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ABSTRACT

In an integrated coal gasification combined cycle plant, cooling pipes are installed in the gasifier reactor and water
cooling is executed to avoid reaching an excessively high temperature. To accelerate the design, it is necessary to
develop an analysis system that can simulate the cooling operation within the practical computational time. In the
present study, we assumed the temperature fields of the cooled object and the cooling water to be governed by the
three-dimensional (3D) heat equation and the one-dimensional (1D) convection-diffusion equation, respectively.
Although some existing studies have employed similar modeling, the applications have been limited to simple-
shaped structures. However, our target application has a complex shape. The novelty of the present study is to
develop an efficient numerical analysis system that can handle cooling analysis of complicated-shaped structures,
of which modeling needs a huge number of degrees of freedom (DOFs). To solve the thermally coupled problem
between the cooled object and cooling water, we employed a partitioned approach with non-matching meshes.
For the heat transfer analysis of the cooled object, we employed an open-source large-scale parallel solver based
on the 3D finite element method, named ADVENTURE_Thermal. For the convective heat transfer analysis of
the cooling water in pipes, a 1D discontinuous Galerkin method-based solver of a convection-diffusion equation
was developed and used. The proposed analysis system was first verified by solving a problem on water cooling
of concrete, for which an analytical solution is already available. Then, using the supercomputer “Fugaku”, we
performed a cooling analysis of a laboratory-scale coal gasifier reactor, which has complicated geometry and is
modeled by over 20 million DOFs, and demonstrated the practical performance of the proposed system.
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Water cooling pipes; heat transfer analysis; partitioned coupling scheme; large-scale parallel computing; finite
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1 Introduction

Recently, an integrated coal gasification combined cycle (IGCC) plant [1], which is a next-
generation thermal power generation plant with low emissions of air pollutants and carbon dioxide,
has been under development. In this plant, pulverized coal is fired under high temperatures and high
pressure in a gasifier reactor, and then coal gas and slag are extracted. The temperature and pressure
reach 2000°C and 3 MPa [2]. Because operation under high temperatures affects the structural integrity
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of the reactor vessel, cooling pipes are embedded in the reactor vessel to control the temperature
with water. To accelerate the development of the reactor, numerical simulations are useful. Some
researchers have worked on numerical simulations of combustion processes in a coal gasifier reactor
[3,4]. However, although coupled analysis considering combustion, water cooling, heat conduction in
the vessel and structural deformation of the vessel is important for evaluation of the structural integrity
of the reactor vessel in actual operation conditions, such coupled analysis has not been reported so
far. It is so challenging because tons of degrees of freedom (DOFs) are required to model the reactor
which has complicated geometry and to capture various phenomena. Although our final goal is to
develop the coupled analysis that can be performed within practical computational time, the present
study focused on numerical simulations for heat conduction phenomena of the reactor vessel with
water cooling pipes.

For solving coupled problems between conduction phenomena in solids and convection phenom-
ena in fluids, a conjugated heat transfer approach is often used. For example, it was applied to the
cooling of rocket engines [5] and the cooling of hot stamping tools [6]. However, this approach is
computationally expensive. Because we put emphasis on computational efficiency, we assumed fluid
velocity in pipes to be given and constant, and the temperature of the fluid to be governed by the
one-dimensional (1D) convection-diffusion equation. The similar simplification is seen in studies on
the cooling of concrete [7–9]. In these studies, concrete was discretized by three-dimensional (3D)
solid elements, while cooling water was discretized by line elements. However, the line elements must
be located at an edge or run across a solid concrete element, which engenders inconvenience in model
preprocessing. Moreover, these studies did not consider the exact shape of concrete because pipes were
represented by lines. Due to these drawbacks, the applications of the analysis systems proposed in these
studies were limited to simple-shaped structures that were not modeled by many DOFs.

