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ABSTRACT

Globally, liver cancer ranks as the sixth most frequent malignancy cancer. The importance of early detection is
undeniable, as liver cancer is the fifth most common disease in men and the ninth most common cancer in
women. Recent advances in imaging, biomarker discovery, and genetic profiling have greatly enhanced the ability
to diagnose liver cancer. Early identification is vital since liver cancer is often asymptomatic, making diagnosis
difficult. Imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and
ultrasonography can be used to identify liver cancer once a sample of liver tissue is taken. In recent research,
reliable detection of liver cancer with minimal computing computational complexity and time has remained a
serious difficulty. This paper employs the DenseNet model to enhance the detection of liver nodules with tumors by
segmenting them using UNet and VGG using Fastai (UVF) in CT images. Its dense interconnections distinguish
the DenseNet between layers. These dense connections facilitate the propagation of gradients and the flow of
information throughout the network, thereby enhancing the efficacy and performance of training. DenseNet’s
architecture combines dense blocks, bottleneck layers, and transition layers, allowing it to achieve a compromise
between expressiveness and computing efficiency. Finally, the 3D liver nodular models were created using a ray-
casting volume rendering approach. Compared to other state-of-the-art deep neural networks, it is suitable for
clinical applications to assist doctors in diagnosing liver cancer. The proposed approach was tested on a 3Dircadb
dataset. According to experiments, UVF segmentation on the 3Dircadb dataset is 97.9% accurate. According to the
study, the DenseNet and UVF segment liver cancer better than prior methods. The system proposes automated 3D
liver cancer tumor visualization.
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Glossary/Nomenclature/Abbreviations

CT Computed Tomography
MRI Magnetic Resonance Imaging
EDCNN Cascaded deep convolutional encoder-decoder neural networks
LVSNet Liver Vessel Segmentation Network
UVF UNet and VGG using Fastai
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DenseNet Densely Connected Convolutional Network
UNet U-shaped convolutional neural network (CNN) architecture
VGG Visual Geometry Group
RA-Net Residual-Atrous U-Net
PrM The Preprocessing Module
DM The Detection Module
3DRM The three-dimensional Reconstruction Module
HU Hounsfield units
CNN Convolutional neural network
TL Transfer learning
TP True positives
FP False positives
FN False negatives
TN True negatives
HIPAA The Health Insurance Portability and Accountability Act
GDPR The General Data Protection Regulation
ReLU Rectified Linear Units
BN Batch Normalization
Conv Convolution
MSFF Modified Single Fiber Filtration
3D Three-dimensional
DSC Dice Similarity Coefficient
LITS Liver Tumor Segmentation
DWAM Dual-branch Attention Module
CAA Channel-wise ASPP with Attention
MAPFUNet Multi-scale Attention-guided and Progressive Feature Fusion Network
CRF Conditional Random Field
MW-UNet Multi-phase Weighted U-Net
kNN k-Nearest Neighbors
PAB Position-wise Attention Block
O-SHO Opposition-based Spotted Hyena Optimization

1 Introduction

Liver cancer, a complex and often fatal disease, significantly impacts global health due to its high
prevalence and aggressive nature. It is the sixth most common cancer worldwide, as depicted in Fig. 1a.
Specifically, it is the fifth most prevalent cancer among men and the ninth among women, as shown
in Fig. 1b,c [1]. Liver cancer arises when abnormal cells in the liver grow uncontrollably, forming
a malignant tumor, which can be primary (originating within the liver) or secondary (spreading
to the liver from other body areas). This condition presents substantial diagnostic and treatment
challenges, compounded by risk factors such as chronic hepatitis B and C infections, excessive alcohol
consumption, obesity, and non-alcoholic fatty liver disease [1]. Screening and incidental findings
remain the primary diagnostic methods, yet many regions lack standardized screening programs,
resulting in late-stage diagnoses in numerous cases [2]. Radiologists face additional challenges, such
as distinguishing malignant from benign nodules in imaging, complicating the diagnostic process [3].

Furthermore, the combined efforts of researchers, healthcare professionals, and technological
innovation are vital in the ongoing battle against liver cancer, facilitating the development of novel
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treatments and enhancing survival rates. Among these advancements, three-dimensional (3D) visu-
alization techniques, including ray-casting that simulates light rays to produce detailed 3D views of
complex liver structures and segmentation models such as UNet and VGG, implemented with Fastai
that enable efficient and precise segmentation of liver lesions from medical imaging data, are critical
for accurate diagnosis. These methods allow radiologists to accurately assess the spatial characteristics
of liver lesions, aiding in personalized treatment planning. Various segmentation techniques, such
as semi-automatic approaches utilizing Kullback-Leibler divergence and graph-cut methods [4], and
manual and automated models like edge detectors [5], atlas-based models [6], deformable models [7],
and graphical models [8], contribute to advancing diagnostic accuracy.

Figure 1: (a). Total global cancer incidence and rates in 2020: (b). The global incidence of cancer in
men and its rates in 2020: (c). The global incidence of cancer in women and its rates in 2020

This research will review current literature and advancements in hepatic tumor segmentation to
highlight key methodologies that contribute to improved management of liver cancer.

Despite these advancements, current models struggle with challenges such as distinguishing
between benign and malignant nodules and handling complex tumor boundaries. Building upon the
gaps identified in previous literature, the proposed system will analyze liver damage globally using deep
learning methodologies, focusing on the entire CT image. This new approach for detecting tumors
and identifying the liver in a CT image for liver cancer involves segmenting the liver, detecting tumors,
and subsequently performing 3D reconstruction. Creating a 3D model enables lossless reconstruction,
providing a more realistic image of the tumor compared to wired models based on tumor cell
3D reconstruction. This detailed 3D visualization will allow physicians to better understand the
interaction between the tumor and its surrounding tissues, even before surgery, which is crucial for
effective treatment planning.

The present study offers the following contributions:

(1) The system suggests a three-dimensional visualization technique for computer-aided liver
nodule identification based on UVF, DenseNet, and the ray-casting volume rendering method.

(2) Classify liver nodules. The experimental results indicate that UVF is useful for segmenting and
DenseNet classifying liver nodules.

The remainder of this paper is structured as follows: Section 2 reviews related work, providing
context and background for this study. Section 3 explains the methodologies and materials, starting
with the preprocessing steps for liver cancer detection and detailing the integration of UVF, DenseNet,
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and ray-casting techniques. Section 4 describes the datasets and provides a comprehensive experi-
mental analysis, outlining the training, testing, implementation processes, evaluation metrics, and
3D reconstruction results. Section 5 offers an in-depth discussion of the outcomes, highlighting the
comparison to existing methods and limitations of the proposed method. Finally, Section 6 concludes
the study and proposes directions for future research.

2 Related Work

Liver cancer research has advanced in diagnostics, with a growing emphasis on computational
methods for biomarker analysis and imaging-based early detection. This section summarises key
developments and ongoing challenges at the intersection of liver cancer research and computer science.

