-based

Application
Context

Limited to
specific
business
processes

Broad
applicability

Enhances
accuracy in
diverse
domains

High-stakes
applications

Directly
applicable to
rule
generation

Focuses on
collabora-
tive data
use

Advancements Inefficiencies
and incon-
sistencies

Reduces
manual
errors

Significant
advance-
ments in rule
accuracy

Emphasizes
transparency

Innovative
architecture
for rules

Addresses
gaps in
feature
attribution

The existing literature highlights the need for enhanced interpretability and efficiency in auto-
mated systems, which the proposed framework aims to address.

Hence, this research considerably improves automated rule generation by automating the process,
decreasing the need for manual intervention and specialized knowledge, as demonstrated by develop-
ing systems such as RULES-6 and RULES-TL. It highlights interpretability using frameworks such
as SIRUS, which converts neural networks into understandable if-then rules, ensuring transparency
in high-stakes applications. Furthermore, the proposed architecture effectively solves the issues of
noisy data while remaining understandable and adaptable to regulations. The uniqueness resides in
implementing the CART algorithm for rule creation, which optimizes the process while increasing
user trust by giving explicit, verifiable rules. This is a significant improvement in making machine
learning more accessible and dependable for enterprise operations.
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3 Rule-Based System

Automated rule generation operates on rules with trigger points and corresponding actions,
following a basic IF...THEN...ELSEIF format reminiscent of programming logic. If there are numer-
ous triggers, it results in a corresponding number of conditional statements. Managing changes or
adaptations to these rules can be challenging but feasible. However, rule-based systems have inherent
limitations. They are static and lack intelligence. They operate strictly according to their predefined
instructions and design. Sequential Covering methods [8] that stand out among the original algorithms
include RIPPER (Repeated Incremental Pruning to Produce Error Reduction), CN2 (Clark and
Niblett’s 2 Algorithm), and Algorithm quasi-optimal (AQ) Learning [9]. Decision Trees are well-
known in Machine Learning Algorithms for their high accuracy and interpretability. A decision tree
model evaluates the significance of each variable by measuring how well it divides the dataset into
various classes. In the Play Tennis dataset [10], features such as “Outlook” or “Humidity” may be more
relevant depending on how well they predict “Play Tennis,” as shown in Fig. 1. Using the categories
presented in Table 2, a decision tree would automatically determine which variables are most successful
in classifying whether tennis may be played.

Figure 1: Decision tree learnt on the tennis dataset

Table 2: Play tennis dataset

Outlook Temperature Humidity Wind Play tennis

Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild Normal Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool High Strong Yes
Sunny Mild Normal Weak No
Sunny Hot Normal Weak Yes
Rain Mild Normal Strong Yes
Sunny Cool Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No
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The hierarchical structure of the decision trees can be easily converted into rules, as shown in
Fig. 2.

Figure 2: Rules derived from the tennis decision tree

Decision trees are used because of their interoperable natures in the framework to develop rules.
Trees are used because of their interoperable natures in the framework to create rules. Automated
rule generation reduces complex data into understandable rules, providing benefits similar to human
decision-making. When data quantities increase, it can quickly scale to meet demand and perform well
in settings without pre-processing. It also performs exceptionally well in complicated situations, using
sophisticated algorithms to traverse complicated decision logic and a variety of datasets to traverse
complicated decision logic and a variety of datasets efficiently. In dynamic business situations, these
attributes facilitate decision-making, build confidence, and streamline operations. Additionally, the
proposed system manages redundant rules by recognizing and integrating similar patterns that may
appear across multiple subsets of data throughout the rule-creation process. This entails examining
the created rules to identify overlaps or duplications and then combining these rules to minimize
redundancies. This approach assures that the final rule set is compact and efficient, preserving
simplicity and efficiency.