In the cooling problem of our interest, the size of the pipes is not enough small to be neglected.
Unlike the above studies [7–9], we used a geometrically exact model. Because of complex geometry,
the modeling of the reactor vessel requires a huge number of DOFs. The novelty of the present study
was to develop an efficient numerical analysis system that can handle large-scale cooling analysis of
complicated-shaped structures. To achieve high efficiency, the proposed analysis system had three
features: (1) the meshes for cooled objects and cooling water can be prepared individually, (2) the
system is parallelized, and (3) the fast evaluation of the heat exchange is implemented.

One of the methods for solving coupled problems is partitioning [10,11], where a coupled
analysis system is constructed from multiple sub-analysis systems, which are executed sequentially.
In partitioned methods, the use of existing sub-solvers is allowed. Therefore, it is easy to develop
parallelized systems. Additionally, the use of non-matching meshes enables us to prepare independent
meshes for sub-analysis systems [12]. In the present study, by employing a partitioned approach with
non-matching meshes and choosing parallelized existing solvers as sub-solvers, the features (1) and (2)
were realized. The use of non-matching meshes makes it time-consuming to calculate the amount of
data exchanged between sub-solvers. As a countermeasure, we proposed a Dirac delta function-based
interpolation. Then, the feature (3) was realized.

The rest of this paper is organized as follows. In Section 2, we explain how to model a cooled
object, cooling water in pipes, and heat exchange between them. In Section 3, the coupled analysis
for the present heat conduction and cooling problems is described. The discretizations for the cooled
object and that of the cooling water in pipes are given. Then, we explain the data exchange method
between the two models for the calculation of the source terms involved with heat exchange. At the end
of this section, we provide the details of the proposed coupled analysis system. In the proposed system,
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for the heat transfer analysis of the cooled object, we employed an opensource large-scale parallel
solver, ADVENTURE_Thermal [13–15], and for the convective heat transfer analysis of the cooling
water in pipes, a 1D discontinuous Galerkin (DG) method-based solver of a convection-diffusion
equation was developed and used. Because the required time step size for the analysis of the cooling
water in pipes is much smaller than that for heat conduction phenomena in the cooled object, we
introduced a subcycling technique [12]. In Section 4, the proposed analysis system is verified by solving
a problem of water cooling of concrete. In Section 5, we simulate the water cooling phenomena of a
laboratory-scale coal gasifier reactor to demonstrate that the proposed analysis system can handle
a large-scale and practical problem on a supercomputer. Finally, concluding remarks are given in
Section 6.

2 Modeling

Fig. 1 shows the schematic view of a problem with water cooling in a pipe. Ωt and Ωw are the
domains of the cooled object and the cooling water in the pipe, respectively. Γtw is the interface between
the cooled object and the cooling water. In the present study, the thickness of the pipe is assumed to
be zero. The centerline of a pipe, denoted by Λc, is defined using the arc-length parameter l as

Λc = {
x = (x, y, z) | x = xp (l), y = yp (l), z = zp (l), 0 ≤ l ≤ Lp

}
(1)

where Lp is the length of the centerline. The surface of the pipe, which corresponds to Γtw, is defined
as

Γtw = {
x = (x, y, z) | (

x − xp (l)
) · vp(l) = 0,

∥∥x − xp (l)
∥∥ = r, 0 ≤ l ≤ Lp

}
(2)

where r is the radius of the pipe, and xp (l) and vp(l) are defined as

xp (l) = (
xp (l), yp (l), zp (l)

)
, vp (l) =

(
∂xp (l)

∂l
,
∂yp (l)

∂l
,
∂zp (l)

∂l

)
(3)

Note that
∥∥vp

∥∥ = 1 holds because l is the arc-length parameter. In Fig. 1, Σ(l) is the cross section
of the pipe, which can be described as

Σ (l) = {
x = (x, y, z) | (

x − xp (l)
) · vp (l) = 0,

∥∥x − xp (l)
∥∥ ≤ r

}
(4)

The boundary of Σ(l) can be written as ∂Σ (l) = Γtw ∩ Σ (l).

In this section, heat transfer models for the cooled object and the cooling water are explained.
Then, the modeling of heat exchange between the two models is explained.

