
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2024.057067

REVIEW

Software Reliability Prediction Using Ensemble Learning on Selected Features
in Imbalanced and Balanced Datasets: A Review

Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4,
Baseem Khan5,6,7,*, Ahmed Ali7 and Pitshou Bokoro7

1Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, 752054, India
2Department of Computer Science and Engineering, Birla Global University, Bhubaneswar, 751029, India
3School of Computer Engineering, KIIT (Deemed to be) University, Bhubaneswar, 751024, India
4School of Electrical Engineering, KIIT (Deemed to be) University, Bhubaneswar, 751024, India
5Department of Electrical and Computer Engineering, Hawassa University, Hawassa, P. O. Box 05, Ethiopia
6Center for Renewable Energy and Microgrids, Huanjiang Laboratory, Zhejiang University, Shaoxing, 311816, China
7Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Johannesburg, 2028, South Africa

*Corresponding Author: Baseem Khan. Email: baseem.khan04@ieee.org

Received: 07 August 2024 Accepted: 31 August 2024 Published: 22 November 2024

ABSTRACT

Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to
analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating
to both defective and non-defective software. The latter software class’s data are predominately present in the dataset
in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of
combining ensemble learning and feature selection in improving the performance of defect classification. Besides
the successful feature selection approach, a novel variant of the ensemble learning technique is analyzed to address
the challenges of feature redundancy and data imbalance, providing robustness in the classification process. To
overcome these problems and lessen their impact on the fault classification performance, authors carefully integrate
effective feature selection with ensemble learning models. Forward selection demonstrates that a significant area
under the receiver operating curve (ROC) can be attributed to only a small subset of features. The Greedy forward
selection (GFS) technique outperformed Pearson’s correlation method when evaluating feature selection techniques
on the datasets. Ensemble learners, such as random forests (RF) and the proposed average probability ensemble
(APE), demonstrate greater resistance to the impact of weak features when compared to weighted support vector
machines (W-SVMs) and extreme learning machines (ELM). Furthermore, in the case of the NASA and Java
datasets, the enhanced average probability ensemble model, which incorporates the Greedy forward selection
technique with the average probability ensemble model, achieved remarkably high accuracy for the area under
the ROC. It approached a value of 1.0, indicating exceptional performance. This review emphasizes the importance
of meticulously selecting attributes in a software dataset to accurately classify damaged components. In addition,
the suggested ensemble learning model successfully addressed the aforementioned problems with software data
and produced outstanding classification performance.

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2024.057067
https://www.techscience.com/doi/10.32604/csse.2024.057067
mailto:baseem.khan04@ieee.org

1514 CSSE, 2024, vol.48, no.6

KEYWORDS
Ensemble classifier; hybrid classifier; software reliability prediction

1 Introduction

Various methodologies have been explored in software engineering to anticipate critical aspects
crucial for project success. One study conducts a comprehensive literature review, focusing on utilizing
machine learning techniques to predict software effort, and evaluating their effectiveness empirically
[1]. Another study examines the precision of models predicting effort for software maintenance
tasks, drawing insights from practical implementations [2]. Additional research delves into predicting
software maintainability and associated metrics, amalgamating existing studies to identify common
metrics and their predictive utility [3]. Another focus lies in forecasting the maintainability of object-
oriented software using multivariate adaptive regression splines, proposing potential approaches for
evaluating and predicting software system maintenance ease [4]. Transfer learning techniques are
explored for cross-company software defect prediction, suggesting strategies to enhance prediction
accuracy across diverse organizational settings [5]. Furthermore, practical considerations in imple-
menting statistical methods for reliability prediction are examined, leveraging a case study within the
Turkish telecommunications industry to offer insights into real-world challenges and best practices
[6]. Additionally, fuzzy clustering techniques are discussed for software quality prediction, aiming to
categorize projects and forecast their quality levels based on specific attributes [7]. Lastly, a critical
evaluation of software defect prediction models is presented, analyzing their strengths, weaknesses, and
potential avenues for improvement within the research domain [8]. Defective software parts have severe
effects on the amount spent on development and maintenance as well as on customer satisfaction
[9]. In their respective research endeavors, Wu et al. [10] propose an innovative strategy for software
defect prediction by employing weighted classification via association rule mining. This method
boosts prediction accuracy by assigning weights to pertinent features identified through association
rules. Meanwhile, Zhao et al. [11] undertakes a systematic examination of just-in-time software
defect prediction, offering a comprehensive overview of the various techniques and methodologies
utilized in this domain. Han et al. [12] introduce a Bayesian approach aimed at integrating low-cost,
high-frequency sensor data into watershed water quality modeling, presenting a valuable technique
for the seamless integration of sensor data into water quality assessment procedures. Hernández-
Molinos et al. [13] delve into software defect prediction using Bayesian methodologies, exploring the
application of Bayesian techniques and providing insights into probabilistic modeling approaches
for this purpose. Lastly, Elsagheer et al. [14] introduce a hybrid model for automatic modulation
classification, which amalgamates residual neural networks and long short-term memory architectures
to achieve precise automatic modulation classification. However, when confronted with redundant and
skewed defect datasets, these approaches demonstrate inadequate performance [15]. The accuracy
of their predictions tends to decline in the presence of missing or irrelevant information within the
defect datasets [16]. Classifiers biased towards the dominant class, such as Artificial Neural Network-
Multi-Layer Perceptron’s [17] ANN-MLPs and Support Vector Machines (SVMs) [18], emerge with
large false negative rates [19]. Notably, ensemble learning techniques are ideally adapted to address
the aforementioned data issues. Random forests [20], outperform the aforementioned approaches
in locating damaged or defective modules, even though they are not specifically designed to resolve

CSSE, 2024, vol.48, no.6 1515

imbalanced data [21]. In addition, any residual influence brought on by irrelevant and redundant
features is reduced via ensemble learning’s voting technique. To achieve this, classifiers with strong
performance on the testing datasets are given heavier weights. Prediction performance is certainly
improved by tolerating irrelevant and redundant features. Voting does, in fact, ensure that noise effects
are reduced, which enhances the accuracy of predictions in general. The proposed system includes eight
classifiers: Bernoulli Naive Bayes, Gradient Boosting, Weighted SVMs, Random Forests Stochastic
Gradient Descent, Extreme Learning Machine, Logistic Regression and Multinomial Naive Bayes.
According to the paper’s conclusion, the basis classifiers were selected following thorough simulation
validation. The literature recognizes several classifiers, such as Weighted-SVMs and Random Forest
models, as “de-facto” classifiers [22]. Moreover, due to the varying classification abilities of the
individual fundamental classifiers, their combination proves valuable in the presented ensemble
learning approach. Through the integration of these techniques, they can incorporate a diverse array
of statistical features that are inherent in the underlying data.

This study has two primary objectives. Firstly, it aims to demonstrate the efficacy of feature
selection in enhancing the accuracy of reliability prediction. Secondly, it aims to propose a twofold
ensemble learning approach that maintains robustness even when faced with challenges such as data
imbalance and feature redundancy. A key contribution credited to this study is the recommended two-
variant ensemble approach’s improved robustness to duplicate and irrelevant attributes. The paper is
structured as follows: Section 2 presents a comprehensive overview of related research in the field.
Section 3 comprehensively describes the experimental setup, methodology, and datasets employed for
software defect prediction. The design of the experiment and its results are presented in Section 4, in
Section 5, a detailed analysis and discussion of the data are provided, along with an exploration of
validity concerns. In conclusion, Section 6 of the paper summarizes the key findings of the study and
provides conclusions. It also offers recommendations for future research directions in the field.

2 Literature Review

The following is a comprehensive summary of the current related work in the field: A breakdown
of the sampling procedures necessary to properly manage data imbalance is given after a discussion of
general prediction approaches. After that, a summary of popular cost-effective classification methods
is given. Next, there will be an explanation of how ensemble learning models can be employed to tackle
data imbalance. Subsequently, the section will wrap up with a discourse on different fault classification
techniques; feature selection procedures are finally covered. The basis for machine learning-driven
approaches in fault classification was laid by Bayesian approaches, Decision trees, and ANNs, these
techniques use software metrics to categorize malfunctioning software components accurately. To be
clear, typically, these methods tend to overlook the skewness and other statistical attributes present in
the fault datasets. It is highly detrimental to classification performance not to include these features
[19]. Traditional methods like Bayesian networks [12] and SVMs [17] often neglect the minority class,
which in this context refers to defective modules. To address the issue of imbalanced datasets, two
widely used techniques are oversampling and undersampling [21]. Oversampling is the process of
duplicating instances from the minority class, whereas undersampling involves reducing instances
from the majority class. Both approaches aim to improve the class balance in the dataset. While
undersampling removes data samples from the majority class, oversampling involves introducing
duplicate or artificial samples to the minority class. In software failure detection applications, the
accuracy of classification is enhanced through the implementation of data sampling techniques,
as stated by Seiffert et al. [23]. The investigation conducted in [24] examined the utilization of
undersampling and oversampling techniques for data stratification in software failure prediction.

