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ABSTRACT

Accurate non-line of sight (NLOS) identification technique in ultra-wideband (UWB) location-based services
is critical for applications like drone communication and autonomous navigation. However, current methods
using binary classification (LOS/NLOS) oversimplify real-world complexities, with limited generalisation and
adaptability to varying indoor environments, thereby reducing the accuracy of positioning. This study proposes
an extreme gradient boosting (XGBoost) model to identify multi-class NLOS conditions. We optimise the model
using grid search and genetic algorithms. Initially, the grid search approach is used to identify the most favourable
values for integer hyperparameters. In order to achieve an optimised model configuration, the genetic algorithm
is employed to fine-tune the floating-point hyperparameters. The model evaluations utilise a wide-ranging dataset
of real-world measurements obtained with a Qorvo DW1000 UWB device, covering various indoor scenarios.
Experimental results show that our proposed XGBoost achieved the highest overall accuracy of 99.47%, precision
of 99%, recall of 99%, and an F-score of 99% on an open-source dataset. Additionally, based on a local dataset, the
model achieved the highest performance, with an accuracy of 96%, precision of 96%, recall of 97%, and an F-score of
97%. In contrast to current machine learning methods in the literature, the suggestion model enhances classification
accuracy and effectively addresses the NLOS/LOS identification as a multiclass propagation channel. This approach
provides a robust solution with generalisation and adaptability across various dataset types and environments for
more reliable and accurate indoor positioning technologies.
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1 Introduction

Experts predict that global Internet of Things (IoT) device connectivity will surpass 22 billion
by 2025. As a result, localisation has emerged as a critical component of the IoT. However, accurate
location awareness is critical for optimising the vast majority of IoT services [1]. Consider navigating
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visitors through a large hospital, a labyrinthine shopping mall, a massive warehouse complex, or
a convoluted industrial zone. The COVID-19 pandemic has significantly increased the interest in
research in this field [2], particularly in the context of indoor positioning solutions that achieve sub-
metre accuracy to enhance emergency response, security, and safety measures. Indoor positioning, or
indoor localisation, is a technique employed to ascertain the precise location of individuals or objects
within enclosed architectural spaces. It employs a variety of technological solutions, such as computer
vision methodologies, infrared detection, acoustic signal processing, and wireless communication
protocols, to enable precise localisation within buildings or similar confined environments [3–5].
However, the effectiveness of these systems is frequently limited by factors such as low positional
accuracy, typically around 2.5 m, and substantial performance degradation in non-line-of-sight
(NLOS) environments, during device movement, or under conditions of multipath propagation caused
by signal reflections from walls or objects. The rising demand for precise indoor localization has
spurred the advancement of diverse applications, utilized in environments like commercial buildings,
department stores, airports, and museums. In indoor positioning systems, the primary objective is to
establish efficient, accurate, and adaptable positioning methods that are both user-friendly and capable
of adjusting to dynamic environmental conditions and expansive areas. While outdoor positioning
techniques, including GPS, video tracking, and radio-wave combinations, have proven effective, their
limitations in accuracy under indoor conditions underscore the need for highly specialized and precise
indoor localization solutions. The impressive properties of ultra-wideband (UWB) technology have
made it an increasingly critical component of precise indoor localisation systems. These consist of
a high multipath immunity, low power consumption, short to medium ranges, large bandwidth,
and fast data rate. The UWB technology’s exceptional time resolution facilitates centimeter-level
localization accuracy for mobile or stationary objects in open environments [6]. UWB systems rely
on precise distance measurements taken from a minimum of three anchor points. As a result, any
errors caused by these difficult conditions can accumulate and have a significant impact on the overall
positioning accuracy. Nonetheless, practical applications face significant obstacles, particularly the
NLOS problem. This problem causes signal delays and biased distance estimates, leading to a decrease
in positioning accuracy. In specific circumstances, NLOS situations arise when there is a barrier
between the communication transmitter and receiver [7,8]. Moreover, the current literature frequently
disregards the intricacies of real-world environments, particularly in difficult scenarios that involve
hard-NLOS (multiple barriers, such as walls, obstruct the signal path) and multipath (MP) conditions
(signals travel different routes to reach the receiver), and instead concentrates on binary LOS/NLOS
classification in UWB ranging systems [9]. Accurate NLOS identification is essential for precise indoor
positioning, particularly in autonomous navigation, search-and-rescue operations, and industrial
tracking, where sub-metre accuracy is required [4,10,11]. Models with restricted generalisation are
the consequence of the absence of dynamic adaptation to a variety of indoor environments in current
methodologies.

Machine learning has emerged as a highly efficient method for data mining and has experienced
significant advancements in recent years, leading to its widespread adoption across various domains.
Among the many machine learning techniques, the XGBoost (extreme gradient boosting) algorithm,
introduced by Chen and Guestrin in 2016 [12], is particularly noteworthy. XGBoost is an advanced
ensemble learning algorithm, an enhancement of the gradient-boosting decision tree [13], and is
distinguished by its ability to function without the need for extensive feature engineering. In contrast
to the gradient boosting decision tree algorithm, XGBoost exhibits superior predictive accuracy
and improved generalisation capabilities, which have contributed to its widespread popularity and
application in a variety of fields. For instance, XGBoost has been employed as a predictive model
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for crude oil price forecasting, utilized for identifying key features to enhance the classification of
urban road traffic accidents within big data frameworks, and integrated into hybrid gene selection
methodologies for cancer classification [14–16]. Overall, XGBoost is acknowledged for its strong
performance, efficient operation, and ability to use many threads for parallel data processing. Yet,
if implemented without parameter optimisation, XGBoost may demonstrate suboptimal fit with
particular datasets, leading to diminished generalisation performance and adaptability [17]. To
overcome this constraint, the current work utilises a blend of grid search and genetic algorithms to
enhance the hyperparameter setting of the XGBoost method. The grid search approach is initially
used to evaluate the integer hyperparameters and establish the optimisation ranges for the floating-
point hyperparameters. The genetic algorithm is employed to determine the most favourable values
of the floating-point hyperparameters. Subsequently, the enhanced XGBoost algorithm forecasts and
detects non-line-of-sight (NLOS) propagation channels in indoor UWB location sensor systems. The
contributions we have made are as follows:

(a) We propose an enhanced XGBoost model with grid search and a genetic algorithm to
address the existing difficulties in NLOS condition prediction. These challenges include the
requirement for a model that can robustly generalise and adapt to different indoor settings
with high precision, and achieve superior overall accuracy compared to other machine learning
approaches.