Budak et al. [9] used cascaded encoder-decoder architecture to get a dice score of 63.4%. Their
approach is similar to that of segmenting tumors in two steps. The EDCNN architecture comprises
two components: the initial component denotes the encoder. Next, we have the decoder network. The
two components provide a symmetrical configuration. Multiple measures were employed to evaluate
the suggested model. The utilization of the public dataset (3DIRCADb) is deemed difficult due to its
substantial assortment and intricacy of livers and associated malignancies [10]. Utilizing twenty CT
scans, of which seventy-five percent contain hepatic lesions, its performance is evaluated.

Furthermore, Tran et al. [11] developed a revised iteration of the U-Net model. by integrating
layer-by-layer integration of dense connections. They got an awe-inspiring score of 73.34% compared
to previous efforts. However, one of the significant concerns they mentioned in their suggested model
is that as the number of convolution units increases, the model’s connection gets more complicated.

Yan et al. [12] introduced LVSNet, an innovative deep neural network designed to identify
the precise structure of hepatic vessels for segmentation. In the present study, the utilization of
publicly accessible liver datasets for deep learning purposes, such as 3Dircadb, Sliver072, and CHAOS
challenge3, is seen. The empirical findings illustrate that the suggested LVSNet surpasses prior tech-
niques on datasets for hepatic vascular segmentation. By achieving greater values for Sensitivity and
Dice, the proposed method demonstrates the efficacy of the MSFF block. The UNet’s segmentation
performance is enhanced by 2.9% in terms of Dice and segmentation accuracy, achieving a DSC of
90.4%.

Zhang et al. [13] introduced a 3D multi-attention guided multi-task learning network consisting of
three cooperating components: the backbone, SA-shared feature learning, and feature learning. From
three medical centers—Taiyuan People Hospital, China; Xian People Hospital, China; and Depart-
ment of Radiology, China-Japan Friendship Hospital, Beijing, China—the dataset was obtained
utilizing three medical instruments: Toshiba 320-slice CT, SOMATOM 64-slice CT, and Philips 128-
slice CT. The dataset has been partitioned into two distinct subgroups: a training set of 131 scans and
a test set consisting of 70 scans. The empirical findings indicate that our approach achieves an average
Accuracy (Acc) value of 80.5%.

Other recent investigations on liver tumor segmentation involve the work of Han et al. [14]. Their
approach applied a convolutional neural network based on boundary loss using a dice score of roughly
68% to segment the tumors. Similarly, Zhang et al. [15] proposed a Hybrid-3DResUNet to segregate
tumors using 3D convolution techniques. Their suggested model performs quite well regarding dice
soreness, scoring 78.58%.

Kalsoom et al. [16] developed a modified iteration of U- called Residual-Atrous U-Net (RA-
Net) to segment liver tumors. The model is achieved by adopting U-Net as a foundational model
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and extracting the characteristics of the tumor through a parallel structure-based atomic convolution
block integrated into the original U-Net. The proposed RA-Net gets an awe-inspiring score of 81%.
The RA-Net employed involved the immediate segmentation of CT image-based cancers relative to
the conventional two-stage technique commonly utilized in existing methodologies.

Manjunath et al. [17] developed a Unet58 layers architecture for liver and tumor segmentation.
It represents the conventional deep convolution network, which results in the formation of a hepatic
segmentation network. The improved Unet model performs better than existing deep-learning models
in liver segmentation, with a high DSC score of 96.15%. Additionally, it outperforms existing models
in tumor segmentation, achieving a DSC score of 89.38% for the LITS dataset of size 256 × 256.
Additionally, using a 3Dircadb dataset with dimensions 128 × 128 and a segmentation score of 69.80%
for tumors, a high DSC score of 91.94% was achieved.

Kumar et al. [18] proposed a hybrid multi-stage CNN model that integrates traditional image
processing techniques with deep learning, achieving an accuracy of 87.5%. This approach emphasizes
feature selection to reduce false positives but has limitations in generalizing to diverse and complex
liver tumor cases, particularly when handling highly variable tumor characteristics. Patel et al. [19]
utilized a multi-stage architecture combining edge detection with CNNs for liver tumor classification,
achieving 86.7% accuracy. However, the model struggles with accurately segmenting tumors with
irregular shapes or in cases of poor image quality, and the reliance on edge detection reduces robustness
against imaging artifacts.

Lee et al. [20] developed a dual-path CNN model combining PET and CT data for tumor
segmentation and survival risk prediction, achieving a Dice Similarity Coefficient of 0.7367. The
model leverages multi-modal imaging, but challenges include computational demands and issues with
boundary precision, which may impact overall segmentation quality. Liu et al. [21] introduced An
Application of Attention Mechanism and Hybrid Connection for Liver Tumor Segmentation in CT
Volumes, which employs both soft and hard attention mechanisms along with hybrid long and short
skip connections to capture complex tumor features and improve segmentation precision. The model
effectively addresses challenges posed by the heterogeneous nature of liver tumors and the complex
background in CT images. On the LiTS dataset, AHCNet achieved a Dice similarity coefficient of
approximately 0.88, outperforming traditional segmentation models and demonstrating the efficacy
of attention and hybrid connection mechanisms in enhancing segmentation accuracy.

Zhang et al. [22] proposed a Multi-attention Perception-Fusion U-Net, which incorporates
attention mechanisms to address challenges such as small tumor segmentation and information loss
during down-sampling. The framework introduces several specialized modules: the Position ResBlock
(PResBlock) to preserve positional details, the Dual-branch Attention Module (DWAM) to fuse multi-
stage and multi-scale features, and the Channel-wise ASPP with Attention (CAA) Module for multi-
scale feature recovery. Evaluated on the LiTS2017 and 3DIRCADB-01 datasets, MAPFUNet achieved
Dice scores of 85.81% and 83.84%, respectively, outperforming baseline models by 2.89% and 7.89%,
highlighting the efficacy of attention mechanisms in multi-stage U-Net architectures for precise liver
tumor segmentation.

Ahmed et al. [23] proposed a comprehensive liver tumor detection and stages classification using
deep learning and image processing techniques. This framework begins with an initial CNN for
detecting liver tumors in CT images, followed by a second CNN designed to classify detected tumors
into specific stages—Early Stage, Intermediate Stage, and Metastatic Stage. This staged approach
achieved a classification accuracy of 98.72%, highlighting its potential for automating tumor detection
and providing detailed diagnostic insights. Chen et al. [24] introduced a multi-stage framework in their
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study “Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural
Networks and 3D Conditional Random Fields.” The model consists of two main stages: the first FCN
segments the liver to identify a region of interest, and the second FCN further segments lesions within
this predicted liver region. A 3D conditional random field (CRF) is then applied to improve spatial
coherence and fine-tune the boundaries. This approach achieved Dice scores exceeding 94% for liver
segmentation, underscoring the effectiveness of cascaded FCNs combined with CRF for enhanced
segmentation precision.

Chang et al. [25] developed a semi-automated CAD system that integrates texture, shape, and
kinetic curve features for liver tumor classification. Using a region-growing algorithm for segmenta-
tion, the system achieved 81.69% accuracy, 81.82% sensitivity, and 81.63% specificity. While effective
in combining multiple feature sets, the system is limited by its reliance on manual segmentation
initialization and feature engineering. Wu et al. [26] proposed a hybrid approach combining a multi-
phase weighted U-Net (MW-UNet) and a 3D region-growing algorithm. The method achieved 85.7%
accuracy, a Dice Similarity Coefficient (DSC) of 0.88%, 83.2% sensitivity, and 87.1% specificity,
effectively blending deep learning with traditional image processing. However, the hybrid design
increases computational complexity, requiring careful optimization for clinical application.