4 Automated Rule Proposal Framework

This work proposes a framework for automated rule generation using machine learning for
classification problems [11,12], as shown in Fig. 3. Decision trees are created using feature vectors
produced by processing historical data using binary encoders. The decision trees are then converted
into sets of rules. These rules help classify electronic documents in an enterprise system by defining
the criteria for assigning them to different classes [13].

4.1 Binary Encoder

The historical data [14,15] includes a set of variable vectors Vi such as V 1,...,V n, and each vector
Vi includes variables v1,...,vm. Further, each variable vector Vi is associated with a target variable y that
indicates a respective class C in a set of classes C1,...,Cn that is assigned to the variable vector Vi. Here,
the historical data is processed by the categorical binary encoders to provide feature data, as shown in
Fig. 4, which is also provided as tabular data.

The feature data includes a set of feature vectors F , such as F1, ...,Fn. Each feature vector Fi consists
of values f 1, ...,f k. Further, each feature vector F is associated with a target variable y that indicates a
class C in classes C1, ...,Ck assigned to the value vector Vi corresponding to the respective feature vector
Fi. Binary encoding for categorical variables is similar to one-hot encoding. This encoder encodes the
data in fewer dimensions, which reduces data sparsity. Additionally, text variables are converted into
variables of top k tokens, where k is used as a hyper-parameter by the framework to improve accuracy
on the hold-out dataset [16]. More particularly, the encoders include a count vectorizer, which is used
to determine the top k tokens.
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Figure 3: The proposed framework for automated rule generation framework

Figure 4: Tabular data to rule generation flow
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4.2 CART Algorithm for Rule Proposal Framework

Regression and Classification Decision Trees can be constructed with CART [17]. The model is a
classification tree when a decision tree divides a dataset into multiple classes. The goal of utilizing a
classification tree is to divide the dataset into two halves based on the homogeneity of the data. CART
is based on impurity measures such as the Gini index to choose the attributes for splitting. Every
feature in the dataset is divided into two halves; the difference between the actual and predicted values
is computed, and the split point with the lowest sum of squared errors is selected as the root node. From
there, the process repeats itself, splitting each feature in half. The rules determining when tree growth
ends are known as stopping criteria. To prevent a node from being split, it must consist of records with
the same value for the target variable, i.e., a pure node’s size must not surpass a user-defined threshold;
the tree’s depth must not exceed a predefined maximum value; the node must contain fewer cases than a
predefined minimum number; and any split must not increase purity beyond a certain threshold. With
out-of-depth analysis and comprehension of the data, it is hard to forecast the appropriate threshold
values. Hence, CART employs a pruning method to get to the ideal tree. The pruning algorithm initially
lets the tree grow to its full size before trimming it back. Cutting down a tree too soon may result
in losing significant, highly informative sub-trees. When a tree grows unchecked and unpruned, the
predictive model that overfits the data supplied cannot be replicated as a good fit when applied to
further samples [18].

In the proposed framework, variable types of structured tabular data can be summarized into
the following types: Numerical, Categorical, and Text. The Rules Proposal framework uses the
CART algorithm, which cannot handle categorical variables. Hence, Binary Encoding is used to
hold the categorical variables. The decision tree receives the numerical values from the framework
in their original form without any extra handling. Since decision trees are invariant to monotonic
transformations of the variables, there is no need to normalize the numeric input data. The Rules
Proposal Framework uses the CART algorithm to generate decision trees from feature vectors. Binary
encoding for categorical variables is similar to one-hot encoding but stored as binary bit strings. This
encodes the data in fewer dimensions than one-hot encoding and thereby, helps to reduce the sparsity.
Text variables are converted into variables of top k tokens where, k is used as a hyperparameter by
the framework to improve accuracy on the hold-out dataset. Here, the Count vectorizer is used to
determine the top k tokens. After the transformations, the variables are fed into the Decision Tree
Classifier in a One vs. Rest Fashion per class. Hence, we create a decision tree for every class and
convert it into a rule set.