(b) NLOS conditions prediction, in UWB communications, as a multiclass propagation channel
(LOS, MP, both soft and hard NLOS) with the proposed model is performed, and the results
are compared with other recent existing methods, i.e., the support vector machines (SVM),
semi-supervised support vector machines (S3VM), random forest (RF), multi-layer perceptron
(MLP), stochastic gradient descent (SGD), decision tree (DT), Naive Bayes (NB), AdaBoost,
logistic regression (LR), K-Nearest Neighbors (KNN), gaussian process (GP), Generalized
Linear Models (GLM), and CNN based the real measurement dataset obtained by Qorvo
DW1000 UWB device from open source dataset in addition to local dataset created in this
project. We demonstrate that our proposed method can achieve state-of-the-art results when
compared to other methods.

(c) The Qorvo DW1000 device is used to collect an authentic dataset through various propagation
channels in two distinct scenarios, with the goal of reducing the need for extensive laboratory
work when changes to the working environment are required. A thorough analysis of the data
was conducted to excel in distinguishing between NLOS conditions and determining the best
parameters for achieving high prediction accuracy.

The rest of the article is structured in the following manner: Section 2 provides an overview of
the works that are related to the topic. Section 3 outlines the system architecture, dataset creation and
preparation, feature extraction and selection, genetic and grid search algorithms, and the proposed
XGBoost model. Section 4 discusses the evaluation metrics. Section 5 provides a comprehensive
overview of the experimental setup, including the results and discussions. Lastly, Section 6 presents
the conclusion and explores potential future work.

2 Related Work

Efforts to address ranging errors in UWB systems caused by NLOS effects are typically cate-
gorised into two main strategies in the current literature: NLOS identification and NLOS mitigation
[18] Usually, the method includes finding signals that do not follow a direct path and then adjusting
the location algorithm to reduce the biases caused by these signals.
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To advance the identification of NLOS propagation channels in UWB indoor positioning systems,
it is essential to thoroughly understand the existing research. The literature on this subject can be
broadly classified into three primary approaches: empirical methods, machine learning (ML), and
deep learning (DL). As demonstrated in [19,20], empirical methods rely on developing mathematical
models or statistical relationships to predict NLOS conditions using measurable parameters, with an
accuracy of less than 90%. Although empirical approaches can achieve accuracy close to 90%, they
often require substantial upfront laboratory setup expenses for each additional testing area. The two
primary categories of ML approaches for NLOS identification are as follows: hybrid techniques that
integrate multiple algorithms and those that employ individual algorithms. A study [21] compared
the effectiveness of K-Nearest Neighbours (KNN), support vector machines (SVM), Generalised
Linear Models (GLM) gaussian process (GP), and Decision Trees (DT) for three classification types:
LOS, MP, and NLOS. They discovered that the accuracy of KNN and GP was less than 90%. Also,
this project is highly dependent on the specific environment where the measurement campaign was
conducted with a limited measurement data range of less than 9.5 m. Wang et al. [22] proposed
a semi-supervised SVM (S3VM) with self-training, initially trained on a small labelled dataset. It
iteratively pseudo-labels and adds unlabeled data based on confidence measures. While providing a
94% improvement over supervised methods, the increased complexity and computational demand
may be unjustified. Without retraining, the model is prone to initial data biases and performs poorly.
Performance is also affected by parameter selection, such as the weights between labelled and pseudo-
labeled data, as well as scale factors during training. The authors in [23] used machine learning to
detect NLOS conditions in UWB indoor localisation. They tested SVM, random forest (RF), and
multilayer perceptron (MLP) classifiers. Accuracy significantly dropped when these models were tested
in environments different from their training setting, indicating poor generalization and possible
overfitting due to insufficiently diverse training data. For instance, RF accuracy fell from 91.9% to
73.5% across different environments.

Yang et al. [24] proposed a method to enhance the accuracy of LOS/NLOS identification by
extracting new parameters from channel impulse response data. Their two-step classification process
integrates a fuzzy credibility-based support vector machine and dynamic threshold comparison.
Although the experimental results demonstrate a significant 93% increase in accuracy, the system’s
dependence on precise Characteristic Parameters (CCP) thresholds may hinder its ability to handle
environmental variations effectively. Further testing in diverse settings is needed to assess its broader
applicability. The authors of [25] suggested a system that integrates feature extraction from the CIR
with machine learning algorithms, employing SVM optimised via a genetic algorithm (GA) for feature
selection. SVM is used to classify signal propagation conditions as either LOS or NLOS. The GA is
employed to identify the optimal combination of features that maximises classification accuracy while
minimising computational complexity. The proposed system achieves an NLOS detection accuracy
of 91.86% with the optimal feature combination. For example, the research conducted by [26] in
a controlled environment (anechoic chamber and corridor) combined SVM with Fisher’s linear
discriminant (LDA) and achieved a high level of accuracy (92% and 100%) for binary classification
(LOS/NLOS). However, the method’s effectiveness in dynamic environments has not been evaluated,
which is a significant drawback for its practical use. In addition, the method has certain limitations.
It requires extensive training datasets and may not be applicable to different environments. It also
focuses only on static conditions and binary classification. In 2022, Che et al. [27] presented a feature-
based approach to improve the accuracy of NLOS detection. Their method primarily addressed the
issue arising from imbalanced datasets. Within this system, the utilisation of Gaussian distribution
(GD) and generalised Gaussian distribution (GGD) is prevalent. The GD algorithm relies on the
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mean and variance of the features extracted, whereas the GGD takes into account kurtosis, which
provides a more suitable representation of the data distribution. It achieved 98% accuracy in binary
classification, especially on imbalanced datasets. They did, however, evaluate the system’s performance
using a small dataset in a specific environment with a range of no more than seven meters, utilising a
dynamic threshold that adapts based on the training data. The system is still susceptible to variations
in various real-world indoor environments. That is, generalisability and robustness require more tests
on a larger and more diverse dataset.

Furthermore, deep learning techniques, particularly convolutional neural networks (CNNs), have
proven to be valuable tools in differentiating between NLOS and line-of-sight (LOS) conditions in
UWB-ranging applications. Wang et al. [28] used CNN to binary classify various types of CIR figures,
thereby converting the identification problem into one of image recognition. Similarly, Reference [29]
employed capsule networks (CapsNets) for the same task. The CIR is processed using a short-time
Fourier transform (STFT) to generate an impulse response spectrum, which serves as input to the
CNN, achieving an accuracy of 98.24%. The CapsNets architecture consists of a convolutional layer,
a primary capsule layer, and a channel capsule layer. The input data is formatted as a 6 × 6 × 1
monochrome image. CapsNets utilise a dynamic routing-by-agreement mechanism to continuously
improve the coupling coefficients between capsules, leading to an impressive accuracy rate of 94.63%.
Nevertheless, the effectiveness of both models is greatly impacted by the quantity and quality of the
training data and by the selection of hyperparameters. It is important to carefully fine-tune and thor-
oughly validate the system in various indoor environments. However, this process can make it difficult
to apply the system to new datasets. Furthermore, these models are more computationally intensive
compared to traditional machine learning models, requiring the preprocessing and structuring of input
data into image format [30].