1516 CSSE, 2024, vol.48, no.6

To oversample data from the minority class, the Synthetic minority oversampling technique method
was utilized, generating artificial samples [25]. Misclassifying various software problem classes may
result in higher costs, even when sampling algorithms often balance data distribution adequately.
Khoshgoftaar et al. [26] introduced an ensemble learning method that combines a cost-sensitive
boosting technique with a feature incorporating cost sensitivity in their research. This means that
when defective software components are misclassified, the penalty costs associated with such errors
are considerably higher. Quinlan improved classification performance through the utilization of the
C4.5 decision tree as an initial classifier in comparison to the original boosting technique [27]. Three
different cost-sensitive prediction model types were looked at in a different study by Zheng [28].
Boosted ANN methods, consisting of 10 essential back-propagation ANN blocks, each containing
11 hidden neurons, were used in all three models. The threshold shifting strategy for weight updates
produced the smallest estimated expense of misclassification (ECM) when compared to fixed weighted
update techniques the findings revealed that the threshold moving method demonstrated greater
resilience concerning cost estimation.

Although not specifically designed to handle data imbalance, ensemble learning algorithms have
demonstrated high effectiveness in managing small and imbalanced datasets [29]. A variety of tasks
have effectively used ensemble learning [30], such as concept recognition, live tumor detection [31], and
functional role prediction in bioinformatics [32]. Similarly, text classification [33], bioinformatics, and
biological networks [34] are just a few of the disciplines where feature selection, an essential preliminary
processing step in Machine Learning (ML), has been extensively used. A variety of metrics could be
correlated with software systems’ defect propensity, which is a widely acknowledged fact. As a result,
reducing uncorrelated indicators could improve classification performance. Khoshgoftaar et al. [16]
conducted a study where they performed a comparative analysis on 16 software datasets using seven
filter-based feature ranking algorithms. In their approach, they focused on the signal-to-noise ratio, a
software statistic that is rarely utilized. The ensemble learning architecture they proposed incorporated
several essential classifiers, such as Naive Bayes (NB), K-nearest neighbour, ANN, Logistic Regression
(LR), and SVM models. The evaluation experiments were assessed using the Area under Receiver
Operating Curve (ROC) measure as the performance criterion. The sampling-based online bagging
method of ensemble learning was introduced by Wang et al. [35]. The empirical study conducted by
the researchers demonstrated that based on sampling in online bagging exhibited in a well-balanced
performance in effectively handling both positive and negative samples. However, its results were
inconsistent when there were changes in class distributions over time. On the other hand, Wang and
Minku presented an online bagging method based on undersampling that can handle samples with
varying class distributions. The classification of software defects is a problem that has received numer-
ous ensemble learning-based solutions. Using the Roughly balanced bagging method, Seliya et al. [36]
introduced an early modification to the bagged ensemble learning technique. The simulation results
demonstrated that the Roughly balanced bagging method outperformed individual classifiers. The
roughly balanced bagging technique demonstrated excellent performance of classification, as assessed
by the geometric mean, primarily because of its capacity to handle data imbalance in the test datasets.
Another study by Sun et al. [37] focused on addressing data skewness in software fault classification.
They divided the non-defective parts into bins of similar size, where the bin sizes were determined
based on the number of defective modules. A multi-classification issue results from assigning a new
class label to each bin after that. The three ensemble learning algorithms of bagging, random forests,
and boosting were integrated into each of the preceding coding techniques. When evaluating the
performance indicator of Area under ROC, the one-against-one coding scheme outperformed its
competitors. Assigning samples of data to bins throughout the data balancing phase is a problem

CSSE, 2024, vol.48, no.6 1517

that is not addressed by the suggested solutions. Wang et al. extensively studied the application of
ensemble learning in software defect classification by employing multiple machine learning classifiers
[38]. The classification results of a single classifier using Naive Bayes were supplied to compare
the greater accuracy of various models. By utilizing various public-domain software fault datasets,
Wang et al. convincingly showcased the superior performance of the analyzed ensemble models
compared to their single classifier counterparts. An intriguing conclusion from the research reported in
[38,39] is that ensemble learning approaches based on RF consistently outperform other classification
methods, irrespective of the specific software fault dataset employed, and the random forests-based
ensemble model consistently demonstrated superior performance in classification accuracy. For defect
prediction, Bishnu et al. [40] proposed a more effective unsupervised learning method. Unsupervised
learning relies on the quad tree-based K-means clustering algorithm, a variation of the conventional K-
means clustering method. Quad-trees show great promise in tackling the classification issue related to
software defects because their classification performance is on par with supervised learning methods.
There is still room for improvement, though, because these tactics weren’t created expressly to
address the irregularity of software fault datasets. The aforementioned classification approaches
often produce excellent classification accuracy when the data is evenly distributed. The algorithmic
technique involves assigning weights to base classifiers to adjust them and address the imbalance ratio
in the dataset. In the domain of software engineering research, obtaining software metric data that
accurately represents faulty software in terms of both quantity and quality is challenging, leading to
the prevalence of imbalanced datasets [41]. The use of the geometric mean technique proves beneficial
for generating more reliable classification measures when dealing with imbalanced data [42]. In this
study, the effectiveness of the proposed classifications is evaluated using the G-mean measure.

3 Experimental Design and Setup

This section provides the total details regarding the entire experimental setup and design,
performed in this work.

All computational evaluations for this research were carried out on a Windows 10 PC equipped
with 32 GB of RAM and an octa-core CPU running at 3.6 GHz. The assessment process involved
the implementation of a 10-fold cross-validation technique. The effectiveness of all classifiers was
evaluated by analyzing individual datasets containing software faults. The Python programming
language was utilized to implement all the evaluated algorithms. The performance of classification
was assessed using the Area under the ROC metric. Additionally, Area under the ROC was employed
as a metric to evaluate classification systems in the context of unbalanced datasets [37]. Basic classifiers
such as Weighted-SVMs, Extreme Learning Machine, and Random Forests were used as benchmarks
for the proposed Average Probability Ensemble Learning approach. Furthermore, various feature
selection methods were evaluated to address our primary objective. Pearson’s correlation, Greedy
forward selection, and Fisher’s Criterion were among the techniques included in the selection criteria
considered in the performance evaluation. Finally, six publicly accessible datasets for software
defects were utilized to assess the classification performance of the proposed Average Probability
Ensemble model. Authors utilized Ant-1.7 in our research, including datasets Camel-1.6 from the
Java Repository, and KC3, MC1, PC2, and PC4 datasets from the NASA Repository. The attributes
of the datasets used in our analysis are described in Table 1 along with their abbreviated codes.

1518 CSSE, 2024, vol.48, no.6

Table 1: Features used in the study

Features Code Features Code

Decision count f1 Node count f26
Cyclomatic complexity f2 Response for class f27
Global data density f3 Measure of functional abstraction f28
Halstead difficulty f4 Edge count f29
Halstead content f5 Decision density f30
Maintenance severity f6 Design density f31
Coupling between objects f7 Parameter count f32
Number of unique operands f8 Number of public methods f33
Afferent couplings f9 Lines of commented lines f34
Essential density f10 Lines of code f35
Global data complexity f11 Halstead programming time f36
Efferent couplings f12 Halstead level f37
Lack of cohesion of methods f13 Design complexity f38
Condition count f14 Call pairs f39
Lines of blank lines f15 Lines of executable code f40
Average method complexity f16 Halstead volume f41
Number of children f17 Lines of code & comments f42
Essential complexity f18 Halstead error estimate f45
Measure of aggregation f19 Halstead effort f46
Percentage of comments f20 Cyclomatic density f47
Depth of inheritance tree f21 Halstead length f48
Coupling between modules f22 Inheritance coupling f49
Multiple condition count f23 Cohesion among methods f50
Number of unique operators f24 Data access metric f51
Weighted methods for class f25 Maximum cyclomatic complexity f52

4 Research Approach

This section describes the research goals, the proposed hypothesis, and the methodology
employed. The main objective of this study is to illustrate the effectiveness of feature selection in
improving defect classification performance. Additionally, the researchers aim to propose a robust
ensemble learning method that can handle duplicated features and imbalanced data. To tackle the
challenges associated with software defect categorization, the study introduces a unique and distinctive
ensemble learning approach. In addition to being sensitive to imbalanced data, the suggested method
also effectively manages redundant features that are typical in datasets for software quality. The
following assumptions are defined to achieve the aforementioned objectives: Initially, when it comes
to defect classification problems, using different feature subsets leads to very unequal performance.
This performance variance is mostly caused by the presence of redundant and useless features. The
suggested technique outperforms both single and ensemble classifiers currently in use when dealing
with datasets of software defects that have imbalances in data and feature redundancy.

CSSE, 2024, vol.48, no.6 1519

4.1 Experiment Setup

To evaluate the classification performance of suggested frameworks and verify the results of the
study, simulations were conducted. These simulations employed a balanced 10-fold cross-validation
technique, ensuring that the data was appropriately divided into training and testing sets. When dealing
with software fault datasets, which can be time-consuming and expensive to acquire, using 10-fold
cross-validation helps to mitigate biases when testing hypotheses based on the data. In contrast, the
use of balanced sampling aims to achieve an equitable distribution of fault-free and faulty classes
within each fold, ensuring that they comprise similar proportions. This method effectively preserves
the class imbalance ratio, ensuring a more accurate evaluation of the models’ performance.