Chen et al. [27] introduced a fast-density peak clustering method for large-scale data based on
k-Nearest Neighbors (kNN), which significantly improved the clustering efficiency and scalability
for complex datasets. Their approach achieved an accuracy of 85.567% when applied to liver tumor
classification tasks, demonstrating its potential in handling high-dimensional medical imaging data
effectively. This method exemplifies how advanced clustering techniques can enhance the performance
of medical image analysis, particularly for large-scale and complex datasets like liver CT scans.
Wang et al. [28] introduced a GAN-based approach for liver tumor segmentation, leveraging a multi-
stage process with automated data augmentation. Initial segmentation results undergo refinement
stages, with GAN-generated data facilitating accurate boundary delineation. The model achieved
Dice scores of 0.872 on the 3Dircadb datasets, respectively, showing significant improvement in
computational efficiency and accuracy.

Zhang et al. [29] proposed a dual attention-based 3D U-Net algorithm for liver segmentation from
CT images. The model integrates dual attention mechanisms to focus on both spatial and channel
dimensions selectively, improving the segmentation accuracy of liver structures in complex CT scans.
This approach demonstrated superior performance in liver segmentation, highlighting its effectiveness
in handling intricate anatomical features and enhancing clinical applicability. Lee et al. [30] introduced
RA V-Net, a deep-learning network designed for automated liver segmentation. This model leverages
advanced neural network architectures to segment liver structures from medical images accurately.
The RA V-Net showed strong performance in liver segmentation tasks, demonstrating its potential
for clinical automation and efficiency in processing medical imaging data.

Wang et al. [31] proposed A Multi-Scale Attention Network for Liver and Tumor Segmentation.
This novel approach incorporates self-attention mechanisms within a multi-scale feature fusion
framework to enhance liver and tumor segmentation. This model adaptively integrates local features
with global dependencies, which enables the network to capture rich contextual information crucial for
precise segmentation. The architecture consists of two key modules: the Position-wise Attention Block
(PAB), which captures global spatial dependencies between pixels, and the Multi-scale Fusion Atten-
tion Block (MFAB), which captures channel dependencies through multi-scale semantic fusion. On
the MICCAI 2017 LiTS Challenge dataset, MA-Net demonstrated superior performance with Dice
scores of 0.960 for liver segmentation and 0.749 for tumor segmentation, significantly outperforming
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previous methods in segmentation accuracy. Yu et al. [32] proposed a method for CT segmentation of
the liver and tumors by fusing multi-scale features to enhance segmentation accuracy. Their approach
integrates deep learning techniques with multi-scale feature extraction to improve both liver and tumor
segmentation performance in CT images. The method demonstrated promising results, showing its
potential for more accurate and efficient tumor detection in clinical settings. Kumar et al. [33] proposed
a Transformer Skip-Fusion-based SwinUNet for liver segmentation, achieving robust performance in
segmenting liver CT images. The method combined the Swin Transformer and U-Net architectures
to capture both local and global features, resulting in enhanced segmentation accuracy. This hybrid
approach demonstrated strong segmentation performance, showing its potential for real-time clinical
applications.

Chang et al. [34] utilized O-SHO for liver tumor segmentation and classification, achieving
85.7% accuracy for segmentation and 83.5% accuracy for classification. The metaheuristic approach
improves the optimization of segmentation parameters but may struggle with large datasets due to
computational overhead.

Ahmad et al. [35] introduced a lightweight CNN for liver segmentation, reporting 84.6% accuracy.
This model minimizes computational overhead, making it suitable for real-time applications, but its
lightweight design may limit segmentation precision in complex imaging conditions.

However, its performance is sensitive to changes in imaging conditions, which may affect accuracy
when applied across diverse datasets. These advancements underscore the crucial role of computational
tools in enhancing diagnostic accuracy and early detection of liver cancer.

3 Methodologies and Materials

According to recent research, deep learning approaches have shown exceptional results in medical
image segmentation, particularly in liver segmentation, surpassing traditional algorithms in accuracy
and reliability. The improvement is especially evident when comparing the outcomes of deep learning
models with those of conventional segmentation techniques, which often struggle with complex tumor
boundaries and low-contrast regions. The proposed liver segmentation method automatically detects
liver tumors and enhances visualization by reconstructing the tumors in 3D images through volumetric
analysis. This approach aids radiologists and clinicians by providing detailed spatial information on
the tumor’s size, shape, and location, which is crucial for treatment planning. Fig. 2 depicts the three
stages of the system:

A. The Preprocessing Module (PrM) phase (converting CT images from world Coordinates to
image Coordinates, applying masks. and normalizing images).

B. The Segmentation Detection Module phase (detecting liver in CT) using UVF.
C. The Detection Module (DM) phase (detecting liver tumors).
D. The three-dimensional Reconstruction Module (3DRM) phase (3D visualization of liver

tumors).

3.1 Preprocessing Module

3D scans are divided into 2D slices to represent the input data. These scans are read from
the DICOM images and related liver masks, arranged by instance number, and preprocessed. The
processes include converting pixel values to HU. The liver’s HU varies from 1000 to 400 HU. It applies
rescaling based on the rescale intercept and slope values provided in the DICOM metadata. The pixel
values are rescaled accordingly if the slope does not equal 1. After that, windowing techniques were



220 CSSE, 2025, vol.49

applied to CT scan images. The inputs required are an image, window width, and window center.
The window width and center establish a range of relevant pixel values. The function truncates the
image according to this range and normalizes the pixel values to the interval [0, 1]. Identify the initial
and final positions of the nonzero slices in a three-dimensional image defined by depth, height, and
width. The procedure entails navigating through the image slices to detect nonzero values. The first
nonzero slice indicates the starting location, while the last nonzero slice represents the ending position.
Employing contrast-limited adaptive histogram equalization (CLAHE) enhances the contrast of each
slice. Utilizing image processing techniques, including mask overlays and windowing. Windowing
alters the luminance and contrast of an image to emphasize specific features or regions of interest.
The image transforms as a consequence of the established windowing settings. Places a mask over the
windowed image, emphasizing specific regions by the mask’s properties. The mask is illustrated using
a unique color map and transparency level. The windowed image with the overlay mask is displayed
in the combined image, as illustrated in Fig. 3.

Figure 2: The proposed model-based segmentation mask, detection, and segmentation framework for
liver nodule 3D visualization diagnosis

Figure 3: The Preprocessing Module (PrM) phases
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3.2 The Segmentation Detection Module Phase (Detecting Liver in CT) Using UVF

The present investigation employs a deep learning model to determine the liver by making a mask
for the liver in the CT images. The UVF consists of the U-Net model used with the Fastai framework
for segmentation in biomedical images. The VGG16 model is employed with the Fastai framework
to achieve expedited optimization techniques and convergence for GPU-optimization. As shown in
Fig. 4.