In 2020, the authors of [31] put forward a method that combines morlet wavelet transformer
(MWT) with CNN, called MWT-CNN, which transforms the UWB CIR data into time-frequency
spectrums through MWT and then processes them with a CNN to extract the features for determining
the NLOS conditions. It also has an accuracy as high as 98.84% in scenarios quite close to the
training environments. The performance on the other testing scenes has significantly declined, with
an accuracy of 76.65% in the industrial scene and 69.23% in the residential scene. As a result, MWT-
CNN necessitates a highly controlled and consistent environment. This method presents significant
challenges for broader and real-world applications due to its limited generalisation capability, high
computational complexity, and large requirements on training data [31]. The authors of [30] proposed a
novel deep-learning architecture known as ININN. This hybrid model combines a CNN for extracting
spatial features, a gated recurrent unit (GRU) for extracting temporal features, and squeeze-and-
excitation (SE) blocks for enhancing channel-wise features. While the system achieves an accuracy of
88.45% on an open-source dataset and demonstrates a variable accuracy range (87.5% to 99.9%) under
different Eb/N0 conditions, its performance is susceptible to environmental factors and signal quality.
Notably, including CNN, GRU, and SE components increases computational complexity, potentially
limiting real-time applicability on resource-constrained devices. Further investigation is warranted to
address the observed performance variability and optimize the model for real-world deployment.
Wei et al. [32] introduced a multiple-input learning neural network that processes both raw CIR
signals and time-frequency diagram of CIR (TFDOCIR) images generated using continuous wavelet
transform (CWT). This system demonstrates an identification accuracy of 91.74%. Nevertheless, the
model’s complexity, which integrates GRU and CNN layers, necessitates considerable computational
resources and extended training times, posing challenges for deployment in real-time or resource-
constrained environments. Furthermore, the accuracy of NLOS identification is highly dependent on
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the precise generation of TFDOCIR images from CIR signals; any errors in this preprocessing stage
can significantly degrade the overall system performance.

While most studies have focused on treating the problem as a binary classification task, dis-
tinguishing between LOS and NLOS or LOS and MP, there have been limited investigations into
UWB-based ranging errors as a multi-class problem. A study that utilised SVM introduced a two-step
identification process that initially differentiates between LOS and NLOS. If NLOS is detected, the
process is further classified as MP vs. NLOS [33]. A separate study examined the distinction between
two types of NLOS conditions (soft-NLOS vs. hard-NLOS) in addition to LOS, based on the material
of obstacles that the UWB signal passed through [34]. Furthermore, the methodology outlined in
[21] employs KNN and GP algorithms as ternary classifiers to distinguish between LOS, soft-NLOS,
and hard-NLOS conditions. In [23], SVM, RF, and MLP classifiers were evaluated for their ability to
predict the three propagation channels, including LOS, MP, and NLOS.

In conclusion, the current methods employed to identify NLOS channel states have a few
disadvantages. Initially, the majority of individuals concentrate on the comparison of LOS and NLOS
without taking into account the complexities of real-world environments, such as hard NLOS and MP.
Furthermore, machine learning techniques may not be able to effectively adapt to new environments
without retraining, as they are dependent on specific testing conditions. In the same vein, hybrid
ML approaches exhibit exceptional accuracy (e.g., 98%); however, they frequently encounter limita-
tions as a consequence of evaluation in controlled environments with relatively small, environment-
specific datasets. Similarly, deep learning models show promise, but they require stable and specific
environments, as well as significant computational resources for tasks such as data preprocessing,
image representation formatting, and extended training time. Based on a thorough review of current
state-of-the-art methodologies, it is clear that addressing all of the issues raised remains a daunting
task. To the best of the authors’ knowledge, no machine-learning model has been developed that
effectively enhances both accuracy and generality while considering the necessary trade-offs. This
article introduces an optimized XGBoost with grid search and a genetic algorithm to overcome
the current challenges in NLOS condition prediction, e.g., the need for a model that has strong
generalization and adaptability to varying indoor environments for multiclass LOS/NLOS condition
identification, and achieve higher overall accuracy in comparison to other machine learning methods.

3 Methodology

3.1 Proposed System Architecture

Fig. 1 outlines a research methodology that is systematic and aims to minimise ranging errors in
UWB indoor systems, especially under varying conditions. The main focus of the initial stage is to
create the dataset. This investigation aims to comprehensively analyse the behaviour of UWB devices
in different scenarios, such as LOS and NLOS situations, which include soft NLOS, hard NLOS, and
MP. Data collection is designed to capture the intricacies of real-world conditions by incorporating a
variety of realistic environments. The objective is to produce a dataset that is both inclusive and robust.
Critical cleaning tasks are addressed during a meticulous data preparation phase that follows data
collection. This includes managing missing values, removing outliers and duplicates, and combining
data from different scenarios into a unified dataset suitable for further analysis (details provided in
Sections 3.2 and 3.3).
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Figure 1: A proposed methodology for the indoor NLOS identification system of UWB

Afterwards, feature selection is used to identify the most relevant attributes that greatly improve
the performance of the range-based Indoor Positioning System (IPS). As mentioned in Section 3.4,
this step is crucial for improving the performance, interpretability, and efficiency of the model by
focusing on the most informative features.

The dataset is then split into training and testing subsets, usually with a 70/30 split (training/test-
ing). This guarantees that the model is trained on a significant portion of the data, while also setting
aside an ample amount for thorough evaluation. Data preparation consists of two critical steps:
standard scaling and label encoding. Standard scaling is used to normalise the features to a standard
range, which helps maintain consistency across the dataset and enhances model performance. On the
other hand, label encoding is a process that converts categorical variables into numerical values, which
is often required for machine learning algorithms.
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Next, model optimisation is performed by fine-tuning hyperparameters such as the learning
rate, maximum tree depth, and the number of estimators. This process is designed to enhance the
precision and overall effectiveness of the XGBoost model, as detailed in Section 3.5. The model with
the optimised parameters goes through multiple validation and evaluation stages. The XGBoost model
is initially used to predict and classify various NLOS conditions. This is important for reducing ranging
errors in UWB systems. Furthermore, the efficacy of the model is evaluated by quantifying parameters
such as accuracy, recall, precision, and F1-score. This provides a comprehensive assessment of how well
the model handles UWB-ranging errors. Finally, model validation is carried out using a validation set
to confirm the model’s efficacy on new data. Following this systematic workflow enables researchers
to effectively address the challenges of UWB indoor NLOS identification, resulting in a robust model
that improves indoor positioning accuracy. The use of this methodical approach ensures that each
stage is completed carefully and precisely, which improves the overall success of the research.