To support the first hypothesis, the following steps are taken:

Step 1. Split the dataset into both testing and training halves (70% and 30%, respectively).

Step 2. Make a feature list named li that is empty.

Step 3. Based on the chosen feature selection criterion, identify the most optimal feature from the
training set and add it to the list, ranging from it to li.

Step 4. Utilize the selected training set’s feature to train the ensemble classifiers.

Step 5. Determine which parts of the collection of tests are defective using the previously learned
classifier.

Step 6. The performance result should be saved.

Step 7. Repeat Steps 2 and 3 for the other features, then provide performance data.

The stated outcomes for performance would also draw attention to any inconsistent effects that
emerged during the feature selection procedure. The article will therefore achieve its first objective.

The steps listed below are used to examine the second hypothesis:

Step 1. Split the dataset into training and testing sets, allocating 70% of the data for training and
30% for testing purposes.

Step 2. To train the proposed model, use the training set.

Step 3. Use the testing set to assess the trained model.

Step 4. Save the classification performance as F1.

Step 5. Using the Greedy forward selection approach select the best features from the training set.

Step 6. Add the different features you’ve chosen to the list of li.

Step 7. The list “li” can be utilized to retrain the Average probability ensemble model. By repeating
Steps 5–7 using the testing set, the resulting classification performance is saved as F2.

4.2 Selection of Feature Subsets

Software metrics gathered from source code make up features in software failure datasets. Certain
aspects, though, should be deleted since they are superfluous or worthless. Pretreatment of this kind
is likely to improve classification performance greatly. Forward selection is a frequent strategy for
selecting good characteristics. Let’s examine forward selection with Cyclomatic complexity, Weighted
methods per class, and Line of code software parameters as our feature set. The forward selection
technique chooses the first feature from an empty feature set. In the first iteration, the feature subgroup
comprises simply the line of code parameters. Then, defect categorization is conducted, and the
performance of the model is evaluated. Following that, a second feature is picked, and the subset

1520 CSSE, 2024, vol.48, no.6

now includes both Line of code and Cyclomatic complexity parameters. This process continues with
additional features being added to the subset, and each time the model’s performance is assessed.
The classification performance is also assessed using this enhanced subset. Once each trait has been
evaluated, the process is gradually repeated. The greatest accuracy feature subset is kept, and that is the
last step. Effective feature selection is highly desired. An efficient yet straightforward feature selection
method is Greedy forward selection. The Greedy forward selection (GFS) only selects features that
favorably influence better classification performance, in contrast to earlier time-consuming techniques
like forward and backward selection [22]. The feature with the best classification performance, for
instance, is given priority by Greedy forward selection. The most desirable feature is then added to the
sustained feature subset under the features that were previously chosen. Instead, a list of traits that
are rated according to how closely they relate to the module class is produced using the correlation-
based selection technique. The first characteristic picked out is the one that is most biased against
different social classes. Specifically, Fisher’s criterion and Pearson’s correlation are utilized to compute
the correlation measure.

4.3 Ensemble Learning

This study constructs a group of classifiers aimed at facilitating the challenging task of classifying
resilient software defects, with the average probability ensemble (APE) approach serving as the foun-
dational model. Through ensemble learning [43], a series of base classifiers are amalgamated to create
robust learning models, addressing prevalent issues in software defect datasets such as data imbalances
and feature redundancy. The amalgamation of classification accuracy from diverse classifiers ensures
resilience in the model. Unlike voting techniques, classifiers yielding probability outcomes utilize
Area under ROC values to gauge the certainty associated with the projected class, thereby assessing
the model’s probabilistic predictions’ performance. Furthermore, the employment of voting systems
necessitates a stringent cutoff point for classification decisions, which may lead to erroneous outcomes.
Hence, the mean of the probability ensemble is chosen for its adherence to the Area under ROC
parameters and its avoidance of threshold selection. Each classifier within the recommended APE
model estimates the probability of software elements belonging to the problematic class, contributing
to the final probability estimate after averaging the output probabilities. The proposed model (Fig. 1)
integrates eight base classifiers, including Gradient Boosting, Extreme Learning Machine, Stochastic
Gradient Descent, Random Forests, Logistic Regression, Weighted-SVMs, and Bernoulli Naive Bayes,
selected based on their broad acceptance within the artificial intelligence domain and among software
developers. Various categorization techniques, such as statistical, neural, clustering, decision tree
models, and SVM, are employed. Empirical results from the study substantiate the effectiveness of
the seven fundamental classifiers selected for the ensemble learning method.

4.3.1 Random Forests

Random forests are made up of a collection of unpruned regression trees. These trees are built
using bootstrap specimens of the initial training data and a random choice of features [20]. The random
forest’s trees are fed one data sample from a classification problem at a time. The latter then chooses
the class that obtained the most votes from the individual trees as the chosen class. Breiman [20] has
demonstrated that the durability of every single tree itself as well as the relationship between two or
more trees in the forest have an impact on the number of errors in random forests. On the other hand,
it is challenging to understand the findings of random forests. In these circumstances, each tree only
manages a small subset of randomly chosen features.

CSSE, 2024, vol.48, no.6 1521

Figure 1: The suggested structure for the ensemble of average probabilities

4.3.2 Gradient Boosting and Stochastic Gradient Descent

Friedman introduced gradient boosting as a strategy for dealing with regression difficulties by
building a prediction system comprised of a collection of weak predictors [44]. Typically, decision trees
are used as the weak predictors within this gradient-boosting framework. Concerning a set of decision
trees, {D1, D2,..., Di,..., Dn), Following are the steps used by the gradient boosting methodology to
create a weighted average of each tree’s output choices:

f (x) = w0 + w1t1 (x) + w2t2 (x) + . . . + wntn (x)

where the ith individual tree’s output choice is ti(x). To determine the optimal weights, wi, for each
judgment, a differentiable loss function is minimized within the gradient boosting process [44]. More-
over, the gradient boosting technique can be adapted to handle classification problems by transforming
them into regressions through the use of suitable loss functions. This enables gradient boosting to
effectively address both regression and classification tasks. x represents the ith individual tree’s output
selection. Second-order probabilistic gradients and averaged stochastic gradient approaches are used
in massive data sets classification as well as regression problems are efficiently solved [45]. Stochastic
gradient descent is a method for minimizing cost functions.

wk+1 = wk − μ∇wP (xk, wk)

where μ denotes the Stochastic Gradient Descent SGD algorithm’s learning rate

P (xk, wk)–The loss functions approximate instantaneous value

P (x, w)–With the instant k input vector xk.

The features or model parameters, wk, are gradually modified using each input vector.

1522 CSSE, 2024, vol.48, no.6

4.3.3 Logistic Regression

Logistic regression provides a pretty powerful bias using logistic sigmoid function [22]:

g (z) = 1
1 + e−z

Logistic regression has been used effectively for categorization challenges. Logistic regression
generates a learning model that learns p(Y|x)through the implementation of using the Bayes rule of
given two classes and N n-dimensional characteristics {x1, x2, . . . , xi, . . . , xn}, labeled Y = 0 and Y = 1,
respectively.

4.3.4 Bernoulli Naive Bayes and Multinomial Naive Bayes

Reduced generative models are produced using the fundamental Naive Bayes classifier under the
condition of statistical dependence among the model’s inputs and outputs. Based on this assumption

p (y|x) = p (y)
∏N

i=1 p (xi|Y)
∑

y

∏N

i=1 p (xi|Y)

Using maximum likelihood [22], it is possible to estimate the quantities defined in the aforemen-
tioned equation. Multinomial distributions are present in data samples used in multinomial Naive
Bayes classifiers. This methodology is regularly applied to text categorization issues. It is preferred
to use Bernoulli Naive Bayes classifiers whenever the data being analyzed has a multidimensional
Bernoulli distribution. The feature samples in this example are expected to be binary-valued variables.
The Bernoulli Naive Bayes classifier has the following definition of the decision rule for a sample, xi:

p (xi|Y) = p (i|Y) xi ∗ (1 − p (i|Y)) (1 − xi)

Bernoulli-based classifiers, like multinomial Naive Bayes algorithm, reward the absence of a
feature “i” that serves as a signal for class Y.

4.3.5 Regular and Weighted Support Vector Machines

Support Vector Machines, which Foster et al. devised based on statistical learning theory [46],
have developed successful uses in a variety of disciplines, including text mining, bioinformatics,
picture recognition, and system identification [47,48]. SVMs are a type of discriminative classifier that
identifies an optimal hyper plane for separating data with two separate categories. Samples of data
on the hyperplanes serve as support vector representations. By resolving a Lagrangian optimization
issue, SVMs create ideal hyperplanes. The optimization process in SVMs frequently involves utilizing
the dual space and incorporating kernels. However, concerns about SVMs include their application to
multiple class problems and regression tasks. Furthermore, when compared to other models such as
neural networks, determining the optimal parameters for SVMs can be time-consuming. Numerous
methods are provided, including the use of kernels, grid search optimization, and derivative-free cost
functions, to overcome these issues. Complex kernels are used to enhance SVM discrimination. Finally,
other subjects have garnered significant interest in the literature, such as the development of novel
kernels customized for specific applications, enhancing the generalization capability of models, and
reducing training time for large datasets [22,49].

min E (w, b, ξ) = 1
2

||w||2 + C.Φ (ξ)

CSSE, 2024, vol.48, no.6 1523

where z(i) = ϕ(xi) indicates a non-linear mapping that is being applied to the ith feature vector x(i).
ξ(i) known as slack variables enable the training samples are deliberately placed within the margin.
They are expressed as the w and b of the SVM hyperplane. The term (.) in the equation above penalizes
the solutions that are affected by numerous training errors. Weighted SVMS (W-SVMs), which give
samples used for training from the minority class greater weight, is built based on the following
equation. This work investigates classification methods based on W-SVMs for benchmarking due to
the unbalanced composition of the software defect datasets.