Figure 1: Schematic view of the water cooling problem
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2.1 Cooled Object
The temperature field of the cooled object, denoted by Tt, is governed by the following unsteady

heat equations:

ρtct

∂Tt

∂t
= ∇ · (κt∇Tt) (5)

where ρt, ct, and κt are the mass density, the specific heat, and the thermal conductivity of the cooled
object, respectively. In the present study, we assume that no heat source exists and thermal conduction
is isotropic. On the interface Γtw, the following boundary condition is prescribed:

κt∇Tt · n = h (6)

where n is the unit outward normal vector and h is the heat flux from the cooling water. The
determination of h is explained in Section 2.3.

2.2 Cooling Water in Pipe
The temperature field of the cooling water in each pipe is governed by a 1D convection-diffusion

equation. The derivation of the equation is explained here. We have some assumptions for the cooling
water. First, on the cross section Σ(l), the velocity vector of the water is Vwvp(l), where Vw is the
magnitude of the velocity vector, and it is constant. Second, on the cross section Σ(l), the temperature
of the water, denoted by T 1D

w (l), is uniform. Third, the mass density of the water ρw and the specific
heat of the water cw are both uniform.

We consider the energy balance in a small volume ΔΩw(l′), which is the volume surrounded by
Γtw, Σ(l′), and Σ(l′ + Δl). The law of conservation of energy can be written as

Est = Ediff
in − Ediff

out + Eadv
in − Eadv

out + Esur (7)

where Est is the power generated in ΔΩw(l′):

Est = ρwcw

∫
ΔΩw(l′)

∂T 1D
w (l, t)
∂t

dΩ = ρwcwA
∥∥vp

∥∥ ∫ l′+Δl

l′

∂T 1D
w (l, t)
∂t

dl (8)

where A = πr2 is the area of the cross section. Ediff
in and Ediff

out are respectively the inflow and the outflow
of the power due to diffusion:

Ediff
in = −κwA

∂T 1D
w (l′, t)
∂l

(9)

Ediff
out = −κwA

∂T 1D
w (l′ + Δl, t)

∂l
(10)

where κw is the thermal conductivity of the cooling water. Eadv
in and Eadv

out are the respective inflow and
outflow of power due to the advection:

Eadv
in = ρwcwAVwT 1D

w (l′, t) (11)

Eadv
out = ρwcwAVwT 1D

w (l′ + Δl, t) (12)

Esur is the power associated with the heat exchange:

Esur = −
∫

ΔΓtw

h dΓ = − ∥∥vp

∥∥ ∫ l′+Δl

l′

(∫
∂Σ(l)

h ds
)

dl (13)



DEDT, 2024, vol.2 37

where ΔΓtw is the interface between the cooled object and the cooling water in ΔΩw(l′). From Eqs. (7)–
(13), the following equation is obtained under the condition Δl → 0:

∂T 1D
w (l′, t)
∂t

= −Vw

∂T 1D
w (l′, t)
∂l

+ D
∂

∂l

(
∂T 1D

w (l′, t)
∂l

)
− 1

ρwcwA

∫
∂Σ(l′)

h ds (14)

where we use
∥∥vp

∥∥ = 1, and D is D = κw

ρwcw

.

2.3 Heat Exchange
The heat flux on Γtw is based on Newton’s law of cooling. At an arbitrary point on Γtw, the

coordinate of which is xa, the heat flux is calculated as

h (xa) = −H
(
Tt (xa) − T 1D

w (la)
)

(15)

where H is the heat transfer coefficient and la is the coordinate of a point on Λc closest to xa, as shown
in Fig. 2. This orthographic projection is described using an operator M:

la = M(xa) (16)

Figure 2: Position where water temperature is used for Newton’s law of cooling

3 Proposed Analysis Method
3.1 Discretization for Cooled Object

In the heat transfer analysis of the cooled object, Eqs. (5) and (6) are solved. The following weak
form is considered:

ρtct

∫
Ωt

ψt

∂Tt

∂t
dΩ + κt

∫
Ωt

∂ψt

∂x
∂Tt

∂x
+ ∂ψt

∂y
∂Tt

∂y
+ ∂ψt

∂z
∂Tt

∂z
dΩ =

∫
Γtw

ψth dΓ (17)

where ψt(x) is the weight function. For the spatial discretization, we employ the FE method with linear
4-node tetrahedral elements. Here, we assume h, defined in Eq. (15), can be approximated by the FE
interpolation:

h (x) ≈
∑
I∈P

NI (x) h (xI) = −H
∑
I∈P

NI (x)
(
Tt (xI) − T 1D

w (M (xI))
)
, x ∈ Γtw (18)

where NI is the shape function associated with a node I , xI is the coordinate of node I , and P is the
set of nodes on the interface Γtw.

For the time integration scheme, the backward Euler method is employed. As explained in
Section 3.4, the temperature of the cooling water in Eq. (18) is treated explicitly.
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3.2 Discretization for Cooling Water
In the heat transfer analysis of the cooling water, the local DG method [16] is employed. The

following two equations derived from Eq. (14) are considered:

∂T 1D
w

∂t
= − ∂

∂l
(F + Z) − S (19)

Z (l) = −D
∂T 1D

w (l)
∂l

(20)

where F is F (l) = VwT 1D
w (l) and S is S (l) = 1

ρwcwA

∫
∂Σ(l)

h ds. The domain of the cooling water

Λc is divided into NEw elements with NEw + 1 points, the coordinates of which are represented by
l1, l2, · · · , lNEw+1. The domain of the i-th element is denoted by Λi

c = (li, li+1). Multiplying Eqs. (19) and
(20) by a weight function ψw, and integrating the result over an element Λi

c, we obtain:∫
Λi

c

ψw

∂T 1D
w

∂t
dl =

∫
Λi

c

∂ψw

∂l
(F + Z) dl − [ψw (F + Z)]

li+1
li

−
∫

Λi
c

ψwSdl (21)

∫
Λi

c

ψwZdl =
∫

Λi
c

D
∂ψw

∂l
T 1D

w dl − [
DψwT 1D

w

]li+1

li
(22)

In the DG method, the boundary terms associated with F are approximated by a numerical flux.
All other boundary terms (terms associated with Z and T 1D

w ) are approximated by averaging. For more
details, see reference [17]. As a result, Eqs. (21) and (22) are rewritten as Eqs. (23) and (24), respectively:

∫
Λi

c

ψw

∂T 1D
w

∂t
dl =

∫
Λi

c

∂ψw

∂l
(F + Z) dl − ψw

(
l−
i+1

)
F

(
l−
i+1

) + ψw

(
l+
i

)
F

(
l+
i

) − ψw

(
l−
i+1

) (
Z

(
l+
i+1

) + Z
(
l−
i+1

)
2

)

+ ψw

(
l+
i

) (
Z

(
l+
i

) + Z
(
l−
i

)
2

)
−

∫
Λi

c

ψwSdl (23)

∫
Λi

c

ψwZdl =
∫

Λi
c

D
∂ψw

∂l
T 1D

w dl − Dψw

(
l−
i+1

) (
T 1D

w

(
l+
i+1

) + T 1D
w

(
l−
i+1

)
2

)
+ Dψw

(
l+
i

) (
T 1D

w

(
l+
i

) + T 1D
w

(
l−
i

)
2

)

(24)

For an arbitrary function with an input l, denoted by α, α (l+) and α (l−) are defined as

α
(
l±) = lim

a→±0
α(l + a) (25)

Each element has nl local nodes, and the shape functions for the element are the (nl − 1)-th order
Lagrange polynomials. In the present study, nl = 3.