3.2 Dataset Creation

Real-world data was collected [35] in two residential environments, which consisted of a range of
rooms and corridors, to evaluate the propagation of UWB signals. Measurements were conducted
in corridors of different widths, a hall and rooms of different sizes, all under different conditions
including LOS, MP and NLOS. In order to simulate NLOS conditions and examine their influence
on the transmission of UWB signals, obstructions, such as walls, were implemented. Fig. 2 illustrates
the measurement scenarios and environments.

Figure 2: Indoor propagation channels

During the measurement phase, a basic network architecture was established to facilitate the data
collection process in alignment with the study’s objectives. This network consisted of two nodes, each
equipped with a DW1000 UWB transceiver. One transceiver functioned as an anchor, while the other
served as a target. The anchor was connected to a computer via a serial port for data logging, allowing
for precise capture and recording of UWB signal data during experiments. After data extraction, the
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resulting database, including the identified features for each measurement trial, was systematically
stored in a file using MATLAB R2022a. This methodical approach ensured that the dataset was both
comprehensive and well-organized, capturing a wide range of signal characteristics essential to the
study. The antenna height of the static UWB device was consistently maintained at 2.00 m to minimize
the effects of Fresnel zones on measurement accuracy, with data recorded directly on a connected PC.

The measurement data were collected across different propagation channels in various exper-
imental scenarios. For the NLOS experiments, obstacles were introduced between the anchor and
target transceivers to simulate NLOS conditions, utilizing two separate rooms. The focus was placed
on analyzing both soft and hard NLOS propagation channels to better understand how different
obstacles impact UWB signal transmission. Careful attention was given to designing the data
collection methodology for both static and dynamic scenarios to allow for a thorough analysis of
signal behaviour under diverse conditions.

In the dynamic scenarios, one transceiver was fixed and connected to a PC for data logging,
while the other was mobile, carried by an individual performing random locomotion. This setup
simulated real-life situations where the target device frequently changes position and orientation. In
the static setup, both transceivers were positioned upright at a perpendicular angle to the ground and
mounted on 2-m tripods, with the DW1000 antennas oriented vertically to ensure consistent device
alignment for controlled UWB signal propagation measurements. During dynamic data collection, the
mobile transceiver’s antenna was intermittently rotated at random intervals, introducing variability in
orientation to assess its effect on signal strength and measurement quality, simulating more realistic
usage conditions. The data collection process was designed to thoroughly evaluate the operational
performance of the UWB system in indoor environments under various conditions. By incorporating
movement and varying device orientations, the dataset became more comprehensive, leading to
valuable insights regarding the system’s adaptability and effectiveness in real-world scenarios.

Fig. 3 depicts the experimental setup, which used the Qorvo DW1000 module to measure UWB
data. This module is a low-power, multichannel, single-chip CMOS radio transceiver that meets the
IEEE 802.15.4-2011 standard. The device uses time-of-flight (TOF) technology to achieve a range
precision of ±10 cm. The DW1000 is intended to operate across six RF frequency bands (3.5–
6.5 GHz), with a 500–900 MHz bandwidth. It supports data rates of up to 6.8 Mbps, making it
extremely dependable even in difficult MP scenarios. The module was set up to utilise channel 2
at a frequency of 4 GHz, featuring a bandwidth of 500 MHz and a data rate of 110 Kbps. The
frequency of pulse repetition employed was 64 MHz, accompanied by a preamble length of 1024
and a preamble code of 9. The reported precision for this setup was ±10 cm, which is essential for
ensuring accurate UWB ranging measurements. For our experiments, we chose the STM32L476RG
development board from STMicroelectronics as the main microcontroller unit (MCU) due to its ability
to handle complex computations and data processing. The use of the STM32L476RG MCU resulted
in strong performance and smooth communication between the UWB nodes and the data logging
interfaces, improving the overall efficiency and dependability of our experimental setup.
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Figure 3: The indoor environment of the real experimental setting

3.3 Data Pre-Processing

After collecting the data, we manually assigned class labels (LOS, MP soft-NLOS, and hard-
NLOS). The data was then segregated and saved as separate files for each class. The data was rescaled
during preprocessing using standardisation, which ensures that the mean is zero and the standard
deviation is one (unit variance). The normalisation of input features generally leads to quicker training
times and enhanced performance for numerous machine-learning models. We convert categorical
labels into numerical values for machine learning algorithms.

3.4 Feature Extraction and Selection

The Qorvo DW1000 UWB modules were configured in accordance with the specifications
outlined in Table 1, extracting twelve features. These include the following: raw timestamp, number
of accumulated preamble symbols, received signal strength level (RSL), first passage signal strength
(FSL), noise threshold values, a numerical representation of the signal’s leading edge, range correction
values, timing difference between tag and anchors, measured distance, and the receiver’s internal re-
sampler time delay.

Table 1: UWB DW 1000 configuration setup

Module name DW1000

Manufacturer Qorvo
Channel 2
Frequency 4 GHz
Bandwidth 500 MHz
Data rate 110 Kbps
Frequency of pulse repetition 64 MHz
Preamble length 1024
Preamble cod 9
Reported precision 10 cm

(Continued)
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Table 1 (continued)

Module name DW1000

Microcontroller type STM32L476RG
Microcontroller manufacturer STMicroelectronics

Consequently, a feature selection procedure was implemented to ascertain the most pertinent
attributes for NLOS identification. The wrapper technique was implemented in this process, which
involved the utilisation of a machine learning model to evaluate the influence of individual features
on the classification accuracy as a whole. The classification accuracy attained using each feature is
illustrated in Fig. 4. The following characteristics were determined to be statistically significant based
on this evaluation:

(a) Received Signal Level (RSL): Estimated by employing the formula that incorporates the
Preamble Accumulation Count and Channel Impulse Response Power.

(b) First Passage Signal Level (FSL): Calculated by utilising the magnitudes of the First Path
Amplitude points.

(c) Preamble Symbols Accumulated (PSC): Assists in accurately modelling the channel impulse
response.

(d) Range Bias Error: The time-of-flight calculations are influenced by the fluctuation in the
received signal level.

(e) RSMPDEL (RSMPL): Denotes the delay caused by the internal re-sampler.
(f) Clock Offset: Indicates the variation between the actual clock frequency and the nominal value

in UWB transceivers.