The decision tree branches with numeric variables are transformed into the rule condition with
the comparison operators such as–Less than(<), Greater than(>), Less than Equal to(<=), Greater
than Equal to (>=), Equal to(==) and Not Equal to (!=). Similarly, the decision tree branches with
the categorical variables are transformed into the rule condition with the Equality Operator (==). In
contrast, it is converted into a rule condition for the decision tree branches containing the Text Variable
using the Contains Operator (⊂). For text processing, the proposed automation-based framework
can process tokens faster in parallel, with an extensible framework where additional skills can be
added to usage, a low-power processing model. Existing NLP frameworks work to decipher embodied
learning, synthesize statements, decipher innate biases, and work on natural language understanding.
In contrast, the proposed framework emphasizes key tokens, their occurrences normalized over a data
set, and metric implication with other feature dimensions, making it more relevant to the table structure
being processed.

In Table 3, the tokens “Keev”, “outstanding”, and “payment” have a high implication score when
compared to “done” in the free text Comments. Among the three tokens, “Keev” would have a higher
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score, followed by “outstanding”and “payment”at the same level. This implication metric is calculated
after identifying top K tokens and normalizing to ensure speed. A skill that can be introduced to meet
user requirements is enhancing content with synonyms. Assume that for the same table, there is a need
to check for synonyms for “payment”. Then near related keywords would be “cash”, “premium”,
“fee”, “amount,”, etc. This would ensure that the metric “implication” gives the same score if an
alternate word is used. Another example of a skill is checking for a business partner’s name with
standard data services such as Dun & Bradstreet D-U-N-S Number, which can help improve the
implication score. Tabular data can be represented as Ti(j−1), where i is the number of rows, (j−1) is
the number of input variables, and y is the target variable.

Table 3: Metric implication

Vendor ID Vendor name Address Fee posted Payment
time

Outstanding Comments

10000098765 Keev
enterprises

1,Woodway,
Austin

$95,000 90 $200,765 Keev outstanding
payment done

Let v represent the input variables of size (j−1), where type V j ∈ {categorical, numeric, text, target}
and the target variable be represented by y where n is the number of classes and described as C.

The steps involved in the proposed framework to generate a Rule Set are shown in Fig. 5.
As described above, the tabular data is transformed into the feature vector Fik by the encoder’s
component. The feature vector is then fed into the One vs. The rest of the decision tree classifier results
in n trees (the same as the number of classes). Each decision tree is associated with classification metrics
like accuracy, RoC, Area under the curve, etc. In the last step, the decision tree is transformed into a
Rule Set, and the Rule Set is also associated with the classification metrics as well as derived from the
Decision Tree.

Figure 5: Flow diagram for rule generation framework
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Furthermore, the proposed automated rule generation framework uses the CART algorithm to
adapt to new categories efficiently. The CART algorithm adjusts to previously unknown categories
by updating feature vectors and improving adaptability. Furthermore, the flexibility of the CART
algorithm allows decision trees to evolve with new data without requiring full retraining, and the
framework’s robustness allows it to manage noisy data, enabling reliable classification in quickly
changing environments. As a result, the suggested methodology promotes continuous learning,
allowing it to incorporate new categories from incoming data while successfully evolving situations
such as cyber security or market trends [19,20].

4.3 ERP Case Study for Account Determination

Account Determination in Enterprise Resource Planning (ERP) solutions is one of the easiest and
essential applicability of this rule framework, which has already been discussed. Account Determina-
tion is the key to linking Asset classes to G/L (General Ledger) accounts based on transaction type.
The MM-FI (Materials Management and Financial Accounting) link is crucial in ensuring that FI
postings are done to the correct G/L account based on movement types. These transaction keys are
used to determine general ledger accounts used by the system.

This is done when a new ERP system is set up as fresh or configured for use and later adjusted
based on usage. This process is tedious and requires functional expertise to maintain the configurations
correctly. It would lead to incorrect financial postings, lengthy reconciliations, and an impact on an
enterprise’s financial books of accounts. However, most of this setup stays the same from one enterprise
to another. An intelligent rule-based framework proposed in Fig. 6 can help to evolve various possible
rules and propose the correct G/L account assignment in the Account Determination config phase. A
similar approach is also helpful for determining the G/L account when an incoming payment comes
into the system. This eliminates the requirement for a Business Process Expert or Functional Expert
to spend time generating and configuring rules for an ERP system.

