
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/dedt.2023.044210

ARTICLE

An Adaptive Parallel Feedback-Accelerated Picard Iteration Method for
Simulating Orbit Propagation

Changtao Wang, Honghua Dai* and Wenchuan Yang

School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, China

*Corresponding Author: Honghua Dai. Email: hhdai@nwpu.edu.cn

Received: 24 July 2023 Accepted: 10 November 2023 Published: 28 December 2023

ABSTRACT

A novel Adaptive Parallel Feedback-Accelerated Picard Iteration (AP-FAPI) method is proposed to meet the
requirements of various aerospace missions for fast and accurate orbit propagation. The Parallel Feedback-
Accelerated Picard Iteration (P-FAPI) method is an advanced iterative collocation method. With large-step
computing and parallel acceleration, the P-FAPI method outperforms the traditional finite-difference-based
methods, which require small-step and serial integration to ensure accuracy. Although efficient and accurate, the
P-FAPI method suffers extensive trials in tuning method parameters, strongly influencing its performance. To
overcome this problem, we propose the AP-FAPI method based on the relationship between the parameters and
the convergence speed leveraging parallel technology. The proposed method ensures the best possible efficiency in
prescribed accuracy. Three typical orbit propagation problems are illustrated to validate the high performance of
the proposed method. Numerical simulations show that the AP-FAPI method is more accurate and efficient than
the finite-difference-based and the P-FAPI methods.
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Nomenclature

x, xd System state and its d-th component
x̃, χ d System state vector at CGL nodes and its d-th component
g, gd System dynamics and its d-th component
g̃, gd System dynamics vector at CGL nodes and its d-th component
J , Ji,j Jacobian matrix and its (i,j) entry

1 Introduction

In recent years, the complexity of aerospace missions has grown, leading to an urgent need for
precise and real-time orbit computing. For instance, it is crucial to obtain accurate long-term orbit
propagation results in spacecraft on-orbit service operations [1]; meanwhile, the real-time computation
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of spacecraft position is vital in guidance navigation [2,3] and formation flying tasks [4,5]. These
missions all require fast and accurate methods for solving orbit propagation problems.

Unfortunately, the traditional numerical methods based on finite difference method fail to meet
the demand for high accuracy and high efficiency simultaneously because they rely on small integration
steps to ensure accuracy [6]. To overcome this challenge, scholars have proposed a family of iterative
collocation methods without the limitation of small integration steps, such as the Modified Chebyshev-
Picard Iteration method and the Feedback-Accelerated Picard Iteration method [7–10]. These methods
approach the real solution by correcting the approximated solution iteratively and simplify integration
operations using the idea of discretization, which has been applied extensively in aerospace missions
such as orbit propagation, Lambert’s problem and so on [11–14]. Some excellent latest research
for iterative collocation methods have been developed, such as the new balanced space-time Sinc-
collocation method [15] and the error analysis of the Orthogonal Spline Collocation (OSC) method
[16], which contributes effective method and improves the theoretical foundation. Moreover, these
methods exhibit scalability to be parallel accelerated [17,18]. The Parallel Feedback-Accelerated
Picard Iteration (P-FAPI) method is a representative parallel iterative collocation method that can
quickly obtain highly accurate solutions to orbit propagation problems. However, improper method
parameters will reduce the efficiency and accuracy of the P-FAPI method. While some adaptive
methods exist for iterative collocation methods [19,20], there is a lack of adaptive methods utilizing
parallel technology for parallel iterative collocation methods.

In this paper, we propose a new Adaptive Parallel Feedback-Accelerated Picard Iteration (AP-
FAPI) method, which refines the method parameters of the P-FAPI method to maximize efficiency
while ensuring accuracy. To achieve the highest possible efficiency, we define the method’s computation
speed and optimize it according to the relationship between the step size and the convergence speed
represented by the iteration count. More importantly, we can efficiently obtain a series of iteration
counts with parallel technology. To ensure the desired accuracy, we terminate prematurely in case of
an excessive iteration count or significant computational error and consider the current iteration non-
convergent.

This paper is organized as follows. In Section 2, we introduce the theory of the P-FAPI. In
Section 3, we propose the Adaptive Parallel Feedback-Accelerated Picard Iteration method. In
Section 4, we illustrate three orbit propagation cases to verify the high performance of the AP-FAPI
method. Finally, we present our conclusions in Section 5.