For the time integration scheme, the forward Euler method is employed. The procedures for
solving Eqs. (23) and (24) are as follows. First, Z is updated by solving Eq. (24) under the explicit
treatment of T 1D

w . Second, T 1D
w is computed by solving Eq. (23) using the updated Z and explicit

treatment of F . Here, the last term on the right-hand side of Eq. (23) is explicitly treated. However, the
discretization of the term is complicated. Therefore, we introduce an approximation, which is explained
in Section 3.3.
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3.3 Approximation of Source Term Involved with Heat Exchange
In Section 3.1, the discretized form of the source term involved with the heat exchange [

∫
Γtw

ψthdΓ

in Eq. (17)] is described as h3D. We here provide a simple procedure using h3D for the numerical
integration of

∫
Λi

c
ψwSdl in Eq. (23). Let a function h̃(x) be defined as

h̃ (x) =
∑
I∈P

h3D
I δ(x − xI) (26)

where h3D
I is the I-th component of h3D and δ(x) is the Dirac delta function. After h is replaced by h̃,

the discretized form of
∫

Λi
c
ψwSdl, denoted by h1D, is calculated as

h1D
(i,I) =

∫
Λi

c

NDG
(i,I)Sdl ≈ 1

ρW cwA

∫
Λi

c

∫
∂Σ(l)

NDG
(i,I)h̃ds dl = 1

ρW cwA

∑
J∈P

NDG
(i,I) (M (xJ)) h3D

J (27)

where h1D
(i,I) is a component of h1D, NDG

(i,I) is the shape function, and both are associated with the I-th local
node in element i. This scheme needs no numerical quadrature. Therefore, under the condition that
h3D is given, this scheme is simple and convenient.

3.4 Coupling Method between 3D Analysis for Cooled Object and 1D Analysis for Cooling Water
In the present study, cooling problems are considered as coupled problems between cooled objects

and cooling water in pipes. For coupled analysis methods, we employ a partitioned method, which
executes multiple sub-solvers sequentially. The advantage of the partitioned methods is that they allow
the use of existing solvers, which makes it easy to develop parallel analysis systems by choosing parallel
solvers as sub-solvers. Because a gasifier reactor has a complex geometry, a huge number of DOFs is
needed for modeling, and parallel computing is imperative. It is thus reasonable to adopt a partitioned
method.

For the 3D heat transfer FE analysis of the cooled object, we employed ADVENTURE_Thermal
[13–15], which is a module in the ADVENTURE system [18]. ADVENTURE is an opensource
general-purpose computational mechanics system based on the FE method. The system was designed
with the ability to analyze a 3D FE model of arbitrary shape with 10 million to 1 billion DOFs.
The hierarchical domain decomposition method [19] with a preconditioned iterative solver has been
implemented in ADVENTURE_Thermal.

In contrast, for 1D analysis of cooling water, in-house code for a DG method was developed and
used. Implicit time integration is employed for the 3D FE analysis. Conversely, explicit time integration
is employed for the 1D DG analysis. Therefore, the time step size for 1D DG analysis has to be much
smaller than that for the 3D FE analysis. Hence, we employed a subcycling technique.

The flowchart of the proposed analysis system is shown in Fig. 3. Here, the variables with the
superscript (n) represent those at the n-th time step, and the variables with the subscript (k) represent
those at the k-th subcycle. N is the number of subcycles. In procedure I, the temperature of the cooling
water is treated explicitly. In procedure II, h3D is computed using T (n+1)

t and T 1D(n)

w . In procedure IV,

T
1D(n+1)

(k)
w is used for T 1D

w in Eq. (24). In procedure V, Z(n+1)

(k+1) and F (n+1)

(k) = VwT
1D(n+1)

(k)
w are used for Z and F

in Eq. (23), respectively.

Regarding the implementation, the functions corresponding to II) to V) in Fig. 3 were incorpo-
rated into ADVENTURE_Thermal.



40 DEDT, 2024, vol.2

Figure 3: Flowchart of the proposed analysis system

4 Verification
4.1 Problem Setting

For verification, the water cooling of concrete was considered [20]. The geometry is shown in
Fig. 4. The radius of the concrete was 0.845 m. The height was 200 m. The concrete included a straight
pipe with a radius of 0.014 m. The material properties are listed in Table 1. The water flowed in the
positive z direction with water velocity Vw = 0.406 m/s. The heat transfer coefficient was 200 W/m2 ·K,
which was determined based on the study by Liu et al. [8]. The initial temperature of the concrete was
293.15 K. The initial temperature of the water and the temperature of the water at the inlet were both
277.15 K. An adiabatic boundary condition was imposed on all surfaces of the concrete except the
interface Γtw.