Figure 6: Steps involved in sample account determination
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5 Experimental Results

Before evaluating a machine learning model, examining its performance and confirming that
its predictions are consistent with data patterns is critical. This analysis focuses on two primary
areas: performance metrics for model evaluation and statistical validation. The model’s performance
is measured using conventional metrics such as accuracy and precision, which provide information
about how well the model predicts. In addition to these measures, Statistical Validation checks
that the model’s conclusions are statistically correct. The Chi-Square Test and ANOVA are used to
examine whether there are significant relationships or differences in the data, which provide a better
understanding of the model’s validity. Together, these methods offer a thorough assessment of the
model’s performance.

5.1 Performance Metrics for Model Evaluation

The proposed rule generation framework is tested and validated with the Car Evaluation Dataset
[21,22]. This dataset comprises categorical variables, making it ideal for classification tasks. Table 4
shows that each variable represents a separate part of car appraisal. These variables provide a
comprehensive collection of properties necessary for determining the acceptability and desirability
of various cars from a consumer standpoint [23].

Table 4: Car evaluation dataset variable

Variables Type Description

buying Categorical Buying price—vhigh, high, med, low
maint Categorical Maintenance price—vhigh, high, med, low
doors Categorical Number of doors—2, 3, 4, 5, more
persons Categorical Persons—2, 4, more
lug_boot Categorical Size of luggage boot—small, med, big
safety Categorical Estimated safety—low, med, high
class Target Car acceptability—unacc, acc, good, vgood

The categorical character of the dataset is a common issue for machine learning models, especially
those developed for classification tasks. The dataset’s structured style and clearly defined categories
allow for a thorough examination of the proposed framework’s performance in handling categorical
data and conducting accurate classifications. Table 5 summarizes the distribution of the goal variable,
Car Acceptability, across the Car Evaluation Dataset. This dataset consists of 1728 items divided
into four degrees of car acceptability. The unacceptable, i.e., unacc class, contains the majority of the
samples, with 1210 autos classified as unsatisfactory. This accounts for 70.02% of the whole dataset,
showing that a substantial proportion of the vehicles tested are unsuitable. The acceptable, i.e., acc
class contains 384 samples, which accounts for 22.22% of the dataset. Cars in this category fulfill the
minimum standards of acceptability. The good, i.e., good class has 69 samples, or 3.99% of the total.
These cars are considered to be of good quality, but not the best. The smallest class, very good, i.e.,
vgood, with 65 samples, accounts for 3.76% of the dataset. Cars in this category are thought to be in
excellent condition and represent the highest quality in this collection.
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Table 5: Class distribution

Class Number of samples (N) Percentage samples (N%)

unacc 1210 70.02%
acc 384 22.22%
good 69 3.99%
vgood 65 3.76%

The major goal of this experiment is to find a rule set that accurately identifies cars in the very
good, i.e., vgood state. The imbalanced nature of the dataset, with the vgood class being the least
represented, presents a problem for the classification model. The proposed framework’s efficacy will
be assessed based on its ability to identify and effectively categorize these high-quality cars despite
their low prevalence in the dataset. The identification of clear and specific rules for this class will
illustrate the framework’s robustness and practical application when dealing with skewed categorical
data. Table 6 summarizes the categorization metrics [24] for the Car Evaluation Dataset. The dataset
was divided into two sets: 1036 samples, i.e., 60% for training and 692 samples, i.e., 40% for testing.