Figure 4: Classification performance of individual features
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3.5 Genetic and Grid Search Algorithms

The grid search method, a systematic approach to hyperparameter optimization, exhaustively
evaluates all feasible combinations of parameter values within a predefined grid. By systematically
testing each combination, this technique identifies the optimal hyperparameter configuration that
maximizes the performance of a machine learning model. However, the grid search method is not
ideal for optimizing floating-point hyperparameters due to its slow convergence speed [36]. Conversely,
the genetic algorithm, a computational method that emulates the principles of natural selection and
genetic processes, efficiently converges to optimal solutions through genetic operations like crossover
and mutation [37]. The algorithm begins with a population of randomly generated potential solutions,
referred to as chromosomes. Each chromosome’s fitness is assessed through a fitness function, with
higher fitness values indicating a greater likelihood of being selected for reproduction. Iterative
processes such as selection, crossover, and mutation generate successive populations that gradually
converge on an optimal solution. This process is repeated until the best fit individual is identified
or a predetermined number of iterations are completed. This paper presents an optimised XGBoost
method that combines grid search for integer hyperparameter optimisation and a genetic algorithm for
floating-point hyperparameter optimisation. The foundational methodology used in the Genetic and
Grid Search framework for hyperparameter optimisation of the XGBoost Classifier is summarised as
follows and illustrated in Fig. 5:

(a) Create an initial model for NLOS identification using the XGBoost algorithm with default
hyperparameter values.

(b) Conduct a grid search to ascertain the optimal values for n_estimators, scale-pos weight, and
max_depth.

(c) Determine the ideal ranges for the floating-point hyperparameters: gamma, subsample, col-
sample_bytree, reg-lambda, and learning rate reg-alpha.

(d) Start by initialising a population that falls within the optimal ranges of the floating-point
hyperparameters.

(e) Configure the genetic algorithm parameters: crossover probability, mutation probability,
iteration count, and population size.

(f) Reconstruct the XGBoost model for NLOS identification using the population.
(g) Assess the proficiency of each individual in the population by considering the model’s accuracy

in differentiation.
(h) Choose the best individuals from the population.
(i) Generate offspring individuals by performing mutation, crossover, and other genetic opera-

tions.
(j) Reconstruct the NLOS identification model using the hyperparameters of the offspring

individuals, which are based on XGBoost.
(k) Output the optimal individuals if the maximum number of iterations is reached.
(l) Otherwise, return to Step (f) and continue iterating.
(m) The final multi-class NLOS identification prediction model should be constructed by utilising

the recently acquired optimal values for the six floating-point hyperparameters and the three
integer hyperparameters.
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Figure 5: Description of genetic and grid search framework for XGBoost classifier hyperparameter
optimisation

3.6 Proposed XGBoost Model

Friedman introduced the gradient-boosting decision tree algorithm in 2001 [13]. It works by
sequentially building decision trees, each aiming to correct the errors of its predecessors. This process
is known as boosting. XGBoost, or Extreme Gradient Boosting, is a tree ensemble model that
uses gradient descent to minimize the loss function. Unlike traditional gradient boosting, XGBoost
leverages second-order derivatives to more efficiently determine the optimal direction for updates.
It combines multiple CARTs (Classification and Regression Trees) to make predictions. XGBoost
is an advanced version of the gradient-boosting decision tree algorithm. Unlike traditional GBDT,
which iteratively adds residual trees, XGBoost incorporates a regularization term into its objective
function to prevent overfitting and improve convergence [38–40]. This regularization is similar to but
not identical to Lasso or Ridge regression. XGBoost has demonstrated exceptional computational
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efficiency and prediction accuracy, making it a popular choice for many machine-learning tasks. It
offers several key advantages: it can automatically identify the most informative features, efficient
handling of large-scale datasets. Training and testing times are generally fast, and the ability to learn
from its mistakes. Additionally, XGBoost allows for fine-tuning of a wide range of hyperparameters,
enhancing generalization and reducing the risk of overfitting [41]. It excels in identifying the best
tree model, managing missing values, providing parallelism, and optimizing cache usage by allocating
internal buffers for storing statistical information. The algorithm uses a depth-first search strategy
for tree pruning and improves performance. XGBoost also includes built-in features such as weighted
quantile sketching for finding optimal split points and cross-validation for model evaluation. The
decision trees are constructed sequentially, with each tree assigning weights to the features based
on their contribution to the prediction. Incorrectly predicted features are given higher weights in
subsequent trees, leading to a more robust ensemble model [12,42].

This paper utilises the XGBoost method to construct a classifier and train datasets for the purpose
of predicting the NLOS propagation channel in the UWB indoor positioning system. The dataset
consists of {xi,yi}, where xi CRn is an n-dimensional feature vector, and yj C{LOS, MP, soft-NLOS,
hard-NLOS} represents the category labels. The NLOS identification method based on XG-Boost
involves constructing a classifier by learning to the relationship h (xi) = yj between the feature vector
xi and the category label yi to predict the category of new samples. Let F = {f1, f2, f3, . . . , fm} be a set
of base learners [43,44]:

The predicted value ŷi is given by:

ŷi =
∑m

t=1
fi(xi). (1)

XGBoost is a collection of weak learners that work together. The training process involves utilising
a collection of K trees to generate predictions.

ŷi =
∑k

k=1
fk(xi), (2)

where fk is k-th tree in the ensemble, xi is the i-th data point. The prediction made at any t-th step is:

ŷi
(t) =

∑t

k=1
fk(xi). (3)

Expanding on the Gradient Boosted Decision Trees (GBDT) framework, XGBoost introduces
a regularisation term to the objective function in order to reduce the complexity of the model and
mitigate overfitting. This is outlined in Eqs. (4) and (5):

Obj(∅) =
∑n

i=1
l (yi, ŷi) +

∑k

k=1
� (fk) , (4)

where

� (fk) = γ T + 1
2
λ

∑T

j=1
ω2

j . (5)

Here ŷi is the predicted value, yj is the real value, �(fk) is the regularization term for k-th weak
learner, fk, which is a decision tree, l is the loss function, typically cross-entropy for classification
tasks, T denotes the number of leaf nodes, ωj represents the weight of j-th leaf nodes, γ controls the
complexity of the tree by penalizing the number of leaves, and λ controls the regularization of the leaf
weights.
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For the t-th iteration, the object function to train the t-th weak learner is given by Eq. (6):

Objt =
∑n

i=1
l
(
yi, ŷi

t−1 + ft (xi)
) + �(ft). (6)

Eq. (7) provides the Taylor series expansion of the objective function. The second-order Taylor
process accelerates the convergence speed of the model and allows for the attainment of the global
optimal solution.

Objt =
∑n

i=1
[l

(
yi, ŷi

t−1 + gift (xi)
) + 1

2
hif 2

t (xi)] + �(ft), (7)

where gi = ŷi
t−1l

(
yi, ŷi

t−1
)

is a first-order derivative and hi = ∂2ŷi
t−1l

(
yi, ŷi

t−1
)

is a second derivative.