Figure 4: The Segmentation Module (SM) phase

3.2.1 U-Net

U-Net is a CNN that was specifically designed for image segmentation tasks. The system’s design
is based on a symmetric encoder-decoder structure. The encoder path captures context by repeatedly
applying two 3 × 3 convolutions, ReLU activations, and 2 × 2 max-pooling operations. This process
doubles the number of feature channels at each down-sampling step [36]. Mathematically, if x is the
input and W represents the convolutional filters, each convolution operation can be expressed that is
in Eq. (1):

y = ReLU (W ∗ x + b) (1)

where:

• y is the output vector representing the result after applying the ReLU activation function.
• W is the weight matrix containing learned parameters that determine the influence of each

feature in the input vector x on the output y.
• (∗) is the convolution operation that applies the weight filter W to the input feature map x.
• x is the input vector consisting of the features fed into the model.
• b is the bias vector that allows for adjustments in the activation threshold.
• ReLU is the Rectified Linear Unit activation function that introduces non-linearity by out-

putting z if z is greater than 0 and 0 otherwise. This allows the model to learn complex patterns
by maintaining positive values while disregarding negative inputs, which helps create sparse
representations in the network.

The max-pooling operation reduces the spatial dimensions as in Eq. (2):

y = MaxPool(x) (2)

where:

• y is the output feature map, which results from applying the Max Pooling operation to the input
feature map x. The output y contains reduced spatial dimensions, with each value representing
the maximum value from a specific region in the input x.

• MaxPool is a down-sampling technique commonly used in CNNs to reduce the input feature
map’s spatial dimensions (height and width) while retaining important features. Max Pooling
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operates by dividing the input feature map into non-overlapping or overlapping regions (usually
squares, such as 2 × 2 or 3 × 3) and taking the maximum value from each region. This reduces
the size of the feature map and helps make the model more efficient and less prone to overfitting.

• x is the input feature map, the original feature map produced by a previous layer (such as a
convolutional layer). The input x typically has dimensions representing the feature map’s height,
width, and number of channels (or depth).

The slowest part of the network is made up of two 3 × 3 convolutions with ReLU activations.
These keep the spatial dimensions while capturing abstract features. The decoder path utilizes 2 × 2
transposed convolutions to recover the spatial dimensions that are represented in Eq. (3).

y = ReLU (Wup ∗ x + b) (3)

where:

• y is the output vector representing the result after applying the ReLU activation function.
• Wup are the up-sampling filters, which are the weight matrix containing learned parameters

used to increase the spatial dimensions of the input vector x during the up-sampling process.
They determine how features from the input x are combined to produce the output y.

• (∗) is the convolution operation that applies the weight filter W to the input feature map x.
• x is the input vector consisting of the features fed into the model.
• b is the bias vector that allows for adjustments in the activation threshold.
• ReLU is the Rectified Linear Unit activation function that introduces non-linearity by out-

putting z if z is greater than 0 and 0 otherwise. This allows the model to learn complex patterns
by maintaining positive values while disregarding negative inputs, which helps create sparse
representations in the network.

Concatenation with corresponding encoder features via skip connections then follows, combining
high-resolution encoder features with up-sampled decoder features as in Eq. (4):

y = Concat (xencoder, xdecoder) (4)

where:

• y is the output vector resulting from concatenating two input feature vectors.
• xencoder is the feature vector produced by the encoder part of the model, which captures high-

level representations of the input data. This vector typically contains information relevant to
understanding the context of the input.

• xdecoder is the feature vector produced by the decoder part of the model, which generates out-
put data based on the features encoded by the encoder. This vector often includes information
necessary for reconstructing or generating new data.

• Concat: The concatenation operation combines the two input vectors xencoder and xdecoder,
along a specified dimension (usually the feature dimension) to form a single output vector
y. This operation allows the model to leverage features from both the encoder and decoder,
enhancing the richness of the representation for subsequent processing.

Following this are two 3 × 3 convolutions and ReLU activations. The final layer is a 1 × 1
convolution that maps feature vectors to the desired number of classes as in Eq. (5):

y = Wfinal ∗ x + b (5)
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where:

• y is the output vector representing the result after applying the linear transformation to the
input vector x.

• Wfinal is the weight matrix containing learned parameters that determine the influence of each
feature in the input vector x on the output y. This matrix represents the final layer of weights
in the model, typically used for producing the final output in tasks such as classification or
regression.

• x is the input vector consisting of the features fed into the model. Each element of x represents
a specific attribute relevant to the model’s predictions.

• b is the bias vector that includes bias terms added to the linear transformation. The bias allows
for adjustments in the output, enabling the model to fit the data more effectively by shifting the
activation threshold.

With a softmax activation for multi-class segmentation as in Eq. (6):

ŷ = Softmax (y) (6)

where:

• ŷ is the output vector representing the probabilities of each class after applying the Softmax
function to the input vector y. Each element of ŷ is a value between 0 and 1, and the sum of all
elements in ŷ equals 1, making it suitable for multi-class classification tasks.

• y is the input vector containing the raw scores or logits produced by the model before applying
the Softmax function. These scores are typically unbounded real values.

• Softmax: The Softmax function transforms the input vector y into a probability distribution.
This operation ensures that each element of ŷ is between 0 and 1, and the elements collec-
tively sum to 1, making it useful for classification problems where the model outputs class
probabilities.

The U-Net architecture has proven effective in segmenting biological images, particularly in tasks
such as identifying neural structures in electron microscopy and segmenting cells in light microscopy.
Moreover, other domains, like satellite imaging and autonomous driving, have successfully employed
it. These advancements have established U-Net as a fundamental model in image segmentation.

3.2.2 VGG16

Oxford University introduced VGG16 as a highly utilized deep-learning architecture [36]. A total
of 41 strata have been disrupted in the following manner: Fourteen layers make up the weights, thirteen
are the Conv. layers, and three are the FC layers. VGG16 uses a tiny 3 × 3 kernel with stride one on
all Conv Layers. Conv. Max pooling layers usually follow layers. The VGG16 input is a fixed 224 ×
224 three-channel picture. The three FC levels within the VGG16 model exhibit different depths. The
initial two FCs possess identical channel sizes, specifically (4096); however, the last FC has a channel
size of 1000. The output layer is the soft-max layer in charge of the probability provided by the input
picture. VGG16 [36], like any pre-trained model, requires extensive training if the weights are initialized
randomly. CCN models, in general, employ TL approaches. A method in which a model taught on
one job is applied somehow on a second identical task is referred to as TL. In other words, we train a
CNN model on a problem comparable to the one being addressed, where the input is the same, but the
outcome may differ. In this scenario, the VGG 6 model is trained on the ImageNet dataset containing
many real-world object images [37].
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3.2.3 Fastai V2

Pre-trained torch vision models, including ResNet architecture and VGG model variants, are
included in Fast.ai. Fast.ai is a cutting-edge development in the Python deep learning neural net-
work framework. Transferring learning CNN models can significantly improve inference time while
maintaining high performance. The Fast.ai library is built on research conducted by Fast.ai, which
focuses on deep learning best practices. It offers built-in support for several models, such as text,
collaborative filtering, vision, and tabular [38]. It also helps build a model with pre-trained weights
and architecture to maximize computer vision accuracy. Fastai V2 is a high-level deep learning library
that includes numerous abstractions to aid in the building and training of deep learning models. The
library provides countless pre-built image classification and segmentation models, such as VGG 16
and U-Net. In the VGG 16 Fastai V2 U-Net architecture, Fastai V2 integrates VGG 16 and U-
net models to generate a robust segmentation model. Fastai V2 has a pre-built VGG 16 model that
acts as the architecture’s encoder, while U-Net is the architecture’s decoder. Fastai V2 additionally
provides utilities for loading and prepping data for training and validation, such as DataLoaders
and transformations. Measures for assessing model performance, like the Dice coefficient used to
gauge segmentation accuracy, also accompany Fastai V2. Moreover, Fastai V2 features several training
techniques, including data augmentation and learning rate scheduling, that could improve the model’s
performance during training.