4.3.6 Extreme Learning Machine

The concept of Extreme Learning Machines was initially proposed in 2006 as a single hidden
layer in a feed-forward network [50,51]. The regularization word from [52] was not utilized in this
sentence. The idea to apply separate random nonlinear feature transformations F is the extreme
learning machine’s (ELM) most significant contribution. An M-dimensional vector with one of the
following definitions for its jth component is created from an input vector, x:

(�A (x))j = σ
(
ωT

j x + βj

)

(�M (x))j = σ
(∣∣∣∣ωj − x

∣∣∣∣
2
/βj

)

In ELM, where σ(.) known as nonlinear function, and ωj denotes random weights drawn from
uniform distribution, and j is a bias factor that was randomly picked, and Random additive nodes are
a common term used to describe transformations defined by, whereas multiplicative nodes are used to
describe transformations defined by βj.

The ELM bears similarities to a neural network comprising neurons, as the biases and weights of
the first layer are initialized dynamically and fixed, while those of the subsequent layer are determined
through the minimization of the least-squares error. There are two notable properties shared with feed
forward neural networks [53]: Both universal approximation and interpolation abilities are present.
The paper provides an extensive survey of various machine learning techniques designed to improve
the accuracy of software reliability prediction, evaluating different methods and their effectiveness
in enhancing predictive performance. Theoretical limits on the number of hidden neurons required
in feedforward neural networks with bounded nonlinear activation functions are examined in [54],
offering important insights into network architecture and design. A detailed framework for analyzing
the mean-field limit of multilayer neural networks is presented in [55], which aids in understanding
their behavior as they scale. The effects of hidden layers on the efficiency of neural networks are
explored [56], providing practical implications for designing and optimizing these networks. Two-
hidden-layer feed-forward networks are shown to be universal approximates through a constructive
approach in [57], highlighting their capability to approximate any continuous function. The degree of
multivariate approximation achievable by the superposition of sigmoidal functions is investigated in
[58], offering insights into the approximation capabilities of such functions. New activation functions
for single-layer feedforward neural networks are introduced [59], aiming to enhance performance
and versatility in various applications. The use of feedforward neural networks and compositional
functions in the context of dynamical systems is analyzed in [60], offering a detailed study of their
applications for control and optimization. Finally, an integrated computational intelligence paradigm
combining neural networks, genetic algorithms, and sequential quadratic programming for modeling
nonlinear electric circuits is presented in [61], showcasing an advanced approach to circuit modeling.
The effectiveness of ELM as an interpolator is thoroughly proven in [62], The paper discusses
an enhanced random search-based incremental extreme learning machine [63], which improves the

1524 CSSE, 2024, vol.48, no.6

performance of extreme learning machines through advanced search techniques. The study presents
a fully complex extreme learning machine [64], contributing to the development of more robust
models for handling complex data. An online sequential fuzzy extreme learning machine for function
approximation and classification problems is introduced [65], addressing real-time learning challenges
with fuzzy logic enhancements. The paper details a fast and accurate online sequential learning
algorithm for feedforward networks [66], enhancing learning efficiency and accuracy in sequential
data processing. The concept of an ensemble of online sequential extreme learning machines is
explored [67], demonstrating the benefits of combining multiple models for improved performance.
Adaptive ensemble models of extreme learning machines for time series prediction are presented [68],
showing advancements in predicting temporal data through adaptive methods. An improved software
reliability prediction model utilizing feature selection and extreme learning machines is discussed [69],
focusing on enhancing prediction accuracy in software engineering. A regularized extreme learning
machine is introduced [70], incorporating regularization techniques to prevent overfitting and improve
generalization. It is possible to reliably acquire any N randomly distinct samples using a maximum of
N hidden nodes if the activation properties of the layer that is hidden are indefinitely distinguishable in
every interval. Both universal approximation and interpolation abilities are present. The effectiveness
of ELM as an interpolator is thoroughly proven and ensemble ELM [68–70] has both been thoroughly
investigated in terms of training efficacy and the previously indicated theoretical assurance. Reference
[71] showed the comparison of SVM, ELM, and Least Squares Support Vector Machine (LSSVM),
as well as a thorough survey for interested readers. The structure-based risk-minimizing principle and
weighted least squares are the foundations of the Regularized Extreme Learning Machine (RELM).
Regarding generalization performance, the RELM algorithm surpassed the original ELM method.

5 Analysis and Discussion

This part includes the experiment analysis and commentary.

5.1 Methods for Evaluating the Performance of Feature Selection

For benchmarking purposes, the study also includes the results of two fundamental classifiers:
Random forests and Weighted-SVMs, as mentioned earlier. In the case of Weighted-SVMs, the
classifier algorithm allows weights that are inversely proportionate to the frequency of every category
in the set of data [57], and also higher no of weight is assigned to the most minority classes, which can
potentially improve the relevant framework, particularly during the presence of Imbalanced datasets.
Indeed, across all the datasets analyzed, Greedy forward selection not only outperforms for these
methods, i.e., Fisher’s and Pearson’s correlation techniques but also achieves the maximum Area
under ROC curve values. Additionally, the Greedy forward selection method mostly requires the
less features or attributes to achieve the best accuracy in classification. The fact that using every
feature that was accessible reduced classification performance is another noteworthy finding from the
results. Weighted-SVMs achieved Area under ROC values of 0.78 and 0.04, respectively, when using
all feature elements on PC2 and ant-1.7 datasets. However, by employing a smaller but more relevant
feature set, the Weighted-SVMs model achieved improved Area under ROC values of 0.85 and 0.90
for the respective datasets. On the contrary, Pearson’s correlation technique tends to select numerous
undesirable features, negatively impacting the classification performance. After adding the f21, f24,
f36, and f39 features to the feature set, the obtained Area under the ROC curve dropped to less than 0.1.
However, Pearson’s correlation strategy produced similar results on the other datasets Fisher’s criterion
method was also able to select the best features, as shown by the higher Area under ROC Curve values.
However, the Greedy forward selection technique outperformed this performance. An examination of

CSSE, 2024, vol.48, no.6 1525

the feature list generated by the Greedy forward selection method reveals that f32, f2, f34, f35, f14, and
f4 were the most important features that contributed to the improved classification performance. In
conclusion, the summary of performance data confirms the supposition of hypothesis 1. As expected,
intelligent feature selection, specifically employing the Greedy forward selection method, resulted in
performance of enhanced classification while also reducing the required total number of features for
achieving that performance. Therefore, the first hypothesis is accepted.

5.2 Evaluation of the Proposed Average Probability Ensemble Model’s Performance

The suggested Average probability ensemble learning approach, as previously stated, incorporates
seven fundamental classifiers, and their probabilities that are output by the model are averaged,
and also to determine the best classification choice. Using the above datasets, the performance of
the Weighted-SVMs and Random forests classifiers is compared to that of the Average probability
ensemble model, with emphasis on preprocessing and feature determination. Table 1 compares the
Area under ROC values of the four classifiers. According to our second hypothesis, the Average
probability ensemble model has the greatest Area under the ROC curve of 0.83, followed by Random
forests and Weighted-SVMs, which have an Area under ROC of 0.78 and 0.80, respectively. Sur-
prisingly, the proposed Average probability ensemble model outperformed Weighted-SVMs in terms
of performance. The Area under ROC curve values of the four classifiers are shown in Table 1 for
comparison. According to the study’s second hypothesis, the Average probability ensemble model had
the greatest Area under ROC curve score of 0.83, followed by Weighted-SVMs and Random forests,
which had Area under ROC curve ratings of 0.78 and 0.80, respectively. Surprisingly, the proposed
Average probability ensemble model beat Weighted-SVMs, which are intended for unbalanced data,
implying that such ensembles are well-suited for classifying software flaws. The suggested Average
probability ensemble model scored a remarkable Area under the ROC curve of 0.92 for the PC2
dataset, efficiently differentiating across classes. In the identical circumstance, Weighted-SVMs and
Random forests achieved an Area under the ROC curve of just 0.54 and 0.74, respectively.