For the discretization of the concrete, the number of nodes was 1,527,987, and the number of ele-
ments was 7,487,914. For the discretization of the water, the number of nodes was 1500 and the number
of elements was 500. The time step size of the 3D heat transfer analysis by ADVENTURE_Thermal
was 3600 s. The number of subcycles was 360,000.

For parallel computing of ADVENTURE_Thermal, the domain was decomposed into 12 parts,
each of which had 100 subdomains. For the domain decomposition, ADVENTURE_Metis [21],
which was developed based on the graph partitioning module PARMETIS [22], was employed. The
workstation used for the analysis had a 2.7 GHz Intel Xeon Gold 6150 processor and 392 GB of DDR4
memory.
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Figure 4: Geometry of concrete cooling verification problem

Table 1: Material properties for water cooling of concrete

Material Concrete Water

Density (kg/m3) 1997 1000
Specific heat (J/kg · K) 1050 4187
Thermal conductivity (W/m · K) 2.33 0.599

4.2 Results
The distribution of the temperature of the cooling water is shown in Fig. 5. “Position” in x-

axis label means the distance from the inlet. The cooling water warmed as it flowed in the positive
z direction because it received heat from the concrete. The distribution of the temperature in the
concrete is shown in Fig. 6. For visualization, z coordinates are scaled to be 1%. The cross section
through the center of the pipe is depicted. Because the heat exchange occurred at the interface (Γtw),
the concrete near the pipe was cooled faster than far from the pipe. Because heat was not generated in
the concrete and 4°C water flowed in constantly through the pipe, the water and concrete temperature
keep dropping and approached 4°C everywhere.

Figure 5: Distribution of temperature in concrete cooling water on different days
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Figure 6: Distribution of temperature in concrete on different days

Zhu provided the analytical solution of the cooling problem as

Tave = 4.0 + 16.0e−1.609(0.03319τ )1.0282
(28)

where Tave is the average temperature of the concrete and τ is the time in days. Fig. 7 shows the
transition of the average temperature of the concrete. We can see good agreement between the
numerical and analytical solutions.

Figure 7: Time history of average temperature in concrete
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The computational time of the 3D FE analysis per time step was 61.9 s. That of the 1D DG analysis
for 360,000 subcycles was 232 s.

The results described in this section qualitatively and quantitatively verified the developed analysis
system.

5 Analysis of Water Cooling for Coal Gasification Reactor

This section demonstrates that the proposed analysis system can handle very large-scale problems
with complicated geometries and can be operated in a supercomputer environment.

5.1 Problem Setting
The Central Research Institute of the Electric Power Industry (CRIEPI) has been developing a

laboratory-scale coal gasifier reactor [23], which is the target of the computation in this section. The
geometry of the reactor with cooling pipes is shown in Fig. 8.

Figure 8: Gasifier reactor with four cooling pipes

The cross section of the reactor is shown in Fig. 9. The reactor is a hollow structure, and as it
operates, pulverized coal is turned to gas in the reactor interior. Because the target of the present
study is a coupling analysis between the thermal transfer phenomenon acting on the reactor and
the convection-diffusion phenomenon acting on the cooling water in the pipes, the combustion
phenomenon in the hollow chamber [4] is outside the scope of the present study. The reactor is
composed of three parts: an outer shell made of steel, heat-resistant material made of W40, and heat-
resistant material made of LWI-26. The number of pipes is four, and they are labeled as Pipes A, B, C,
and D in Fig. 8. The radius of each pipe is 0.0136 m. The lengths of Pipes A, B, C, and D are 4.549,
4.559, 4.556, and 4.587 m, respectively. The material properties are listed in Table 2.