The algorithm aims to further divide the existing leaf nodes in each step to create the most efficient
tree structure. According to Eq. (8), the splitting gain can be determined.

gain = 1
2

[
g2

l

h2
l + λ

+ g2
r

h2
r + λ

+ (gl + gr)
2

hl + hr + λ

]
− γ . (8)

Once the splitting gain falls below the predefined threshold or the tree reaches its maximum
depth, the splitting process comes to a halt, resulting in the final classification model. The classifier
constructed in this paper utilises all the features to their fullest potential, ensuring that no information
is lost. Additionally, the structure of the loss function is optimised through serial iteration to eliminate
any non-orthogonal influence of the samples.

In this paper, we have chosen nine parameters for tuning. These parameters are listed in Table 2
and include learning rate, n-estimator, scale-pos-weight, max-depth, subsample, cosample-bytree,
gamma, reg-alpha, and reg-lambda. The learning rate enhances the model’s stability and robustness,
while the scale-pos-weight, max-depth, subsample, colsample-bytree, and gamma parameters are
employed to regulate overfitting. Moreover, the regularisation parameters reg_lambda and reg_alpha
impose penalties on models as their complexity grows, finally leading to their simplification. A range
of evaluation metrics are employed to evaluate the performance of the selected optimised XGBoost
model on the hold-out test data.

Table 2: XGBoost optimized hyperparameters

Hyper-parameter Optimized value Description

Learning rate 0.17 Shrink the weights on each step
n-estimators 200 Number of trees to fit
Max-depth 7 The deepest level of a tree
Gamma 0.4 The minimum loss reduction needed for

splitting
Subsample 0.8500000000000003 Control the sample’s proportion
Colsample-bytree 1.0000000000000004 Column’s fraction of random samples
Reg-lambda 0.5 L2 regularization term on weights
Reg-alpha 0.4 L1 regularization term on weights
Scale-pos-weight 1 Balance the weights of positive and

negative classes
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4 Evaluation Metrics

The proposed model has undergone quantitative analysis using performance metrics such as
recall, precision, accuracy, and F1-score. Accuracy refers to the percentage of subjects that are
correctly classified. The F1-score is a well-rounded metric that takes into account both precision
and recall, offering valuable insights into the performance of a model. Precision, a crucial measure
in classification tasks, calculates the percentage of positive instances that are accurately classified. It
is defined according to Eq. (9):

Precision = True Positives
(True Positives + False Positives)

. (9)

Instances that are accurately categorised as positive are called true positives (TP), while erroneous
positive classifications are referred to as false positives (FP). Accurate precision demonstrates a model’s
capacity to reduce the occurrence of false positives. In situations where reducing false alarms is of
utmost importance, precision is a highly valuable measure. Recall, also known as sensitivity, evaluates
a model’s effectiveness to correctly detecting positive instances. It is computed as in Eq. (10):

Recall = True Positives
(True Positives + False Negatives)

. (10)

A model’s capacity to reduce false negatives is indicated by a high recall. Recall is particularly
critical in applications where the cost of missing positives is high, such as medical diagnosis or
fraud detection. The F1-score provides a combined assessment of a model’s precision and recall. The
calculation is as follows in Eq. (11):

F1 − score = 2 × percision × Recall
Percision + Recall

. (11)

The F1-score is useful when there is a need to achieve a balance between precision and recall. It
emphasises the classifier’s overall efficacy in accurately identifying positive instances while minimising
errors. The subsequent sections provide a performance comparison of the three classifiers. Metrics
used include precision, F1-score, and recall.

The formula for calculating accuracy is defined as follows in Eq. (12):

Accuracy = (True Positives + True Negative)
(True Positives + False Positives + True Negetive + False Negatives)

. (12)

5 Results and Discussion

The following section provides the findings of our experimental assessment, which examined
the effectiveness of several machine learning classifiers on a range of data balancing techniques. A
selection of classifiers used in this study comprised DT, RF, XGBoost, SVM, NB, ADA, SGD, LR,
and KNN. We utilised four datasets to evaluate the operational effectiveness of these classifiers. The
first dataset is based on the Bielefeld University 2020 research program [23] and contains three indoor
scenarios classified as LOS, MP, and NLOS with different levels of data balance and sampling: DS1-
1, unbalanced; DS1-2, under-sampled; and DS1-3, up-sampled. The other dataset, DS2, is collected
from our experimental processes, containing four propagation channels: LOS, MP, and both soft and
hard NLOS. On this front, an exhaustive set of performance metrics is used to evaluate and further
validate this new multiclass NLOS identification model for achieving high accuracy. These measures
include classification accuracy, precision, recall, and F-measure. The implemented model was run
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on a high-performance Lenovo laptop equipped with an Intel Core i7, 12th generation, 12700HQ
processor, having a clock speed of 2.7 GHz and an 8 MB cache, besides 16 GB of RAM, with an
NVIDIA GeForce RTX 3050 Ti as the graphics processor. The implementation utilized both Python
and MATLAB R2022a programming languages.

5.1 Proposed Model Evaluation and Validation

In order to ensure a fair comparison and achieve realistic accuracy, we selected features that
are similar to those mentioned in the open-source dataset [23]. Our focus was on the four most
significant features. This approach ensures the precision of the proposed model and makes it easier
to apply to various environments with similar data. The first three experiments were conducted
using an open-source UWB CIR dataset from Bielefeld University (2020). This dataset includes three
distinct types of collected data (DS1-1, DS1-2, and DS1-3), with UWB CIR data obtained using
the DW1000 UWB module. Data collection occurred in three scenarios: two small rooms, a hall,
and four corridors, spanning seven different indoor locations. The two rooms were a 6 m × 6 m
laboratory environment and an approximately 8 m × 6 m communication room, both furnished
with various items. The data collected in narrow corridors were to simulate MP conditions when
the direct (LOS) was indistinguishable because of numerous signal reflections from the narrow walls.
Data were gathered and analysed in both static and dynamic settings across all scenarios. The first
dataset (DS1-1) comprises 61,930 samples for LOS, MP, and NLOS conditions, resulting in a total
undersampled dataset of 188,791 samples. The second dataset (DS1-2) includes 111,468 samples for
LOS, MP, and NLOS conditions, for a total of 335,539 samples. The third dataset (DS1-3) contains
273,041 samples, including 99,264 samples for LOS, 111,846 samples for MP, and 61,930 samples
for NLOS. Likewise, for DS2, the experiments were conducted using UWB CIR data obtained based
on the DW1000 UWB module. This dataset consisted of 585,744 LOS, 436,380 MP, 529,248 soft-
NLOS, and 221,448 hard-NLOS measurements. The DS2 measurement data were collected in two
residential settings, each including several rooms that were specifically chosen for the measurement
campaign to comprehensively assess the diverse impact of indoor environments on the propagation
of RF signals. The data necessary for our experimental evaluations were collected in four rooms of
varying dimensions (5 m × 4 m, 10 m × 4 m, 20 m × 6 m, and 4 m × 2 m) within a building environment,
a hall measuring 8 m × 48 m that featured a variety of furniture, and two corridors with widths of 3
and 1.5 m, respectively. Measurement data were acquired in these diverse scenarios using a variety of
propagation channels.