Another key worry is raised by the performance of the suggested Average probability ensemble
model, which utilizes Weighted-SVMs as some of its fundamental classifiers. While the Average prob-
ability ensemble model scored an amazing Area under ROC of 0.92 for the PC2 dataset, the Weighted-
SVMs model only achieved a mediocre Area under ROC curve of 0.54. Individual performance of one
of the Average probability ensemble model’s fundamental classifiers does not affect the model’s overall
performance. Finally, the performance outcomes shown in Table 2 corroborate the notion expressed
in the second hypothesis of this work. In terms of classification accuracy, it has been claimed that
ensemble learning outperforms individual classifiers, particularly when the selection of individual
classifiers is based on their established performance. Furthermore, low-performing base classifiers
in ensemble learning have no negative impact on the method’s overall performance. As a result, the
second hypothesis is considered valid and acceptable. Fig. 2 shows the pictorial representation of the
result comparison between W-SVMs, RF, ELM, and APE models.

Table 2: Classification results of W-SVMs, RF, ELM and APE models

Datasets W-SVMs RF ELM APE

Ant-1.7 0.78 0.80 0.81 0.83
Camel-1.6 0.60 0.68 0.69 0.73
PC4 0.66 0.87 0.89 0.90

(Continued)

1526 CSSE, 2024, vol.48, no.6

Table 2 (continued)
Datasets W-SVMs RF ELM APE

PC2 0.54 0.74 0.75 0.92
MC1 0.81 0.84 0.85 0.88
KC3 0.53 0.67 0.68 0.76

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

W-SVMs

RF

ELM

APE

Figure 2: Result comparison between W-SVMs, RF, ELM and APE models

5.3 The Effects of the Number and Kind of Basic Classifiers on APE Classification Performance

The performance of the Average probability ensemble model remains consistent when applied to
the Camel and KC3 datasets, even with the inclusion of more than seven classifiers. The employment
of nine classifiers even results in a slight performance degradation. Another similar pattern can be
seen in the remaining datasets. Seven basis classifiers make up the final model, which is based on an
SVM model that has been improved. The Average probability ensemble model performs poorly for
each dataset after seven classifiers. Whenever nine classifiers are used, even a small performance hit
occurs. Similar trends can be seen in the remaining datasets. The final model is built on an optimized
SVM model and consists of seven base classifiers. The heterogeneous Average probability ensemble
model model’s ‘‘optimal’’ base classifier count is calculated using a similar methodology. It is clear
from comparing the PC2 and PC4 datasets that, after 10 classifiers, the PC4 dataset’s classification
performance declines rather than improves. A clear indication of overfitting is evident in the decrease
in performance. Nonetheless, for the PC2 dataset, the classification system shows limited improvement
beyond a certain point that incorporation of 10 classifiers. The usage of eight fundamental classifiers
is advised based on this performance trend. It’s worth noting that the extra datasets behave similarly.

5.4 The Influence of Feature Selection on APE Classification Performance

It is worthwhile to think about including a feature being chosen module in the suggested Average
probability ensemble model due to the positive classification results linked to feature selection. The
modified Average probability ensemble model, which has been updated, only contains fault signs that
are expected to enhance the performance of classification. The Forward Greedy selection approach is
also utilized for the selection of features, which performs better than other feature selection techniques.
Table 3 summarizes the classification performance of the Average probability ensemble model and it
upgraded the different versions, emphasizing the performance improvement produced by the Forward

CSSE, 2024, vol.48, no.6 1527

Greedy selection technique. After involving the all-defect datasets, the augmented model outperformed
the basic model. This categorization increase is attributable to the Forward Greedy selection method,
which limits its analysis to useful and pertinent software metrics. Software metrics that are redundant
and useless are so removed. Table 3 shows an unusual depiction of the software parameters connected
with each dataset under consideration. There is a higher improvement in classification performance
when a dataset contains more redundant and/or irrelevant software metrics. Fig. 3 shows the pictorial
representation of the result comparison between APE and Enhanced APE models.

Table 3: Classification results of APE and enhanced APE models

Datasets APE Enhanced APE

Ant-1.7 0.83 0.85
Camel-1.6 0.73 0.77
PC4 0.90 0.92
PC2 0.92 0.94
MC1 0.88 0.91
KC3 0.76 0.80

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

APE

Enhanced APE

Figure 3: Result comparison between APE and Enhanced APE models

The effectiveness of current algorithms like Weighted-SVMs and Random Forests is analyzed
below about the impact of feature selection. The performance of the suggested upgraded algorithm,
along with that of the improved Random Forests, Weighted-SVM, and ELM classifiers, is summarized
in Table 4, while Fig. 4 shows the pictorial representation of the result comparison between APE, W-
SVMs, RF, and ELM models. Feature selection helps both proposed and existing classifiers perform
better in terms of classification according to the first hypothesis. The enhanced Weighted-SVM
and Random forests classifiers did indeed behave as predicted. Additionally, the improved Average
probability ensemble, a variant of the suggested model, outperforms enhanced iterations of the
other two classifiers. In classification problems involving unbalanced datasets, the geometric mean
is a frequently used performance measure [46]. This metric demonstrates the classifier’s ability to
effectively classify both the minority and majority classes. It combines the parameters of specificity
and sensitivity, which encompass the following aspects:

Specificity = 1 − FP
TN + FN

1528 CSSE, 2024, vol.48, no.6

Sensitivity = TP
TP + FN

In this equation, TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives. The G-mean is a measure that assesses the accuracy of
both positive and negative samples by considering sensitivity and specificity [46]:

G-mean = √
Specificity ∗ Sensitivity

Table 5 provides a comprehensive representation of the classification outcomes for the suggested
ensemble learning technique, employing a multi variant approach. It also includes a comparison to
the original and simplified versions of existing algorithms based on the G-mean measure. As shown in
Table 4, the G-mean effectively analyses the impact of data imbalance on classification effectiveness.
A low G-mean score can be indicative of the classifier’s poor performance in handling minority-
related information. This behavior was observed in the Weighted-SVMs classifier, specifically with
the PC2, KC3, and ant-1.7 datasets. Similarly, the random forest-based classifier showed similar
behavior, particularly with the PC2 dataset. The enhanced model outperformed previous classifiers
in performance and achieved the highest classification accuracy with a perfect G-mean measure of
one. This represents the highest reported accuracy in the literature for software defect datasets using
the G-mean metric.

Table 4: Classification results comparison of enhanced APE, W-SVMs, RF, ELM (AUC Measure)

Datasets Enhanced APE Enhanced W-SVMs Enhanced RF Enhanced ELM

Ant-1.7 0.85 0.80 0.81 0.82
Camel-1.6 0.77 0.63 0.70 0.72
PC4 0.92 0.69 0.90 0.91
PC2 0.94 0.58 0.76 0.81
MC1 0.91 0.83 0.85 0.87
KC3 0.80 0.69 0.71 0.73

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Enhanced APE

Enhanced W-SVMs

Enhanced RF

Enhanced ELM

Figure 4: Result comparison between APE, W-SVMs, RF, and ELM models

CSSE, 2024, vol.48, no.6 1529

Table 5: Classification results comparison of enhanced APE with other models (G-mean Measure)

Datasets W-SVMs RF ELM APE Enhanced
W-SVMs

Enhanced
RF

Enhanced
ELM

Enhanced
APE

Ant-1.7 0 0.63 0.76 0.78 0.79 0.80 0.81 0.83
Camel-1.6 0.33 0.36 0.45 0.65 0.69 0.71 0.73 0.75
PC4 0.07 0.52 0.61 0.78 0.81 0.84 0.87 0.89
PC2 0 0 0 0 0.81 0.83 0.85 0.90
MC1 0.324 0.41 0.53 0.68 0.79 0.82 0.85 0.88
KC3 0 0.25 0.46 0.71 0.73 0.76 0.76 0.78

5.5 GFS-Based Selected Features

The results in Table 6 justify the use of the GFS technique to assess the reliability of the chosen
features. Table 7 summarizes the preserved characteristics derived by the Greedy forward selection
approach using the Area under ROC and G-mean measurements, respectively. Tables 7 and 8 reveal
numerous details about the performance of the chosen features. The utility of G-mean measurements in
selecting only a small portion of the original metrics becomes evident when evaluating the total number
of parameters retained, as compared to the Area under ROC curve measurements. Furthermore, each
technique selects a different number of measures, with the improved Average probability ensemble
algorithm keeping a somewhat higher number of metrics than the others. As far as the authors are
aware, there appears to be little literature investigating the properties of preserved software metrics.
Tables 6 and 7 not only establish the correlation between the number of defect instances and software
parameters, also they narrow down this type of relationship to a small subset of software parameters.
The G-mean measure demonstrates the limited link. The method provided in this review study also
makes a substantial contribution by preventing the defect classifier from eliminating observations from
the failure class. Table 6 clearly demonstrates this tendency by giving he classifier that tends to neglect
minority class data a G-mean score of zero.