Fastai V2 provides tools, pre-built models, and training strategies to improve the new architecture’s
efficacy for liver segmentation tasks. The new design integrates three components to produce a strong
segmentation model: VGG 16, U-Net, and the FastAi V2 library. Our model’s encoder is the VGG
16, and the decoder is the U-Net. The skip connections aid in preserving spatial information and the
accuracy of segmentation. As the model trains, it learns to convert input images into segmentation
masks. Typically, the training loss function determines how much the anticipated and ground truth
segmentation masks by the Dice coefficient. The new architectural design offers a reliable and efficient
liver segmentation model, as shown in Fig. 4.

3.3 The Detection Module (DM) Phase (Detecting Liver Tumors)

The DenseNet is a novel CNN architecture designed for visual object detection. It has demon-
strated exceptional performance levels despite its reduced parameter number. DenseNet exhibits
similarities to ResNet, yet with notable distinctions. DenseNet combines the results of the previous
layer with the result of a subsequent layer through concatenation (.) characteristics. In contrast, ResNet
employs an additive attribute (+) to integrate the previous and future layers. DenseNet Architecture
seeks to address this issue by densely linking all levels. Among the many DenseNet architectures
(DenseNet-121, DenseNet-160, and DenseNet-201), this study used the DenseNet-1667 architecture
[39]. It has a denser connection than other models like VGG [40] and Resnet [41]. DenseNet can
solve the vanishing-gradient problem, improve feature map propagation, and minimize the number of
parameters. Fig. 5 illustrates a comprehensive representation of the proposed model’s design. Direct
connections between any two levels, thereby facilitating the exchange of data across layers, are a distinct
connectivity pattern in the DenseNet model from other CNNs. As a result, the feature maps of all prior
levels are received by the n-th layer, and it can be expressed in Eq. (7):

xI
1 = HI([x0

1, x1
1, . . . , xI−1

1 ]) (7)

where xI
1 represents the output of the l-th layer. The notation [x0

1, x1
1, . . . , xI−1

1 ] represents merging the
feature maps generated in layers 0, 1, 2, . . . , l − 1. The HI can be a composite function comprising
Pooling, ReLU, BN, or Conv procedures.
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Figure 5: DenseNet-1667 architecture

3.4 Three-Dimensional Reconstruction Module

Three-dimensional reconstruction creates a three-dimensional model of a scene or an object
from two-dimensional images or video frames. This technology is widely used in computer vision,
medical imaging, and entertainment. A typical three-dimensional reconstruction module comprises
the following steps: The primary stage involves acquiring a set of two-dimensional liver pictures. The
generation of these images involves the partitioning of 3D images into slices.

3.4.1 Acquisition and Preparation of 2D Images

The process begins with acquiring 2D cross-sectional images from medical imaging equipment,
such as CT or MRI scans. These images represent individual liver slices, capturing intricate details at
varying depths. Each slice contributes essential data for constructing the 3D model.

3.4.2 Feature Extraction and Matching

A 2D image is acquired via medical imaging equipment for each slice. After processing the images,
characteristics are extracted that can be utilized to identify commonalities among them. Identify
shared elements between the photos; these extracted features are vital. Additionally, they aid the
algorithm in accurately locating and matching crucial spots. The features that have been obtained are
used to compute the corresponding points between the images in this particular stage. This procedure
is carried out by comparing the characteristics of each image and selecting the best match to establish
correspondence. Accurately finding corresponding points across photos is made easier with feature
matching.

3.4.3 Camera Calibration and Spatial Orientation

A camera’s inherent and extrinsic qualities can be identified through camera calibration. These
parameters determine the camera’s position and orientation in three-dimensional space. Enhancing the
precision of spatial relationships and measurements in the acquired imagery is achieved by establishing
these attributes. The reconstructed version of a three-dimensional representation of the object or
environment is achieved by utilizing the calculated correspondences and camera settings.

3.4.4 Ray-Casting for 3D Model Generation

Ray-casting is employed to construct a 3D model from the aligned 2D slices. The ray-casting
process integrates data from each slice as follows:
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1. Projecting Rays: Rays are cast virtually through each 2D slice. As each ray intersects with
pixels, it gathers spatial information that includes pixel intensity and depth, representing the
density and structural properties of the liver.

2. Compiling Data: The algorithm assembles a volumetric representation by accumulating data
from rays passing through multiple slices. This information collectively builds a cohesive liver
structure, capturing its anatomical complexity.

3. Generating the 3D Model: A cohesive 3D model is reconstructed using the accumulated
ray data. This model accurately reflects the liver’s internal and external structures, which is
essential for detailed clinical analysis.

These methodologies have a significant role in effectively capturing the three-dimensional depic-
tion of the visible item or scene.

3.4.5 Texture Mapping for Realistic Visualization

After the 3D model has been reconstructed, realistic-looking textures can be applied to its surface.
Textures extracted from two-dimensional images are projected onto the corresponding model surfaces
through this procedure. By harmoniously incorporating these textures, the 3D model acquires an
authentic appearance, which enhances visual fidelity [42].

Fig. 6 illustrates the entire 3D reconstruction workflow, from image acquisition and feature
extraction to ray-casting and texture mapping, demonstrating how each component contributes to
a realistic and accurate liver model. By detailing the steps in the 3D Reconstruction Module, we aim
to clearly understand how ray-casting integrates with preceding processes to generate a high-fidelity
3D model. This method supports clinicians in making more informed decisions by offering a realistic
and interactive visualization of liver structures.

Texture 

Mapping for 

Realistic 

Visualization

Image 

acquisition

Feature Extraction 

and Matching 

between slices

Camera 

Calibration and 

Spatial 

Orientation

Ray-Casting 

for 3D Model 
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Figure 6: Steps for three-dimensional reconstruction module

4 Experiment Results and Analysis

Following the methodology framework, we conducted experiments to evaluate the proposed
segmentation approach, focusing on segmentation accuracy, computational efficiency, and 3D visual-
ization quality. Precise nodule size measurement is crucial for radiologists to classify tumors as benign
or malignant. To further assess the algorithm’s performance, we implemented a DenseNet framework
chosen for its efficiency in handling complex tasks requiring rapid evaluation. All experiments were
conducted on an Nvidia Tesla K80 GPU (12 GB), which effectively supports the high computational
demands of DenseNet, ensuring efficient processing during training and testing. We now present this
section in detail. It is broken into three parts. The Data and analysis are described in Section 4.1.
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The Experimental data sets and evaluation criteria are described in Section 4.2. The training, testing,
and implementation details are described in Section 4.3. The Performance Metrics are described in
Section 4.4. The final section discusses the Three-Dimensional Reconstruction Results in Section 4.5.