Table 6: Classification metrics

Training dataset size 1036
Test dataset size 692
Accuracy on test dataset 99.85%
Precision on test dataset 96.30%

The model’s performance on the test set is evaluated using two major metrics: accuracy and
precision. The model’s accuracy on the test dataset is 99.85%. This high accuracy shows that the
model generated using the proposed framework successfully classified 99.85% of the test samples,
proving its ability to forecast car acceptability categories based on the provided parameters. Precision,
defined as the fraction of accurate positive forecasts among all positive predictions, is stated to be
96.3%. This metric emphasizes the model’s ability to correctly recognize very good, i.e., vgood condition
cars, demonstrating its consistency in producing positive classifications with few false positives. These
metrics demonstrate the model’s outstanding performance, especially in the setting of an imbalanced
dataset. The framework’s high accuracy and precision indicate that it is well-suited to accurately
classifying cars into their respective acceptability categories, particularly in identifying those in very
good condition, which was the major goal of this experiment. Table 7 shows the confusion matrix for
classifying the very good, i.e., vgood class in the Car Evaluation Dataset using the model’s predictions.
The model properly categorized 665 of the 692 samples as not vgood when they were not very good.
This reflects a high true negative rate. There was only one case where the model predicted vgood for
a sample that was not vgood, resulting in a false positive. The model accurately detected all 26 vgood
samples, with no false negatives.

This confusion matrix demonstrates the model’s accuracy in detecting the vgood class, which has
a perfect true positive rate and an almost perfect true negative rate. This confusion matrix further
supports the 96.3% precision and 99.85% accuracy on the test dataset, proving the stability and
robustness of the rule set created for classifying autos as very good, i.e., vgood. The model’s ability
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to correctly distinguish vgood cars from the other categories confirms its usefulness in real-world
circumstances where identifying high-quality vehicles is critical.

Table 7: Rule Set generated for class = “vgood”

N = 692 Predicted: not vgood Predicted: vgood

Actual: not vgood 665 1
Actual: vgood 0 26

5.2 Statistical Validation

As shown in Table 8, General Ledger (G/L) account data collection is crucial for assessing
payment transactions in an enterprise. This data set is statistically analyzed using the Chi-Square Test
and ANOVA to investigate correlations and differences among distinct G/L account types. The Chi-
Square Test, in particular, demonstrates a substantial link between payment amounts and G/L account
types, with a p-value of less than 0.05, indicating a noteworthy relationship.

Table 8: Sample General Ledger (G/L) payment data

Transaction ID Date G/L account no. G/L account
category

Account description Debit
amount

T1001 2024-09-01 5001 Liabilities Accounts payable 0.00
T1002 2024-09-01 4005 Income Sales revenue 2500.00
T1003 2024-09-02 6002 Expenses Office supplies 300.00
T1004 2024-09-03 7004 Expenses Utilities expense 0.00
T1005 2024-09-03 5003 Liabilities Payroll expense 1200.00
T1006 2024-09-04 4002 Income Consulting income 0.00
T1007 2024-09-04 6005 Expenses Advertising expense 500.00
T1008 2024-09-05 5002 Liabilities Rent expense 0.00
T1009 2024-09-06 4006 Income Interest income 100.00
T1010 2024-09-06 7001 Expenses Travel expense 800.00
T1011 2024-09-07 5004 Liabilities Insurance expense 0.00
T1012 2024-09-08 4003 Income Service fees income 0.00
T1013 2024-09-08 6001 Expenses Legal fees 350.00
T1014 2024-09-09 7003 Expenses Equipment expense 0.00
T1015 2024-09-09 4004 Income Product sales 2700.00

A Chi-Square Test of Independence is performed to cross-validate the model results by comparing
incoming payment kinds to G/L account categories from the dataset. The framework developed by the
model had an accuracy of 96.2%. This test is used to determine whether there is a significant relation-
ship between two categorical variables, in this case, “Payment Status” (containing categories such as
“Paid”, “Received”, and “Due”) and “G/L Account Category” (such as “Expenses”, “Income”, and
“Liabilities”). The steps for conducting a Chi-Square Test are outlined below:
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1. The following Contingency Table 9 is constructed based on the provided data set.
2. The expected frequency in Table 10 is calculated for each G/L Account Category.
3. Total Chi-Square Value (χ 2) = 2.0 + 6.65 + 1.33 + 1.76 + 2.33 + 0.01 + 0.03 + 1.0 + 1.8 ≈