Table 6: Area Under the Curve (AUC)-based features

Dataset Enhanced
W-SVMs

Enhanced RF Enhanced ELM Enhanced APE

Ant-1.7 f49 f16 f13 f16 f25 f28 f49 f17 f36 f22
f21 f35 f16

f25 f28 f49 f17 f36
f22 f21 f35 f16 F49
f16 f13 f16 f20

f28 f17 f48 f13
f50 f19 f51 f29
f36 f12 f22 f49
f35 f25 f34 f21
f9 f16 f20

Camel-1.6 f13 f35 f51 f22 f17
f21 f16 f28 f12 f16

F9 f16 f49 f21 f29 f13
f34 f12 f19 f28 f22

f9 f16 f49 f21 f13
f35 f51 f22 f29 f13
f34 f12

f9 f13 f51 f21
f29 f34 f17 f22
f17 f24

(Continued)

1530 CSSE, 2024, vol.48, no.6

Table 6 (continued)
Dataset Enhanced

W-SVMs
Enhanced RF Enhanced ELM Enhanced APE

PC4 f43 f2 f15 f6 f31 f14
f10 f26 f2 f46 f38
f18 f31 f36

f43 f14 f2 f15 f36 f20
f39 f33 f38 f35 f42 f24

f36 f20 f39 f33 f14
f10 f26 f2 f46 f38
f18 f31 f36

F43 f15 f24 f31
f18 f40 f33 f5
f35 f44 f41 f36
f39 f26 f14 f16

PC2 f37 f24 f44 f41 f24
f8 f1 f23 f26 f20

f38 f20 f8 f26 f45 f5 f2
f36 f40 f1 f37 f33

f24 f8 f1 f23 f26 f5
f2 f36 f40 f1 f37 f33
f20

f45 f37 f24 f20
f43 f10 f36 f 39

MC1 f36 f20 f47 f4 f26
f40 f36 f43 f30 f27

f36 f20 f15 f46 f30 f1
f18 f8 f27 f33 f24 f40
f31 f41 f14 f6 f2 f36

f30 f1 f18 f8 f27 f33
f24 f40 f31 f40 f36
f43 f30

f20 f2 f31 f14
f39 f46 f43 f40
f1 f18 f44 f11 f3
f38 f33 f8 f2

KC3 f2 f43 f18 f33 f6 f11
f32 f36

f43 f24 f44 f10 f23 f36 f23 f36 f11 f32 f36
f2 f43 f18

f2 f43 f18 f33
f23 f36 f39 f42

Table 7: G-mean-based features

Dataset Enhanced W-SVMs Enhanced RF Enhanced ELM Enhanced APE

Ant-1.7 F35 f51 f19 f16 F35 f16 F35 f51 f19 f16
F35 f16

F28 f19 f51 f29
f13 f48 f21 f17
f16 f23

Camel-1.6 F17 f9 f50 f29 f16 f19
f13 f49 f22 f48 f51

F16 f17 f21 f48 f12
f22

f19 f13 f49 f22 f48
f17 f21 f48 f12 f22

F29 f34 f21 f17
f48 f28 f25 f19
f9 f13 f12 f50
f16 f36

PC4 F43 f2 f31 f6 f10 f46
f44 f36

F43 f15 f31 f24 f36 f42 f20 f40 f33 f31
f6 f10 f46

F43 f2 f15 f31
f10 f42 f20 f40
f33 f36

PC2 F35 f18 f36 F20 f38 f36 f37 f8 f41 f1 f38 f36 F45 f37 f8 f41 f1
f36

MC1 F15 f43 f31 f36 F20 f36 f26 f24 f23
f47 f2 f14 f42 f33 f1
f6 f10 f36

f31 f14 f43 f6 f39
f47 f2 f14 f42 f33

F36 f46 f26 f41
f31 f14 f43 f6
f39 f2 f15 f36

KC3 F15 f18 f43 f31 f46
f31 f10 f3 f44 f38 f6
f2 f20 f2 f35 f36

F44 f43 f41 f36 f31 f10 f3 f44 f38 f6
f5 f36

F8 f43 f20 f5 f36

CSSE, 2024, vol.48, no.6 1531

Table 8: Result comparison table

Authors Dataset Method Accuracy

Pachariya et al. [72] Military System (DS-1) Artificial Neural Network 80.79593
Turbo Charge (DS-2) Artificial Neural Network 96.769
Distributed System (DS-3) Artificial Neural Network 92.96672
Real Time Command & Control
System (DS-4)

Artificial Neural Network 89.6785

William et al. [73] Marian Jureczko (MJ) Linear Regression 75.15
Decision Tree 75.49
Naive Bayes 74.45
Random forest 80.43
Gradient Boosting Machine 77.92
K-Nearest Neighbour 84.84

Our proposed model Ant-1.7 Ensemble learning 0.83
Camel-1.6 Ensemble learning 0.75
PC4 Ensemble learning 0.89
PC2 Ensemble learning 0.9
MC1 Ensemble learning 0.88
KC3 Ensemble learning 0.78

5.6 Result Comparison

In this section, authors are attempting to compare results with existing work. After reviewing
numerous papers, authors have found that there is very little research done in this area, and only a
limited number of ML techniques have been utilized. Currently, there are only 2 to 3 papers available
wherein researchers have attempted to ascertain accuracy results in this area using methods similar to
ours but on different datasets. In Table 8, authors have included their results alongside ours, with the
intention that other researchers may further extend this work.

5.7 Threats to Validity

Many risks could affect the study’s findings. The predictors’ chosen indicators affect an internal
threat. Academic sources describe many measurements. Although authors used the metrics offered
by the datasets authors chose, additional measures may provide a more precise indication of faults.
The conclusions reported in this review article are based on the systems chosen. It’s possible that
some industrial fields do not use these systems. Furthermore, it was asserted that there is uncertainty
regarding the quality of the NASA and Java datasets [41]. In terms of the quantity and size of classes,
these frameworks may not be great examples. Although there is a possibility of an external threat that
could challenge the accuracy of the frameworks and consequently affect the reliability of the outcomes,
this methodology is extensively employed by researchers in the field of software engineering. An
additional vulnerability arising from the data analysis process is connected to our utilization of custom
code, which might be susceptible to implementation issues that could compromise its effectiveness. To

1532 CSSE, 2024, vol.48, no.6

reduce the possibility of coding errors, the authors used benchmark datasets from the Scikit-learn
hosting site, a Python machine learning software, to validate the key code blocks.

6 Conclusion

In this review study, authors investigated different methods for selecting features in software
defect prediction. The authors found that using a limited number of top-quality features significantly
enhances the area under the ROC curve compared to alternative approaches. Additionally, the authors
demonstrated ensemble learning’s effectiveness when applied to duplicated, unbalanced datasets.
The suggestion is an ensemble learning classifier with two variables. Based on experimental results
from six datasets, greedy forward selection demonstrated significantly better performance compared
to correlation-based forward selection. Additionally, authors showed that APE outperforms more
conventional methods like Weighted-SVMs, ELM, and RF. APE is composed of eight well-constructed
learners. Moreover, when the Average probability ensemble algorithm was combined with the Greedy
forward selection technique, the resulting model achieved a remarkably high area under ROC values
for all datasets examined, with PC2, MC1, and PC4 datasets approaching a value of 1.0. In future
research, authors plan to delve into alternative feature selection strategies to expand our understanding
of their efficacy in software defect prediction. Specifically, the authors aim to scrutinize the redundancy
or ineffectiveness of numerous features prevalent in publicly available software defect datasets, poten-
tially uncovering insights into the essential characteristics for accurate prediction. Furthermore, the
authors intend to juxtapose our approach with small-scale Linear Discriminant Analysis and Principal
Component Analysis to assess the effectiveness of different feature reduction techniques. Additionally,
the authors aim to explore the integration of additional ensemble learners to further enhance predictive
performance and provide a comprehensive comparison of various ensemble methods in this context.

Acknowledgement: The authors acknowledge the support of their respective institutions.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Suneel Kumar Rath, Madhusmita Sahu, Shom Prasad Das, Junali Jasmine Jena, Chitralekha
Jena, Baseem Khan, Ahmed Ali, Pitshou Bokoro; data collection: Suneel Kumar Rath, Madhusmita
Sahu, Shom Prasad Das, Junali Jasmine Jena, Chitralekha Jena, Baseem Khan, Ahmed Ali, Pitshou
Bokoro; analysis and interpretation of results: Suneel Kumar Rath, Madhusmita Sahu, Shom Prasad
Das, Junali Jasmine Jena, Chitralekha Jena, Baseem Khan, Ahmed Ali, Pitshou Bokoro; draft
manuscript preparation: Suneel Kumar Rath, Madhusmita Sahu, Shom Prasad Das, Junali Jasmine
Jena, Chitralekha Jena, Baseem Khan, Ahmed Ali, Pitshou Bokoro. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Ali and C. Gravino, “A systematic literature review of software effort prediction using machine learning

methods,” J. Softw.: Evol. Process, vol. 31, no. 10, 2019, Art. no. e2211.

CSSE, 2024, vol.48, no.6 1533

[2] M. Jorgensen, “Experience with the accuracy of software maintenance task effort prediction models,” IEEE
Trans. Softw. Eng., vol. 21, no. 7, pp. 674–681, 1995. doi: 10.1109/32.403791.

[3] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintainability prediction and
metrics,” in Proc. 2009 3rd Int. Symp. Empir. Softw. Eng. Meas., 2009, pp. 367–377.

[4] Y. Zhou and H. Leung, “Predicting object-oriented software maintainability using multivariate adaptive
regression splines,” J. Syst. Softw., vol. 80, no. 8, pp. 1349–1361, 2007. doi: 10.1016/j.jss.2006.10.049.