4.1 Data and Analysis

The dataset used for these experiments consists of high-resolution medical images from estab-
lished liver imaging databases, particularly the 3DIRcadb dataset, which is a valuable resource in
medical imaging for liver analysis and surgical planning research that supports transparency and
reproducibility. To ensure patient privacy, the dataset is fully anonymized following 3DIRcadb data
usage guidelines, protecting the confidentiality of patient information. While the dataset provides
comprehensive imaging data, we recognize the potential for inherent biases in publicly available
datasets, which could influence the generalizability of findings. Our choice of this dataset underscores
our commitment to ethical standards, allowing for reproducible research within a secure and open
scientific framework. This collection includes annotated tumor and nodule regions crucial for training
and validating the segmentation model. The 3Dircadb dataset provides high-resolution volumetric
images, enabling precise analysis of liver diseases and supporting the development of algorithms
for accurate tumor detection and segmentation. Researchers may use the dataset to develop and
evaluate new algorithms for liver segmentation, tumor identification, and surgery planning, making it
a significant benchmark for improving patient outcomes. The 3Dircadb dataset, as a publicly accessible
resource, promotes development in liver-related research and clinical applications, playing a critical
role in increasing treatment and knowledge of liver disorders. In 75 percent of instances, the collection
contains three-dimensional CT images of 10 men and 10 women with liver tumors. The 20 folders
belong to 20 distinct patients and may be downloaded separately or together. It also highlights the
major challenges that liver segmentation algorithms may face due to interaction with nearby organs,
an irregular form or density of the liver, or even image artifacts. The images are in DICOM format
and labeled to correspond to the various zones of interest segmented in DICOM format. The dataset
also includes a CSV file with additional patient and nodule metadata. The 3Dircadb dataset is widely
used in machine learning research to develop nodule methods for detection and classification [10].

4.2 Experimental Data Sets and Evaluation Criteria

In this paper, the 3Dircadb dataset is used for network training and testing. The collection has 20
patient case images, separated into two sections. 70% of the images in the dataset are used as training
sets in this experiment, whereas 30% are used as test sets. Precision and Sensitivity were employed in
this study to evaluate the proposed system’s localization. We utilized accuracy to assess how many
expected positives were successfully recognized, Sensitivity to establish how many expected positives
were recognized, and Sensitivity to establish how many genuine positives were accurately detected.
The F1 score was also used to compute the harmonic mean of accuracy and sensitivity, as well as the
accuracy and sensitivity harmonic mean. Because the F1 score measures accuracy and Sensitivity, they
always assign equal weight to both measures. This is because there is always a trade-off between the
two since the mean value is always strongly influenced at the expense of either value.

4.3 Training, Testing, and Implementation Details

This paper uses two models, one for the liver segmentation from CT and the other for detecting
cancer in the liver. For the segmentation model, the network input’s image size is (224 × 224 ×3), and
the masks have the same size as the image size (224 × 224 × 3). They are transforming the images
into tensors with intensity normalization. UNet is defined as a convolutional neural network with an
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encoder-decoder architecture. It consists of convolutional layers, ReLU activation functions, and max-
pooling layers for feature extraction. The decoder part uses transposed convolutions to unsampled
the features and recover spatial information. The UNet is initialized with a VGG16 backbone pre-
trained on ImageNet, which helps in faster convergence and better generalization. The training
process involves defining the loss function, which is the CrossEntropyLossFlat, suitable for multi-
class segmentation tasks. Two custom evaluation metrics, foreground_acc, and cust_foreground_acc,
are introduced to assess the model’s performance in segmenting non-background regions. The Fastai
unet_learner function creates the learner object, encapsulating the data, model, loss function, and
metrics. The model is fine-tuned on the dataset using the Fastai fine_tune function, which employs the
one-cycle policy for learning rate scheduling. Additionally, a weight decay of 0.1 and saving the best
model during training, respectively. The network input’s image size for the cancer detection model is
(224 × 224 × 3).

It is going to the DenseNet architecture, consisting of multiple dense blocks containing several
layers. In each dense layer, the input is processed through a series of operations, including batch
normalization, ReLU activation, and convolution. The output of each dense layer is concatenated
with the input, resulting in an increased number of feature maps. The initial convolutional layer has
a kernel size of (7 × 7), stride of 2, padding of 3, and generates 64 output channels. Then, the first
dense block (denseblock1) consists of 6 dense layers, each adding 32 additional channels to the input.
The second dense block (denseblock2) has 12 dense layers, adding 32 channels per layer. The third
dense block (denseblock3) contains 24 dense layers, adding 32 channels per layer. After those blocks,
an adaptive average pooling layer is added, which shrinks the feature maps to a size is (1 × 1). The
resulting feature maps are then flattened and passed through a fully connected layer (linear layer) with
the number of output classes as the final layer.

The model is trained using the Adam optimizer with a learning rate of 0.0001 and weight
decay of 1e−5. The loss function used is the cross-entropy loss, which is commonly used for multi-
class classification tasks. The training process includes gradient accumulation steps, where gradients
are accumulated over multiple batches before performing the optimization step. The learning rate
scheduler (Reduce LR On Plateau) is employed to adjust the learning rate based on validation
loss. During training, data augmentation techniques are applied to the input images using various
transformations such as random cropping, horizontal flipping, vertical flipping, and color jittering.
These transformations help improve the model’s ability to generalize and handle variations in the input
data. However, several challenges were encountered during training on the 3DIRCADb dataset:

1. High Variability in Liver and Tumor Characteristics: Due to the diversity of liver shapes, sizes,
and tumor characteristics across different patients in the dataset, the model faced difficulties
generalizing. We employed robust data augmentation methods (such as rotation, scaling, and
intensity variation) to expose the model to a wider range of variations, thus enhancing its
generalization capability.

2. Complex Liver Textures and Irregular Boundaries: The model often struggled with complex
liver textures and irregular tumor boundaries, especially in small or diffuse tumors. To address
this, we fine-tuned hyperparameters and applied regularization techniques to capture subtle
features without overfitting specific textures.

3. Computational Resource Constraints: Processing 3D medical images is memory-intensive,
particularly during 3D reconstruction. We optimized memory usage through batch processing
and ensured stable training with the Adam optimizer. Additionally, we utilized ray-casting to
reconstruct 3D models efficiently without excessive resource demands.
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4.4 Performance Metrics

Performance metrics are essential tools that help organizations measure and evaluate how well
they are achieving their goals. They provide a quantitative basis for assessing the effectiveness of
various processes, systems, or teams. This discussion will focus on specific performance metrics, such
as Sensitivity, Specificity, Accuracy, and Mean squared error.