2 Parallel Feedback-Accelerated Picard Iteration Method

The orbit propagation problems are often described as the nonlinear ordinary differential equa-
tion. The Parallel Feedback-Accelerated Picard Iteration (P-FAPI) method is an advanced iterative
collocation method for solving these problems, which combines the variational iteration method [21]
with the collocation method. The P-FAPI method can approach the real solution in large steps with
parallel acceleration. This section introduces the P-FAPI method by solving the general first-order
nonlinear differential equation as follows:⎧⎨
⎩

dx
dt

= g(x(t), t), t ∈ [
t0, tf

]
x (t0) = x0

(1)

where x (t) = [x1(t), x2(t), . . . , xd(t), . . . , xD (t)]T is a D-dimensional vector and xd (t) denotes the d-th
component of x (t). Here, we set t0 = −1, tf = 1.
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In the variational iterative method, the solution will converge iteratively to the real solution with
an initial guess x0 (t) and the following corrective iterative formula:

xn+1 (t) = xn (t) +
∫ t

−1

λ (τ ) {ẋn (τ ) − g [xn(τ ), τ ]} dτ (2)

where λ (τ ) is a generalized Lagrange multiplier to be determined. Based on the variational principle,
we obtain the first-order Taylor series expansion of λ (τ ) at the point of τ = t:

λ (τ ) ≈ λ (t) + λ̇ (t) (τ − t) = −I + J (t) (τ − t) (3)

where I is a unit matrix and J (t) = ∂g (xn, t)/∂xn. Substituting Eq. (3) into Eq. (2) and abbreviating
G (τ ) = ẋn (τ ) − g [xn(τ ), τ ] = [G1(τ ), G2(τ ), . . . , Gd(τ ), . . . , GD (τ )]T, we have

xn+1 (t) = xn (t) − {I + J (t) t}
∫ t

−1

G (τ ) dτ + J (t)
∫ t

−1

τG (τ ) dτ (4)

Then the linear combination of N+1 Chebyshev orthogonal basis functions is used to approximate
each element of x (t), ẋ (t), G (t) and

∫ t

−1
G (τ ) dτ :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xd (t) ≈
N∑

n=0

αd,nφn (t) = Φ (t) Ad

ẋd (t) ≈
N∑

n=0

αd,nφ̇n (t) = Φ̇ (t) Ad

Gd (t) ≈
N∑

n=0

βd,nφn (t) = Φ (t) Bd

∫ t

−1
Gd (τ ) dτ ≈

N∑
n=0

βd,n

∫ t

−1
φn (τ ) dτ = ∫ t

−1
Φ (τ ) dτBd

(5)

where Ad = [αd,0, αd,1, . . . , αd,N]T and Bd = [βd,0, βd,1, . . . , βd,N]T are the coefficient vectors of the basis
function, Φ (t) = [φ0(t), φ1(t), . . . , φN (t)] is the vector of the Chebyshev basis function.

Next, Eq. (5) is discretized by the collocation method. Here Chebyshev-Gauss-Lobatto (CGL)
nodes are chosen as the collocation points, which are defined as

tj = − cos(
( j − 1) π

M − 1
), j = 1, 2, . . . , M (6)

where the number of collocation points M is usually selected as N+1, the same as the number of
Chebyshev orthogonal basis functions. After discretizing, we have⎡
⎢⎢⎣

ẋd (t1)

ẋd (t2)
...

ẋd (tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Φ̇ (t1)

Φ̇ (t2)
...

Φ̇ (tM)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Φ (t1)

Φ (t2)
...

Φ (tM)

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

xd (t1)

xd (t2)
...

xd (tM)

⎤
⎥⎥⎦ = Qχ d (7)

and⎡
⎢⎢⎢⎣

∫ t1
−1

Gd (τ ) dτ∫ t2
−1

Gd (τ ) dτ
...∫ tM

−1
Gd (τ ) dτ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∫ t1
−1

Φ (τ ) dτ∫ t2
−1

Φ (τ ) dτ
...∫ tM

−1
Φ (τ ) dτ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Φ (t1)

Φ (t2)
...

Φ (tM)

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

Gd (t1)

Gd (t2)
...

Gd (tM)

⎤
⎥⎥⎦ = PGd (8)
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By substituting Eqs. (7) and (8) into Eq. (4), an iterative formula in matrix form is derived as
follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2

...
Gd

...
GD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

Q
. . .

Q

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

χ 1

χ 2
...

χ d
...

χD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g̃1

g̃2
...

g̃d
...

g̃D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

x̃n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

χ 1

χ 2
...

χ d
...

χD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

χ 1

χ 2
...

χ d
...

χD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J 11H − P J12H . . . J 1dH . . . J 1DH
J 21H J22H − P . . . J 2dH . . . J 2DH
...

...
. . .

...
. . .

...
J d1H Jd2H . . . J ddH − P . . . J dDH
...