The water velocity Vw was 1.703 m/s. The initial temperature of the reactor was 1273.15 K. The
initial temperature of the water and the temperature of the water at the inlet were 298.15 K. An
adiabatic boundary condition was imposed on all surfaces of the reactor except the interfaces Γtw.
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Figure 9: Cross section of the gasifier reactor

Table 2: Material properties for water cooling of gasifier reactor

Material Steel W40 LWI-26 Water

Density (kg/m3) 7800 2650 1375 1000
Specific heat (J/kg · K) 440 836.8 1673.6 4187
Thermal conductivity (W/m · K) 84 1.5 0.442 0.599

The heat transfer coefficient can be written as

H = κwNu
2r

(29)

where Nu is the Nusselt number. To determine Nu, we employ the Dittus-Boelter equation:

Nu = 0.023Re0.8Pr0.4 (30)

In the present study, the Reynolds number Re and Prandtl number Pr were 4.632 × 104 and 6.990,
respectively. As a result, H was determined to be 5957 W/m2 · K.

For the discretization of the reactor, the number of nodes was 25,510,852, and the number of
elements was 155,999,061. For pipe A, the water was discretized by 516 nodes and 172 elements. For
pipes B, C, and D, the water was discretized by 522 nodes and 174 elements. The time step size for
ADVENTURE_Thermal was 0.1 s. The number of subcycles was 1000.

For parallel computing of ADVENTURE_Thermal, the domain was decomposed into 480 parts,
each of which had 400 subdomains. For this computation, we used 40 nodes with 12 cores of Fugaku
[24], which is a recently built manycore-based parallel system developed as a Japanese national flagship
supercomputer in the FLAGSHIP 2020 Project, and was ranked No. 1 in the Top 500 after performing
442 Petaflops in June 2020.

5.2 Results
Figs. 10 and 11 show the distribution of the temperature on the cross section through the YZ plane

at different times. Fig. 10 visualizes the whole structure, while Fig. 11 shows the local one around the
cooling pipes. The figures show that the temperature of the reactor decreased, especially around the
pipes.
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Figure 10: Distribution of temperature in the whole reactor at different times

Figure 11: Distribution of temperature around cooling pipes at different times

Fig. 12 shows the distribution of the temperature in the cooling water of Pipes A, B, C, and D.
The four subfigures in Fig. 12 are similar. At the beginning of the cooling, there was big difference
between the temperature of the cooling water and that of the pipe surfaces. Therefore, a large amount
of heat was exchanged, and the water temperature increased suddenly. As the cooling proceeded, the
temperature of the pipe surfaces decreased. Therefore, the temperature difference gradually became
smaller and the amount of exchanged heat decreased. Then, the water temperature decreased as time
passed.

The computational time of the 3D FE analysis per time step was 8.16 s. That of the 1D DG analysis
for 1000 subcycles was 7.61 s.

This section described how our proposed analysis was applied to the cooling problem for a
gasification reactor. The results we obtained were reasonable and confirmed that our analysis system
can handle large-scale problems with complex geometry.
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Figure 12: Distribution of temperature in cooling water at different times: (a) Pipe A, (b) Pipe B, (c)
Pipe C, and (d) Pipe D

6 Conclusions

The present study developed a new coupled analysis system for problems on water cooling in pipes.
The system employs a partitioned approach with non-matching meshes and a subcycling technique.
For the heat transfer analysis of a cooled object, we employed an opensource 3D FEM large-scale
parallel solver, ADVENTURE Thermal. For the convective heat transfer analysis of the cooling water
in pipes, a 1D DG method-based solver of a convection-diffusion equation was developed and used.
To make it easy to compute heat exchange, we proposed a Dirac delta function-based interpolation.
The system was verified by solving a problem with water cooling of concrete. Then, we confirmed
the system can handle a large-scale problem with complicated geometry and can be operated in a
supercomputer environment.
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Our final goal is to develop a coupled analysis considering combustion, water cooling, heat
conduction in the vessel and structural deformation of the vessel for evaluation of the structural
integrity of the reactor vessel in actual operation conditions. In the subsequent study, we plan to
integrate a combustion analysis solver with the proposed analysis system.
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