[5] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect prediction,”
Inf. Softw. Tech., vol. 54, no. 3, pp. 248–256, 2012. doi: 10.1016/j.infsof.2011.09.007.

[6] A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical considerations in deploying statistical methods
for defect prediction: A case study within the Turkish telecommunications industry,” Inf. Softw. Tech., vol.
52, no. 11, pp. 1242–1257, 2010. doi: 10.1016/j.infsof.2010.06.006.

[7] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, “An application of fuzzy clustering to software
quality prediction,” in 3rd IEEE Symp. Appl.-Specific Syst. Softw. Eng. Technol., 2000, pp. 85–90.

[8] N. E. Fenton and M. Neil, “A critique of software defect prediction models,” IEEE Trans. Softw. Eng., vol.
25, no. 5, pp. 675–689, 1999. doi: 10.1109/32.815326.

[9] A. Koru and H. Liu, “Building effective defect-prediction models in practice,” IEEE Softw., vol. 22, no. 6,
pp. 23–29, 2005. doi: 10.1109/MS.2005.149.

[10] W. Wu, S. Wang, B. Liu, Y. Shao, and W. Xie, “A novel software defect prediction approach via weighted
classification based on association rule mining,” Eng. Appl. Artif. Intell., vol. 129, no. 2, 2024, Art. no.
107622. doi: 10.1016/j.engappai.2023.107622.

[11] Y. Zhao, K. Damevski, and H. Chen, “A systematic survey of just-in-time software defect prediction,”
ACM Comput. Surv., vol. 55, no. 10, pp. 1–35, 2023. doi: 10.1145/3567550.

[12] F. Han, Z. Hu, N. Chen, Y. Wang, J. Jiang and Y. Zheng, “Assimilating low-cost high-frequency sensor
data in watershed water quality modeling: A Bayesian approach,” Water Resour. Res., vol. 59, no. 4, 2023.
doi: 10.1029/2022WR033673.

[13] M. J. Hernández-Molinos, A. J. Sánchez-García, R. E. Barrientos-Martínez, J. C. Pérez-Arriaga, and J. O.
Ocharán-Hernández, “Software defect prediction with Bayesian approaches,” Mathematics, vol. 11, no. 11,
2023, Art. no. 2524. doi: 10.3390/math11112524.

[14] M. M. Elsagheer and S. M. Ramzy, “A hybrid model for automatic modulation classification based on
residual neural networks and long short term memory,” Alex. Eng. J., vol. 67, no. 4, pp. 117–128, 2023. doi:
10.1016/j.aej.2022.08.019.

[15] C. Andersson, “A replicated empirical study of a selection method for software reliability growth models,”
Empir. Softw. Eng., vol. 12, no. 2, pp. 161–182, 2007. doi: 10.1007/s10664-006-9018-0.

[16] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, “An empirical study of feature ranking techniques
for software quality prediction,” Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 2, pp. 161–183, 2012. doi:
10.1142/S0218194012400013.

[17] H. Moosaei, M. A. Ganaie, M. Hladík, and M. Tanveer, “Inverse free reduced universum twin support
vector machine for imbalanced data classification,” Neural Netw., vol. 157, no. 6, pp. 125–137, 2023. doi:
10.1016/j.neunet.2022.10.003.

[18] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,” Intell. Data Anal., vol.
6, no. 5, pp. 429–449, 2002. doi: 10.3233/IDA-2002-6504.

[19] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting for classification of imbalanced
data,” Pattern Recognit., vol. 40, no. 12, pp. 3358–3378, 2007. doi: 10.1016/j.patcog.2007.04.009.

[20] S. K. Rath, M. Sahu, S. P. Das, and S. K. Bisoy, “A comparative analysis of SVM and ELM classification
on software reliability prediction model,” Electronics, vol. 11, no. 17, 2022, Art. no. 2707. doi: 10.3390/elec-
tronics11172707.

[21] G. Aguiar, B. Krawczyk, and A. Cano, “A survey on learning from imbalanced data streams: Taxonomy,
challenges, empirical study, and reproducible experimental framework,” in Machine Learning, Dordrecht,
Netherlands: Springer, 2024, vol. 113, no. 7, pp. 4165–4243.

https://doi.org/10.1109/32.403791
https://doi.org/10.1016/j.jss.2006.10.049
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2010.06.006
https://doi.org/10.1109/32.815326
https://doi.org/10.1109/MS.2005.149
https://doi.org/10.1016/j.engappai.2023.107622
https://doi.org/10.1145/3567550
https://doi.org/10.1029/2022WR033673
https://doi.org/10.3390/math11112524
https://doi.org/10.1016/j.aej.2022.08.019
https://doi.org/10.1007/s10664-006-9018-0
https://doi.org/10.1142/S0218194012400013
https://doi.org/10.1016/j.neunet.2022.10.003
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1016/j.patcog.2007.04.009
https://doi.org/10.3390/electronics11172707

1534 CSSE, 2024, vol.48, no.6

[22] S. K. Rath, M. K. Sahu, and S. P. Das, “Applications of machine learning in industrial reliability model,”
in Handbook of Research on Applications of AI, Digital Twin, and Internet of Things for Sustainable
Development. Hershey, PA, USA: IGI Global, 2023, pp. 30–46.

[23] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving software-quality predictions with data
sampling and boosting,” IEEE Trans. Syst., Man, Cybern.: Syst. Humans, vol. 39, no. 5, pp. 1283–1294,
2009. doi: 10.1109/TSMCA.2009.2027131.

[24] Z. Xu et al., “A comprehensive comparative study of clustering-based unsupervised defect prediction
models,” J. Syst. Softw., vol. 172, no. 3, 2021, Art. no. 110862. doi: 10.1016/j.jss.2020.110862.

[25] P. Soltanzadeh and M. Hashemzadeh, “RCSMOTE: Range-Controlled Synthetic Minority Over-Sampling
Technique for handling the class imbalance problem,” Inf. Sci., vol. 542, pp. 92–111, 2021.

[26] T. M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-sensitive boosting in software quality
modeling,” in 7th IEEE Int. Symp. High Assur. Syst. Eng., 2002, pp. 51–60.

[27] S. K. Rath, M. Sahu, S. P. Das, and J. Pradhan, “Survey on machine learning techniques for software
reliability accuracy prediction,” in Int. Conf. Metaheuristics Softw. Eng. Appl., Springer, 2022, pp. 43–55.

[28] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction,” Expert. Syst. Appl., vol.
37, no. 6, pp. 4537–4543, 2010.

[29] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “A review on ensembles for the class
imbalance problem: Bagging-, boosting-, and hybrid-based approaches,” IEEE Trans. Syst., Man, Cybern.:
Appl. Rev., vol. 42, no. 4, pp. 463–484, 2012.

[30] M. Hassam, J. A. Shamsi, A. Khan, A. Al-Harrasi, and R. Uddin, “Prediction of inhibitory activities of
small molecules against Pantothenate synthetase from Mycobacterium tuberculosis using machine learning
models,” Comput. Biol. Med., vol. 145, 2022, Art. no. 105453. doi: 10.1016/j.compbiomed.2022.105453.

[31] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova and C. Zhong, “Interpretable machine learning:
Fundamental principles and 10 grand challenges,” Stat. Surv., vol. 16, pp. 1–85, 2022.

[32] A. Miyamoto, J. Miyakoshi, K. Matsuzaki, and T. Irie, “False-positive reduction of liver tumor detection
using ensemble learning method,” in SPIE Med. Imaging, 2013. doi: 10.1117/12.2006329.

[33] G. Forman, “An extensive empirical study of feature selection metrics for text classification,” J. Mach.
Learn. Res., vol. 3, pp. 1289–1305, 2003.

[34] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in bioinformatics,” Bioinfor-
matics, vol. 23, no. 19, pp. 2507–2517, 2007. doi: 10.1093/bioinformatics/btm344.

[35] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance learning and its applications in fault detection,”
Int. J. Comput. Intell. Appl., vol. 12, no. 1, 2013. doi: 10.1142/S1469026813400014.

[36] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, “Predicting faults in high assurance software,” in IEEE
12th Int. Symp. High-Assur. Syst. Eng. (HASE), 2010, pp. 26–34.

[37] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to improve software defect
prediction,” IEEE Trans. Syst., Man, Cybern.: Appl. Rev., vol. 42, no. 7, pp. 1806–1817, 2012. doi:
10.1109/TSMCC.2012.2226152.

[38] T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect prediction based on classifiers ensemble,” J. Inf.
Comput. Sci., vol. 8, no. 12, pp. 4241–4254, 2011.

[39] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for software defect
prediction: A proposed framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
2008. doi: 10.1109/TSE.2008.35.

[40] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad tree-based K-means
clustering algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6, pp. 1146–1150, 2012. doi:
10.1109/TKDE.2011.163.

[41] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “The misuse of the NASA metrics data program
data sets for automated software defect prediction,” in 15th Ann. Conf. Eval. Assess. Softw. Eng. (EASE
25), Durham, 2011, pp. 12–25. doi: 10.1049/ic.2011.0012.