4.4.1 Sensitivity

Sensitivity quantifies the capacity to identify a test’s specific positive results accurately. Detected
true positives as a percentage of all positives indicate Sensitivity. This is represented in Eq. (8):

Sensitivity = TP/((TP + FN)) (8)

Here, Sensitivity represents the sensitivity metric, which is defined as the ratio of TP to the sum
of true positives and FN.

4.4.2 Specificity

Specificity quantifies the capacity to identify benign situations accurately, which establishes the
mathematical expression for Specificity and quantifies it. This equation represents a test’s ability to
distinguish true negatives from the overall number of actual negatives that is defined in Eq. (9).

Specificity = TN/((TN + FP)) (9)

Here, Specificity represents the specificity metric, which is defined as the ratio of TN to the sum
of true negatives and FP.

4.4.3 The Dice Coefficient

A widely employed metric for assessing the similarity between two sets is the Dice coefficient,
alternatively referred to as the Sorensen-Dice factor or F1 score, which is a statistical measure. Image
segmentation, medical image analysis, and natural language processing are among the diverse domains
in which it finds extensive application. Double the intersection of two sets is equal to the sum of
the sizes of the sets; this expression defines the Dice coefficient. In binary image segmentation, the
evaluation involves comparing the predicted and ground truth binary masks. The dice coefficient is
represented in Eq. (10):

Dice coefficient = (2 ∗ TP)/((2 ∗ TP + FP + FN)) (10)

The Dice coefficient is a way to measure how similar two samples are. It is found by squaring
twice the sum of the TP, FP, and FN.

4.4.4 Accuracy

Accuracy quantifies the capacity to distinguish between malignant and benign situations accu-
rately. It provides a mathematical representation for accuracy, quantifying the ratio of correctly
identified cases to the total number of cases. This equation quantifies the overall efficacy of the
classification or diagnostic procedure represented in Eq. (11).

Accuracy = ((TP + TN))/((TP + TN + FP + FN)) (11)

Here, accuracy represents the accuracy metric, which is defined as the ratio of correctly predicted
instances (TP and TN) to the total number of instances. TP represents the count of accurate positive
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results, FN represents the count of incorrect negative results, and FP represents the count of incorrect
positive results. Recall, Precision, Accuracy, F-score, and Dice coefficient for segmentation. Confusion
Matrix was valued at 0.917, 0.845, 0.890, 0.880, and 0.979, respectively. The result of the segmentation
model is shown in Fig. 7. There is potential for enhancing these evaluation criteria, a task that we are
currently undertaking. We can see this in the confusion matrix in Fig. 8.

Figure 7: Result of the segmentation model

Figure 8: Confusion matrix
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4.5 Three-Dimensional Reconstruction Results

Three-dimensional (3D) reconstruction is crucial in visualizing liver nodules, providing radiolo-
gists and surgeons with a detailed view of tumor morphology and spatial orientation within the liver.
This subsection presents the 3D reconstruction results derived from the segmentation model applied
to liver scans.

Each scan, with dimensions of (224 × 224 × 133), was preprocessed as indicated in Section 3.1, the
DenseNet retrieved some images with nodules, and nodule normalization was achieved. Normalizing
the original image yields the nodule sequence. We kept the nodule sequence size of (224 × 224 × 133)
to ensure that nodules and livers are in the same coordinate. Lastly, using ray-casting volume ren-
dering, we obtained Three-dimensional models of the liver nodules. Fig. 9 depicts three-dimensional
representations of the liver nodules. The image’s lower right corner shows color and opacity value
characteristics in ray-casting volume rendering. In terms of overall system performance, most of the
time is spent obtaining lesion masks through the DenseNet, with a mean velocity of 1.03 s for each scan
on a primary PC equipped with an Nvidia Tesla K80 GPU (12 GB) and RAW (13 GB), which takes 142
s in total. The 3D reconstruction step occupies most memory, with a total capacity of 6.8 GB for Three-
dimensional models of the liver and three nodules. Overall, if the lesion masks are precise enough, we
can obtain Three-dimensional models of the projected nodules and livers using our approach. Also, we
can observe more about nodules and liver tissues by altering the color and opacity of the ray-casting,
which is incredibly useful for diagnosis and subsequent therapy. Consider the case of a single patient.
The original CT 3DRM phase.

Figure 9: Three-dimensional Reconstruction Module (3DRM) phase

5 Discussion

The proposed system aims to accurately identify, separate, and generate three-dimensional
representations of liver nodules, leveraging the publicly available 3Dircadb dataset. The workflow
is robust and multi-faceted: liver and tumor segmentation are performed using the UVF model,
tumor detection utilizes DenseNet, and 3D visualization is rendered through a sophisticated ray-
casting volume rendering algorithm. This integrated approach results in detailed, three-dimensional
models of both the liver and its nodules, as illustrated in Fig. 6. A key advantage of this system is
its modular architecture, which distinctly separates the processes of detection and 3D reconstruction.
This separation allows for customized optimizations, such as refining the segmentation network for
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sharper contours or incorporating additional detection networks to identify other anomalies, like
kidney tumors or various cancers. The volume-rendering algorithm is also designed for adaptability,
offering flexibility for specific clinical needs.

5.1 Comparison to Existing Methods

Our approach, which employs UNet and VGG architectures fine-tuned through the Fastai library,
excels in both segmentation precision and computational efficiency. According to the comparative met-
rics outlined in Table 1, the UVF and DenseNet models deliver superior outcomes in computational
efficiency, accuracy, and semi-real-time feasibility when evaluated under similar testing conditions.
As shown in Table 1, different models perform better or worse depending on specific conditions like
low-contrast images and irregularly shaped nodules. For example, Tables 2 and 3 outline performance
metrics across various models. For instance, the Cascaded Encoder-Decoder Architecture [9] with 0.7
million parameters and tested on an NVIDIA Quadro M6000 GPU achieves a modest Dice score of
63.4%, indicating its limited ability to segment complex anatomical structures accurately. Even the
more advanced U-Net model [11], with 21.7 million parameters and a higher Dice score of 73.34%,
struggles to segment highly irregular nodules efficiently.

Table 1: Comparative analysis of model approaches based on computational efficiency, accuracy, and
real-time implementation

Model/Approach Computational
efficiency

Accuracy Real-time
implementation

Performance under
specific conditions

Edge-Based and
Atlas-Based Models
(Yang et al. [4],
Patel et al. [19])

Generally
computationally lighter
but lacks adaptability
for complex cases.

Lower accuracy in
complex cases with
heterogeneous liver
tumor characteristics.

Limited real-time
feasibility due to
reliance on edge and
shape detection.

Performs poorly
with low-contrast
images and
irregular nodule
shapes due to
limited adaptability
and reliance on
basic edge
detection.

Hybrid Deep Learning
Models
(Budak et al. [9],
Kumar et al. [18])

Computationally
intensive; improved
segmentation but
limited real-time
feasibility.

High accuracy due to
multi-stage and hybrid
architectures reduced
false positives.

Not suitable for
real-time due to high
computational costs.

High accuracy in
detecting complex
shapes but struggles
with noisy or
low-contrast
images, requiring
extensive
preprocessing.