16.91.
4. Degrees of Freedom (df) = (Rows–1) ∗ (Columns–1) = (3–1) ∗ (3–1) = 4.
5. Using a Chi-Square distribution Table, for df = 4, a χ 2 value of 16.91 gives a p-value well below

0.05.
6. Since the p-value is less than 0.05, the null hypothesis is rejected and concludes that there is a

significant association between “Payment Status” and “G/L Account Category”. This suggests
that certain types of payments are more likely to be associated with specific G/L account
categories, validating the classification of payments to G/L accounts.

Table 9: Contingency table for the given data set

G/L account category Paid Received Due

Income 0 5 0
Expenses 5 0 2
Liabilities 1 0 2
Total 6 5 4

Table 10: Expected frequency for each G/L account category

G/L account category Paid Received Due

Income 0 5 0
Expenses 5 0 2
Liabilities 1 0 2

Another validation method used was ANOVA (Analysis of Variance). ANOVA compares the
variation within groups to that between groupings. If the variance between groups is much more
significant than the variance between groups, it means that at least one group’s mean differs from
the others. One use of ANOVA was to determine whether there is a statistically significant difference
in mean payment amounts (debit and credit amounts) across different G/L account types.

1. Define the Hypotheses
Null Hypothesis (H0):
There is no significant difference in the mean payment amounts among the different G/L
account categories.
Alternative Hypothesis (H1):
There is a significant difference in the mean payment amounts among the different G/L
account categories.

2. Calculate the Group Means and Overall Mean:
Mean for Income = (2500 + 3200 + 1500 + 100 + 2700)/5 = 2000.00
Mean for Expenses = (300 + 500 + 800 + 350 + 1200 + 200 + 2500)/7 ≈ 835.71
Mean for Liabilities = (0 + 400 + 1800)/3 ≈ 733.33
Overall Mean = 1206.67
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3. Calculate the Sum of Squares Between Groups (SSB)
For Income = 3,146,835.56
For Expense = 963,290.02
For Liabilities = 669,159.94
Total Sum of Squares (SST): 16,852,107.65

4. Calculate the Mean Squares
MSW = 1,006,068.51

5. Calculate the F-Statistic
F = 2.38

6. See an F-distribution table or a calculator to determine the critical value for (2, 12) degrees of
freedom. At a significance level of 0.05, the critical value is around 3.89.

The computed F-value (2.38) is smaller than the critical value (3.89); hence, we cannot reject the
null hypothesis.

6 Conclusions

To solve classification problems, this work suggests an automated rule generation framework
that uses machine learning and involves processing historical data through encoders to produce
feature vectors. These feature vectors are used to create decision trees, converted into rules specifying
requirements for classifying electronic documents into particular groups. With the help of the
proposed framework, electronic records may be categorized inside an enterprise system, simplifying
processes and boosting productivity. The proposed framework achieves an accuracy of 99.85% and
a precision of 96.30% on the test dataset, producing rules that are understandable to humans by
utilizing the Classification and Regression Tree (CART) decision tree algorithm for structured tabular
data. Compared to previous methods, the proposed model simplifies document categorization in
corporate systems, increasing productivity while improving accuracy, transparency, and adaptability.
The proposed framework efficiently categorizes electronic documents in business systems, streamlining
workflow management and compliance. This improves overall organizational productivity. However,
the framework’s emphasis on uniformly categorized qualities may limit its applicability to a wide range
of datasets and failto address the issues of integrating conflicting information from diverse sources.
Future research may investigate the framework with various datasets, address issues related to data
conflicts, and improve the interpretability of decision trees and rules to enhance their applicability in
critical decision-making contexts.
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