A thorough examination of the implemented XGBoost algorithm showed a notable enhancement
in accuracy when identifying different classes within the dataset created for the project. The model’s
strong ability to accurately predict positive instances is further supported by consistent gains in both
precision and recall metrics across all classes. In addition, the F1-score, which takes into account both
precision and recall, showed consistent improvement across different types of propagation channels,
including LOS, MP, soft, and hard-NLOS, with an impressive 99%. Experimental results show that our
proposed XGBoost achieved the highest overall accuracy of 99.47%, precision of 99%, recall of 99%,
and an F-score of 99% on an open-source dataset. Additionally, based on a local dataset, the model
achieved the highest performance, with an accuracy of 96%, precision of 96%, recall of 97%, and an
F-score of 97%. The slight disparity in performance between the local dataset (99.47%) and the open-
source dataset (96%) may indicate that the model is somewhat tailored to the specific characteristics
of the local dataset. However, this variation in accuracy can be attributed to the inherent differences
between the datasets, particularly in terms of environmental conditions and measurement setups
as discussed in Section 5.3. To mitigate potential overfitting, we applied regularisation techniques
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within the XGBoost framework as outlined in Section 3.6. Moreover, our feature importance analysis
(Section 5.2) demonstrates that the model relies on meaningful features, suggesting that overfitting
is not a significant concern. This discovery suggests a well-rounded improvement in accuracy and
recall, highlighting the effectiveness of the XGBoost algorithm in this classification assignment.
Table 3 presents a comparison of the accuracy performance of the proposed XGBoost model on five
datasets [23].

Table 3: The proposed XGBoost performance on diverse datasets

Dataset Class Precision Recall F1-score Accuracy

[23] DS1-1 CL 1 96% 92% 94% 95.17%

CL 2 95% 96% 96%
CL 3 93% 96% 94%

[23] DS1-2 CL 1 97% 93% 95% 95.68%

CL 2 96% 97% 96%
CL 3 91% 96% 93%

[23] DS1-3 CL 1 98% 96% 97% 95.75%

CL 2 95% 97% 96%
CL 3 96% 97% 96%

DS2 collected in this
project

CL 1 99% 99% 99% 99.74%

CL 2 99% 99% 99%
CL 3 99% 99% 99%

5.2 Comparison with Other ML Models

For classification and comparison, a total of eight supervised ML algorithms were used. These
algorithms include DT, RF, XGBoost, SVM, NB, ADA, SGD, LR, and KNN. The performance
metrics consisted of precision, recall, F1-score, and the overall classification accuracy. Table 4 and
Fig. 6 provide a summary of the classification accuracies for each classifier across the four datasets.
XGBoost, RF, and DT consistently achieve the highest level of accuracy, with XGBoost being the
most effective. The significance of AdaBoost and SGD is highlighted by the considerable variation
in sampling methods. The performance of SVM, NB, and LR is average to inconsistent, while KNN
shows improvement with sampling, reaching an accuracy of up to 94.99%.

Table 4: ML algorithms accuracy results of NLOS classification

Classifier DS1 [23] DS1 [23] DS1 [23] DS2

DT 92.43 92.86 96 98.97
RF 94.53 95.24 97.25 98.59
XGBoost 95.17 95.68 95.75 99.47
SVM 56.06 60.06 56.67 98.26
NB 59.46 61.07 59.79 74.99

(Continued)
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Table 4 (continued)
Classifier DS1 [23] DS1 [23] DS1 [23] DS2

ADA 80.58 78.45 79.66 74.95
SGD 35.15 59.01 33.61 94.05
LR 59.53 61.49 59.83 91.49
KNN 74.68 76.51 78.64 94.99

Figure 6: ML classifier’s accuracies results

5.3 Discussion and Analysis

The performance of the proposed XGBoost-based method was rigorously validated through a
comprehensive comparative analysis with state-of-the-art models used on similar UWB DW1000
devices. This comparison utilized both publicly available and locally sourced datasets, encompassing
a diverse range of propagation channels and indoor environments, providing a robust platform for
performance evaluation. The datasets varied significantly with some being unbalanced, showcasing
an unequal distribution of observations among LOS, NLOS conditions, and MP, while others were
balanced through under-sampling and up-sampling techniques. Nevertheless, a thorough examination
of various ML/DL algorithms in the relevant literature has been carried out to assess their accuracy
in identification.

Despite these adjustments, a comprehensive survey of the relevant literature indicated a dearth of
XGBoost applications for NLOS channel detection in UWB systems. This scarcity can be attributed
to various factors, including the widespread adoption of neural networks (such as CNNs) due to their
perceived ability to model complex data relationships. Furthermore, the researchers’ familiarity with
traditional algorithms such as SVM, RF, and DT, as well as their demonstrated effectiveness in related
fields. However, our proposed XGBoost-based approach has performed admirably, achieving high
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levels of accuracy, precision, recall, and F1-score. These findings emphasise XGBoost’s resilience and
competitiveness in identifying NLOS propagation channels.

Comparative analysis with other machine learning classifiers revealed that the XGBoost
classifier, across various datasets, consistently outperformed SVM, RF, DT, and other consid-
ered models. It showcased strong performance with high accuracy rates achieved as 99.47% on
DS2, 95.68% on DS1-1, 95.17% on DS1-2, and 95.75% on DS1-3. Similarly, other models like RF, DT,
SVM, and others showed improvements, but none could consistently outperform XGBoost across all
datasets. However, in the case of the upsampled dataset (DS1-3), the RF algorithm attained the highest
accuracy (97.25%), followed by the DT algorithm (96%), and the XGBoost algorithm (95.75%).