...
. . .

...
. . .

...
JD1H JD2H . . . JDdH . . . JDDH − P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2

...
Gd

...
GD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

= x̃n + J∗
nGn (10)

The details of P, Q, g̃d, J i,j and H are provided in Appendix A. Then the flowchart of the P-FAPI
method is obtained as Fig. 1.

Figure 1: Flowchart of the P-FAPI method
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3 Adaptive Parallel Feedback-Accelerated Picard Iteration Method

The performance of the P-FAPI method is heavily affected by the parameters, such as the number
of collocations and step size. Excessive collocation points and small steps decrease the method’s
efficiency, whereas few collocation points and large steps compromise accuracy. In other words, the
mismatch between the number of collocation points and step size will reduce performance. To achieve
the highest possible efficiency while meeting accuracy requirements, we propose the Adaptive Parallel
Feedback-Accelerated Picard Iteration (AP-FAPI) method by adjusting the step size to match the
number of collocation points with inspiration from the finite volume scheme [22,23]. The adjustment
principle of step size is presented as follows.

To characterize the efficiency of the P-FAPI method, we define the computation speed as follows:

vm = dt
Ic

· 1
tc

(11)

where Ic, tc, and dt denote the iteration count, the computational time of one iteration, and the step
size, respectively. tc is determined by the number of collocation points M, and Ic is associated with dt
and M.

In the P-FAPI method, the number of collocation points is usually determined according to the
compute architecture, meaning tc is considered a constant. Under this premise, we maximize the equiv-
alent step size for unit iteration dt/Ic in Eq. (11) by adjusting the step size to improve the computation
speed as much as possible, where the iteration count Ic is recorded during the computation process.
With CUDA stream technology [24], one computing process can obtain a group of iteration counts,
dramatically increasing the method’s efficiency. The process of the AP-FAPI method is illustrated as
follows and shown in Fig. 2.

1. Generate a group containing S steps by the initial step size dt as follows:

Gs = [n1 × dt, n2 × dt, . . . , nm × dt, . . . , nS × dt] , 0 < n1 < n2 < . . . < nm < . . . < nS (12)

2. Launch S CUDA streams for calculation of the P-FAPI method with step in Gs as the
parameter.

3. Without loss of generality, we can assume that there are K converged calculations in the above
CUDA streams and their iteration counts are Ic1, Ic2, . . . , Icm, . . . , IcK , respectively, where 0 ≤
K ≤ S.

4. When K = 0, set step size as dt = dt/nS and recalculate within this interval. Otherwise, record
the K-th CUDA stream’s result, compute the next interval, and determine its step size based
on the following formula:

dt =
{

dt × nm K = S

dt/nm K < S
, nm = argmax

m∈[1,2,...,K]

nm × dt
Icm

(13)

To further ensure the accuracy of the P-FAPI method, we defined the maximum iteration count
Im and the maximum iteration error Em. During the iterative process, if the iteration count exceeds the
maximum iteration count or the iteration error exceeds the maximum iteration error, the iteration is
considered non-convergent.
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Figure 2: Flowchart of the AP-FAPI method

4 Numerical Simulation

In this section, the high performance of the AP-FAPI method is validated in three typical orbit
propagation problems based on the 40th-order EGM: a Low Earth Orbit (LEO) propagation problem,
a Highly Elliptical Orbit (HEO) problem, and a Geostationary Earth Orbit (GEO) propagation
problem. Their initial parameters and intervals are shown in Table 1, and the schematic diagram is
shown in Fig. 3.

The numerical simulation is carried out in Microsoft Visual Studio 2019, using a computer with
the Intel 9 12900K CPU and NVIDIA Quadro P1000 GPU. The performance of the AP-FAPI method
is compared with that of the P-FAPI method and ODE45, the implementation of DP5(4) in MATLAB.
Their parameters are shown in Tables 2 and 3.
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Table 1: Initial parameters and intervals of different orbits

Type of orbit r0/m v0/(m·s-1)
[
t0, tf

]
/s

LEO

⎛
⎜⎝−0.3889

7.7388
0.6736

⎞
⎟⎠ × 106

⎛
⎜⎝−3.5794

0
6.1997

⎞
⎟⎠ × 103 [0, 8 × 104]

HEO

⎛
⎜⎝4.0500

0
−7.0148

⎞
⎟⎠ × 106

⎛
⎜⎝0

9.1464
0

⎞
⎟⎠ × 103 [0, 5 × 105]

GEO

⎛
⎜⎝4.2164

0
0

⎞
⎟⎠ × 107

⎛
⎜⎝0

3.0747
0

⎞
⎟⎠ × 103 [0, 9 × 105]