U-Net Variants and
Multi-Stage CNNs
(Tran et al. [11],
Han et al. [14],
Zhang et al. [15])

Moderate to high;
effective feature
extraction with some
computational
trade-offs.

High accuracy for
capturing complex
tumor shapes,
especially in U-Net
modifications.

Limited for real-time,
suitable for offline
analysis due to
processing complexity.

Performs well with
irregularly shaped
nodules but may
struggle with
low-contrast images
without additional
enhancement steps.

(Continued)
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Table 1 (continued)
Model/Approach Computational

efficiency
Accuracy Real-time

implementation
Performance under
specific conditions

Our Moderate; optimized
with Fastai, average
1.03 s per scan,
142 s total on Nvidia
Tesla K80 GPU.

High accuracy in
identifying liver
nodules, especially with
complex boundaries.

Semi-real-time is
feasible with a primary
focus on practical
applications; 3D
models support early
detection.

Performs robustly
on irregularly
shaped nodules,
balancing accuracy
and computational
demands.

Table 2: Comparison of model performance based on complexity, dataset, and dice score

Ref. No. Model Recall Precision Accuracy

[25] Semi-automated CAD system 81.82% 81.63% 81.69%
[26] Hybrid MW-UNet + 3D region-growing algorithm 83.2% 87.1% 85.7%
[27] Fast-density peak clustering – 0.87692 85.567%
[34] Opposition-based spotted hyena optimization – – 85.7%
[35] Lightweight CNN for liver segmentation – – 84.6%
– Our 0.917 0.845 0.890

Table 3: Comparison of model performance based on complexity, dataset, and dice score

Ref. No. Model Hardware Dataset Dice score (%)

[9] Cascaded encoder-decoder
architecture

Two-stage instruction with
0.7 M parameters; source
from NVIDIA Start your
source.3072 CUDA cores
and 24 GB memory from
Quadro M6000 GPU

3DIRCADb 63.4

[11] U-Net Two-step training + 21.7 M
parameters End source +
Intel. Start source. Xeon
Silver 4114 CPU, GRID
Virtual GPU V100D-8Q,
and 32 GB of RAM

3DIRCADb 73.34

[13] LVSNet 8 NVIDIA Titan RTX
GPUs with 24 GB memory

3Dircadb, Sliver072,
and CHAOS
challenge

80.5

[16] Hybrid-3DResUNet Training consists of two
stages and utilizes a total of
5.3 million parameters

3DIRCADb 78.8

(Continued)
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Table 3 (continued)
Ref. No. Model Hardware Dataset Dice score (%)

[17] RA-Net The training process utilizes
a neural network with 13
million parameters and is
executed on a 12-gigabyte
NVIDIA Tesla K80 GPU,
specifically on the Google
Colab platform

LiTS17 81.0

– Our Two-stage training + 13 M
parameters + 12 GB
NVIDIA Tesla K80 GPU
(Google Colab)

3DIRCADb 97.9

By contrast, our UNet + VGG model achieves an impressive Dice score of 97.9% on the
3Dircadb dataset. This remarkable performance is attributed to VGG’s powerful feature extraction
and UNet’s reliable segmentation framework, both of which are further optimized through Fastai’s
advanced training methods. Unlike resource-intensive models such as LVSNet [13], which requires
eight NVIDIA Titan RTX GPUs and achieves a Dice score of 80.5%, our solution offers a practical
yet highly accurate alternative. Similarly, models like Hybrid-3DResUNet [16] and RA-Net [18] reach
Dice scores of 78.8% and 81.0%, respectively, but at the cost of extensive computational demands,
making them less feasible for regular clinical use.

Currently, our network employs single 2D view images. However, methods developed by
Arindra et al. [43] have successfully used multi-view 2D images, and Dou et al. [44] have incorporated
3D spatial data, suggesting that integrating richer spatial information could enhance our model’s
accuracy in the future. We also acknowledge that we could make further improvements to our 3D
visualizations by fine-tuning rendering parameters. Addressing memory efficiency is another priority
to ensure seamless deployment in clinical environments.

5.2 Limitations and Future Directions

Despite the system’s promising results, several limitations warrant discussion. First, the model’s
performance is highly dependent on the quality of CT images, which may not be consistent across
different medical facilities. Second, the dataset used, although publicly available and beneficial for
transparency, may introduce biases that affect generalizability. Additionally, detecting smaller or less
clearly defined nodules remains a challenge, as shown in Fig. 9, and the current method may require
further optimization to improve accuracy in such cases. Lastly, the computational demands of our
approach could hinder real-time application, necessitating further development for practical clinical
integration.

6 Conclusions and Future Work

This study proposed system segmentation and detection methods for the three-dimensional
visualization and diagnosis of liver nodules, utilizing the DenseNet, UVF, and ray-casting methods for
volume rendering algorithms to help radiologists identify liver nodules more accurately. The system
used the DenseNet model to detect tumors. The DenseNet model extracts features by making tight
connections between layers, ensuring each layer has direct access to the gradients from the loss function
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and the original input signal. This promotes feature reuse and improves gradient propagation. The
system conducted experiments on the publicly available 3Dircadb dataset to evaluate the proposed
method in this paper. The DenseNet model performed well in detection accuracy, with 89%.

Meanwhile, the UVF model performed well regarding segmentation accuracy, with 97.9%. The
system can successfully segment challenging cases. Experiment results indicate that our proposed
approaches may segment and identify liver nodules more accurately, allowing patients and radiologists
to evaluate diagnosis results easily.

In our upcoming research, we are committed to developing an advanced algorithm dedicated to
precisely identifying liver nodules. This innovation will be crucial in refining our current methodologies
and will pave the way for a comprehensive, fully automated liver nodule segmentation system.
Achieving top-tier accuracy and efficiency in tumor segmentation demands a rigorous and well-
rounded approach to research and development.

To this end, we intend to enhance our liver nodule identification algorithm by harnessing state-
of-the-art machine learning technologies, strongly emphasizing deep learning. By training our model
on extensive and diverse datasets, we aim to improve its proficiency in differentiating between benign
and malignant nodules. Furthermore, we plan to investigate various optimization techniques, such as
employing ensemble methods to integrate multiple models for better performance. These strategies
will help minimize computational demands while speeding up segmentation processes.

Our research will also extend to constructing highly detailed 3D models of the liver and its nodules
derived from a range of imaging modalities like CT and MRI scans. We aim to ensure these models
capture anatomical diversity and pathological conditions’ intricate features. We will experiment with
advanced rendering techniques to optimize visualization and interpretability, including fine-tuning
shading, texturing, and lighting. We’ll explore sophisticated rendering algorithms like ray tracing to
deliver superior visual quality.

Once our automated segmentation system is complete, extensive validation will be a top priority.
We will rigorously test our system using clinical datasets and benchmark its performance against
assessments by expert radiologists. This thorough evaluation will ensure our solution achieves high
accuracy and demonstrates dependability in practical clinical environments. By prioritizing these crit-
ical areas, our future research aspires to make significant advancements in liver nodule segmentation,
ultimately enhancing diagnostic precision and contributing to better patient outcomes in hepatology.
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