[42] P. Vuttipittayamongkol, E. Elyan, and A. Petrovski, “On the class overlap problem in imbalanced data
classification,”Knowl. Based Syst., vol. 212, no. 3, 2021, Art. no. 106631. doi: 10.1016/j.knosys.2020.106631.

https://doi.org/10.1109/TSMCA.2009.2027131
https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1016/j.compbiomed.2022.105453
https://doi.org/10.1117/12.2006329
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1142/S1469026813400014
https://doi.org/10.1109/TSMCC.2012.2226152
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1049/ic.2011.0012
https://doi.org/10.1016/j.knosys.2020.106631

CSSE, 2024, vol.48, no.6 1535

[43] T. G. Dietterich, “Ensemble learning,” in The Handbook of Brain Theory and Neural Networks, Cambridge,
MA, USA: MIT Press, 2002, pp. 405–408.

[44] U. Schroeders, C. Schmidt, and T. Gnambs, “Detecting careless responding in survey data using stochastic
gradient boosting,” Educ. Psychol. Meas., vol. 82, no. 1, pp. 29–56, 2022. doi: 10.1177/00131644211004708.

[45] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proc. COMPSTAT’2010,
2010, pp. 177–186.

[46] D. J. Foster and V. Syrgkanis, “Orthogonal statistical learning,” Ann. Stat., vol. 51, no. 3, pp. 879–908, 2023.
doi: 10.1214/23-AOS2258.

[47] F. Markowetz, “Support vector machines in bioinformatics,” Master’s thesis, Univ. of Heidelberg, 2001.
[48] H. Chen, H. Ye, L. Chen, and H. Su, “Application of support vector machine learning to leak detection

and location in pipelines,” in Proc. 21st IEEE Instrum. Meas. Technol. Conf. (IMTC ’04), 2004, vol. 3, pp.
2273–2277.

[49] S. K. Rath, M. Sahu, S. P. Das, and S. K. Mohapatra, “Hybrid software reliability prediction model using
feature selection and support vector classifier,” in 2022 Int. Conf. Emerg. Smart Comput. Inform. (ESCI),
IEEE, 2022, pp. 1–4. doi: 10.1109/ESCI53509.2022.9758339.

[50] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing,
vol. 70, no. 1, pp. 489–501, 2006. doi: 10.1016/j.neucom.2005.12.126.

[51] G. Huang, L. Chen, and C. Siew, “Universal approximation using incremental constructive feedforward
networks with random hidden nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, 2006. doi:
10.1109/TNN.2006.875977.

[52] G. Wahba et al., “Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV,”
in Advances in Kernel Methods: Support Vector Learning, Cambridge, MA, USA: MIT Press, 1999,
pp. 69–87.

[53] P. R. Bal and S. Kumar, “WR-ELM: Weighted regularization extreme learning machine for imbalance
learning in software fault prediction,” IEEE Trans. Reliab., vol. 69, no. 4, pp. 1355–1375, 2020. doi:
10.1109/TR.2020.2996261.

[54] G. Huang and H. Babri, “Upper bounds on the number of hidden neurons in feedforward networks with
arbitrary bounded nonlinear activation functions,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp. 224–229,
1998. doi: 10.1109/72.655045.

[55] P. -M. Nguyen and H. T. Pham, “A rigorous framework for the mean field limit of multilayer neural
networks,” Math. Stat. Learn., vol. 6, no. 3, pp. 201–357, 2023. doi: 10.4171/msl/42.

[56] M. Uzair and N. Jamil, “Effects of hidden layers on the efficiency of neural networks,” in 2020 IEEE 23rd
Int. Multitopic Conf. (INMIC), IEEE, 2020, pp. 1–6.

[57] E. Paluzo-Hidalgo, R. Gonzalez-Diaz, and M. A. Gutiérrez-Naranjo, “Two-hidden-layer feed-forward
networks are universal approximators: A constructive approach,” Neural Netw., vol. 131, no. 4, pp. 29–
36, 2020. doi: 10.1016/j.neunet.2020.07.021.

[58] N. W. Hahm, “Degree of multivariate approximation by superposition of a sigmoidal function,” J. Anal.
Appl., vol. 20, no. 2, pp. 123–134, 2022.

[59] Y. Koçak and G. Üstündağ Şiray, “New activation functions for single layer feedforward neural network,”
Expert. Syst. Appl., vol. 164, no. 9, 2021, Art. no. 113977. doi: 10.1016/j.eswa.2020.113977.

[60] W. Kang and Q. Gong, “Feedforward neural networks and compositional functions with applications to
dynamical systems,” SIAM J. Control Optim., vol. 60, no. 2, pp. 786–813, 2022. doi: 10.1137/21M1391596.

[61] A. Mehmood, A. Zameer, S. H. Ling, A. U. Rehman, and M. A. Zahoor Raja, “Integrated computational
intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms, and
sequential quadratic programming,” Neural Comput. Appl., vol. 32, no. 23, pp. 10337–10357, 2020. doi:
10.1007/s00521-019-04573-3.

[62] G. Huang and L. Chen, “Convex incremental extreme learning machine,” Neurocomputing, vol. 70, no.
16–18, pp. 3056–3062, 2007. doi: 10.1016/j.neucom.2007.02.009.

[63] G. Huang and L. Chen, “Enhanced random search based incremental extreme learning machine,” Neuro-
computing, vol. 71, no. 16, pp. 3460–3468, 2008. doi: 10.1016/j.neucom.2007.10.008.

https://doi.org/10.1177/00131644211004708
https://doi.org/10.1214/23-AOS2258
https://doi.org/10.1109/ESCI53509.2022.9758339
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1109/TNN.2006.875977
https://doi.org/10.1109/TR.2020.2996261
https://doi.org/10.1109/72.655045
https://doi.org/10.4171/msl/42
https://doi.org/10.1016/j.neunet.2020.07.021
https://doi.org/10.1016/j.eswa.2020.113977
https://doi.org/10.1137/21M1391596
https://doi.org/10.1007/s00521-019-04573-3
https://doi.org/10.1016/j.neucom.2007.02.009
https://doi.org/10.1016/j.neucom.2007.10.008

1536 CSSE, 2024, vol.48, no.6

[64] M. Li, G. Huang, P. Saratchandran, and N. Sundararajan, “Fully complex extreme learning machine,”
Neurocomputing, vol. 68, no. 1–4, pp. 306–314, 2005. doi: 10.1016/j.neucom.2005.03.002.

[65] H. Rong, G. Huang, N. Sundararajan, and P. Saratchandran, “Online sequential fuzzy extreme learning
machine for function approximation and classification problems,” IEEE Trans. Syst., Man, Cybern.: Part
B: Cybern., vol. 39, no. 4, pp. 1067–1072, 2009. doi: 10.1109/TSMCB.2008.2010506.

[66] N. Liang, G. Huang, P. Saratchandran, and N. Sundararajan, “A fast and accurate online sequential
learning algorithm for feedforward networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
2006. doi: 10.1109/TNN.2006.880583.

[67] Y. Lan, Y. Soh, and G. Huang, “Ensemble of online sequential extreme learning machine,”Neurocomputing,
vol. 72, no. 13–15, pp. 3391–3395, 2009. doi: 10.1016/j.neucom.2009.02.013.

[68] M. Van Heeswijk et al., “Adaptive ensemble models of extreme learning machines for time series predic-
tion,” in Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2009, vol. 5769, pp. 305–314. doi:
10.1007/978-3-642-04277-5.

[69] S. K. Rath, M. Sahu, S. P. Das, and J. Pradhan, “An improved software reliability prediction model by using
feature selection and extreme learning machine,” in Int. Conf. Metaheuristics Softw. Eng. Appl., Cham,
Springer International Publishing, 2022, pp. 219–231.

[70] W. Deng, Q. Zheng, and L. Chen, “Regularized extreme learning machine,” in IEEE Symp. Computat.
Intell. Data Mining (CIDM’09), IEEE, 2009, pp. 389–395.

[71] W. Deng and L. Chen, “Color image watermarking using regularized extreme learning machine,” Neural
Netw. World, vol. 20, no. 3, pp. 317–330, 2010.

[72] M. K. Pachariya, M. Agrawal, and C. P. Agrawal, “Artificial neural network-based approach for forecasting
software reliability: An empirical study,” 2023. doi: 10.2139/ssrn.4581146.

[73] P. William, M. Gupta, N. Chinthamu, A. Shrivastava, I. Kumar and A. K. Rao, “Novel approach for
software reliability analysis controlled with multifunctional machine learning approach,” in 2023 4th Int.
Conf. Electron. Sustain. Commun. Syst. (ICESC), IEEE, 2023, pp. 1445–1450.

https://doi.org/10.1016/j.neucom.2005.03.002
https://doi.org/10.1109/TSMCB.2008.2010506
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1016/j.neucom.2009.02.013
https://doi.org/10.1007/978-3-642-04277-5
https://doi.org/10.2139/ssrn.4581146

	Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review
	1 Introduction
	2 Literature Review
	3 Experimental Design and Setup
	4 Research Approach
	5 Analysis and Discussion
	6 Conclusion
	References