Figure 3: Illustration of LEO, HEO and GEO

Table 2: Parameters of the P-FAPI method and the AP-FAPI method in different orbits

Type of orbit Method M dt (m) tol (m) Im Em (m) Gs

LEO
P-FAPI

64 200 1×10−6 –
AP-FAPI 40 1 × 108 [dt, 2 × dt]

HEO
P-FAPI

64 500 2×10−5 –
AP-FAPI 40 1 × 108 [dt, 2 × dt]

GEO
P-FAPI

64 2250 3×10−5 –
AP-FAPI 40 1 × 1010 [dt, 2 × dt]
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Table 3: Parameters of ODE45 in different orbits

Type of orbit Relative error Absolute error

LEO
1 × 10−10 1 × 10−10HEO

GEO

The positional errors of different methods are shown in Fig. 4 (The reference solutions are
obtained by ODE45 with the highest accuracy). The computational times and iteration counts of
different methods are shown in Table 4. The iteration counts and generated step sizes in the AP-FAPI
method are shown in Fig. 5.

Figure 4: Positional errors of different methods

Table 4: Computational times and iteration counts of different methods

Type of orbits ODE45 P-FAPI AP-FAPI

LEO
Computational time 73.40 s 26.43 s 11.68 s
Iteration count – 2400 1012

HEO
Computational time 104.34 s 53.85 s 22.07 s
Iteration count – 4743 1627

GEO
Computational time 68.42 s 26.43 s 11.03 s
Iteration count – 2400 499

In Fig. 4, the results in three illustrative examples demonstrate that the P-FAPI method attains
approximately one order of magnitude higher accuracy compared to ODE45, while the AP-FAPI
method achieves approximately two orders of magnitude higher accuracy. The results in Table 4
indicate that the P-FAPI method is at least twice as fast as ODE45, and the AP-FAPI method is
at least four times faster than ODE45. Fig. 5 demonstrates that in LEO and GEO propagation
problems, the step size rapidly adjusts to an optimal value after a few iterations and remains consistent
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throughout the subsequent computations. In contrast, in HEO propagation problems, the step size
varies frequently throughout the calculation process. This aligns with the fact that the LEO and GEO
curves are flat, whereas the HEO curves exhibit a steep.

Overall, the results from the three simulations confirm that the AP-FAPI method with optimized
parameters achieves greater accuracy and efficiency when compared to ODE45 and the P-FAPI
method.

Figure 5: Iteration counts and generated step sizes in the AP-FAPI method

5 Conclusion

We proposed a novel adaptive parallel feedback accelerated Picard iteration method by refining
the parameter during calculation. A mismatch between the parameters of the P-FAPI method, namely
the number of collocation points and step size, will result in reduced performance. The proposed
method could optimize efficiency while meeting the expected accuracy. It dynamically adjusts the step
size to align with the number of collocation points based on the relationship between the step size
and convergence represented by the iteration count. The high performance of the proposed method
is verified in solving three typical orbit propagation problems. Numerical simulations show that the
AP-FAPI method is at least four times faster than ODE45 and twice as fast as the P-FAPI method.
It is also the most accurate method, yielding two orders of magnitude higher accuracy than ODE45
and one order higher than the P-FAPI method. The proposed method can be applied to solve various
nonlinear dynamic problems efficiently and accurately. Future research can focus on the application
of the AP-FAPI method in more complicated systems to explore its efficiency [25].
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Appendix A

In Eq. (10), the matrixes Q, P, J i,j, H and the vector g̃d are as follows:

Q =

⎡
⎢⎢⎢⎣

Φ̇ (t1)

Φ̇ (t2)
...

Φ̇ (tM)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Φ (t1)

Φ (t2)
...

Φ (tM)

⎤
⎥⎥⎦

−1

, P =

⎡
⎢⎢⎢⎣

∫ t1
−1

Φ (τ ) dτ∫ t2
−1

Φ (τ ) dτ
...∫ tM

−1
Φ (τ ) dτ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Φ (t1)

Φ (t2)
...

Φ (tM)

⎤
⎥⎥⎦

−1

(A.1)

J i,j = dig
(

∂gi (x(t1), t1)

xj (t1)
, . . . ,

∂gi (x(tM), tM)

xj (tM)

)
(A.2)

T = dig(t1, t2, . . . , tM), H=PT − TP (A.3)

g̃d =

⎡
⎢⎢⎣

gd (x(t1), t1)

gd (x(t2), t2)
...

gd (x(tM), tM)

⎤
⎥⎥⎦ (A.4)
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