Based on the results, it is evident that the RF algorithm shows a marginally better performance
than XGBoost and significantly better than DT when handling the upsampled dataset (DS1-3).
The observed accuracy with the DS1-3 dataset can be attributed to the nature of the upsampling
process, which involves duplicating observations from the minority class and may increase the risk of
overfitting. In addition, the Support Vector Machine classifier demonstrated significant enhancement,
achieving an accuracy of 0.9826. The Naive Bayes classifier demonstrated moderate enhancements,
whereas AdaBoost maintained consistent performance across all datasets. The SGD showed a
significant improvement in accuracy, reaching a value of 0.94045. Linear classifiers rely heavily on well-
balanced and prepared data. LR also improved, reaching an accuracy of 0.9149. The KNN algorithm
achieved its peak accuracy of 0.9499, showcasing the advantages of utilising a thorough and well-
balanced dataset.

It is crucial to emphasise that even marginal improvements in accuracy can be highly significant in
real-world applications where precise classification is essential, particularly in complex environments
such as NLOS indoor positioning systems. In fields such as autonomous navigation and drone
communication, slight increases in accuracy can substantially mitigate the risk of collisions or system
failures. These improvements can prevent numerous misclassifications during critical operations,
thereby enhancing both safety and reliability. Furthermore, UWB systems rely on accurate distance
measurements from a minimum of three anchor points, and in challenging conditions, even small
errors in these measurements can accumulate and adversely affect overall positioning accuracy. As
a result, minor enhancements in measurement accuracy can significantly impact the system’s overall
performance [6–8].

In addition to improvements in accuracy, XGBoost offers several other advantages, including
faster convergence, superior handling of imbalanced datasets, better scalability for larger datasets,
and a reduced risk of overfitting due to its regularisation features. These characteristics make XGBoost
more robust and scalable compared to other machine learning algorithms in the literature, particularly
in real-time systems where environmental conditions can fluctuate rapidly. Moreover, the use of
grid search and genetic algorithms for hyperparameter tuning allows for more precise optimisation,
increasing the model’s adaptability to different types of datasets and potentially reducing the need
for extensive retraining. This leads to improved stability and robustness, particularly in real-world
applications where dynamic and unpredictable environmental conditions are prevalent.

Similarly, the performance analysis of the deep learning models, as discussed in Section 2 and
shown in Table 5, is significantly influenced by the quality and the volume of the training data and is
sensitive to hyperparameter selection. This necessitates meticulous tuning and additional validation
across diverse indoor environments, which can hinder generalisation to new datasets. Furthermore,
these models are more computationally intensive compared to traditional machine learning models,
requiring the preprocessing and structuring of input data into image format.
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Table 5: Comparison with other techniques in the literature

Ref. Technique Precision Recall F1-score Accuracy

[45] BO-FDT . . . . . . . . . Scene #1
LOS = 99%
NLOS = 98.6%
Scene #2
LOS = 96.83%
NLOS = 89.50%

[30] ININN (CNN,
GRU, SE)

... . . . ... #Open-source dataset = 88.45%

#At six different scenes = 87.5% to
99.9%

[32] MIL, CIR,
TFDOCIR

. . . ... ... 91.74%.

[31] MWT-CNN ... . . . . . . Scene #1 = 98.84%
Scene #2 = 76.65%
Scene #3 = 69.23%

[29] CapsNets LOS =
93.48%

LOS =
94.51%

94.90% 94.63%.

NLOS =
95.58%

NLOS = 94.7%

[27] GD, and GGD ... ... ... 98%
[22] S3VM ... . . . ... NLOS = 94.72%

LOS = 77.2%
[23] SVM ... ... 83% 82.80%

RF 92% 91.9%
MLP 91% 91.2%

[28] CNN . . . . . . ... 98.24%.
[25] SVM+GA . . . . . . ... LOS = 92%

NLOS = 93%
[26] SVM+LDA . . . . . . . . . #binary identification accuracy

100% at an echoic chamber.
# binary identification accuracy
92% at corridor scenario.

[21] KNN, SVM,
GP, GLM, DT

. . . . . . . . . Accuracy of below 90% for ternary
classification

Proposed
algo-
rithm

Optimized
XGBoost

99% 99% 99% 99.47%

The proposed XGBoost provides a more efficient and practical solution for detecting NLOS
channels in UWB systems. It outperforms traditional machine learning models like RF and DT and
provides a useful, more efficient alternative to deep learning models. The stability and effectiveness
of XGBoost were apparent in its robustness, accurate performance, adaptability, and resilience when
handling different datasets. The findings highlight the significance of meticulous data preparation,
feature selection, and balancing methods in enhancing the accuracy of machine learning models in
intricate classification tasks. This approach provides a robust solution with generalization performance
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and adaptability across various dataset types and environments paving the way for more reliable and
accurate indoor positioning technologies. Since the accurate non-line of sight (NLOS) identification
technique in UWB location-based services is critical for applications like drone communication and
autonomous navigation. Nonetheless, while our study demonstrates robust performance in identifying
NLOS conditions across two diverse datasets representing various environments and propagation
channels, it is important to acknowledge certain limitations. One key constraint is that, despite the
diversity of the datasets used, real-world scenarios can exhibit far greater variation, particularly
with respect to obstacle materials and dynamic conditions, including outdoor or mixed indoor-
outdoor environments. Furthermore, while the hyperparameter optimization process was conducted
rigorously using grid search and genetic algorithms, these techniques may not represent the most
cutting-edge tuning methods currently available. More sophisticated approaches could potentially
yield superior results, and further fine-tuning may be necessary for real-time, large-scale applications.
Table 5 provides a summary of recent works that are relevant to the topic, highlighting performance
trends and relative improvements. These studies were selected based on common criteria to ensure
fair and meaningful comparisons, including the use of the DW1000 UWB device and similar dataset
features within comparable indoor environments.

6 Conclusion

The investigation examines the efficacy of machine learning classifiers in addressing non-line-
of-sight conditions in UWB ranging systems, as a multiclass propagation channel (LOS, MP, soft-
NLOS, and hard-NLOS). The process entailed the meticulous collection of data, the extraction of
features, and the rigorous evaluation of a variety of classifiers. The proposed optimized XGBoost
demonstrated the most accurate, robust, and stable behaviour across various dataset types, showing
reduced sensitivity to imbalanced data and achieving an overall accuracy of 99.47%. This approach
offers a strong solution that can be applied to different types of datasets and environments, leading to
more dependable and precise indoor positioning technologies. The results showed that the classifier’s
performance improved significantly when using a well-prepared and balanced dataset. Furthermore,
the research highlights the importance of data preparation and feature extraction in enhancing the
performance of machine learning models. Further investigation should give priority to improving
feature selection techniques and hyperparameter tuning, while also expanding the range to include
real-world deployment experiences, particularly with regard to variations in obstacle materials and
dynamic conditions in outdoor or mixed indoor-outdoor scenarios. It is advisable to use deep
learning classifiers such as long short-term memory (LSTM), recurrent neural networks (RNN), and
convolutional neural networks (CNNs) for additional data analysis.
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