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ABSTRACT

More and more uncertain factors in power systems and more and more complex operation modes of power
systems put forward higher requirements for online transient stability assessment methods. The traditional model-
driven methods have clear physical mechanisms and reliable evaluation results but the calculation process is
time-consuming, while the data-driven methods have the strong fitting ability and fast calculation speed but the
evaluation results lack interpretation. Therefore, it is a future development trend of transient stability assessment
methods to combine these two kinds of methods. In this paper, the rate of change of the kinetic energy method
is used to calculate the transient stability in the model-driven stage, and the support vector machine and extreme
learning machine with different internal principles are respectively used to predict the transient stability in the
data-driven stage. In order to quantify the credibility level of the data-driven methods, the credibility index of the
output results is proposed. Then the switching function controlling whether the rate of change of the kinetic energy
method is activated or not is established based on this index. Thus, a new parallel integrated model-driven and data-
driven online transient stability assessment method is proposed. The accuracy, efficiency, and adaptability of the
proposed method are verified by numerical examples.
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1 Introduction

Online transient stability assessment is the basis to ensure the safe operation of the power system.
In recent years, the large-scale grid connection of high-proportion renewable energy has aggravated
the complexity of the power system, which makes the online transient stability assessment face new
challenges.

The existing power system transient stability assessment methods are mainly divided into two
categories: model-driven methods and data-driven methods.

The model-driven methods first establish the physical mechanism models described by differential-
algebraic equations according to the physical characteristics of power systems and then assess the
transient stability by solving the mechanism models through mathematical methods, including the time
domain simulation method and the direct methods. The time domain simulation method [1] takes the
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steady-state power flow as the initial value, solves the state equations by numerical integration method
to get the disturbed trajectory of the power system, and then determines its transient stability, which
is the basic method for assessing the transient stability. The calculation results of the time domain
simulation method are accurate and reliable, but the calculation process takes a long time and is slow,
so this method is difficult to be applied online. The direct methods (including the energy function
method [2], BCU method [3], extended equal area criterion (EEAC) method [4], rate of change of
kinetic energy method [5], etc.) are based on Lyapunov stability theory, and the transient stability is
determined by distinguishing the time-varying of the constructed energy functions. Because the direct
methods do not need the numerical integral calculation of the whole transient process, the calculation
speed is quite fast, and it can be applied to the online assessment of transient stability. In addition, it
is worth noting that the authors in reference [6] proposed a novel direct method for online transient
stability assessment, which combines equal area criterion, corrected kinetic energy, and large change
sensitively analysis, and this method not only considers all details of power systems by using network
preserving models but also achieves simplicity in implementation and low computational cost.

In recent years, the data-driven methods that learn the transient characteristics of power systems
through data statistics and various machine learning algorithms have been successfully applied to
transient stability assessment. With the wide applications of new energy technologies (such as electric
vehicle charging technology and demand response technology), the power system contains more and
more uncertainties, and the traditional model-driven methods cannot cope with these uncertainties
well. With the increasing complexity of power system structures and operation modes, the model-
driven methods need to adjust the models according to different scenarios, structures, and operation
modes. The higher calculation cost and slower calculation speed make their adaptability worse. On the
contrary, the data-driven methods employ a series of data tricks (including data preprocessing, data
transformation, spatial mapping, etc.), and various modern advanced machine learning algorithms
(including support vector machine [7–9], Bayesian method [10], decision tree method [11,12], random
forest method [13,14], deep learning method [15–21], active learning method [22], etc.) to seek the
valuable information from the data, and obtain the assessment results of the transient stability. The
data-driven methods can get rid of the dependence on complex physical mechanism models, and have
the advantages of dealing with uncertain factors and fast calculation speed. However, the data-driven
methods also have some drawbacks in the application, i.e., the assessment results lack interpretation,
and the generalization ability is low.

It can be seen that integrating the model-driven methods and the data-driven methods by taking
full advantage of their complementary properties are the future development trends for power system
online transient stability assessment. At present, researchers have carried out some research in this
area, and almost all of them have adopted the “serial integrated” pattern (that is, using the knowledge
rules derived from model-driven methods to modify the objective functions of data-driven methods
[23–25]) to achieve the purpose of improving the accuracy of the assessment results. The schematic
diagram of these “serial integrated” methods is shown in Fig. 1. These serial integrated methods firstly
extract the original high dimensional input features of power systems efficiently through physical
mechanism models, and then the data methods are used to directly adjust the output results of
physical models, to realize the coordination between model-driven and data-driven methods. The serial
integrated methods are relatively easy to implement because the input/output interfaces of data-driven
methods are always designed to be open. However, some unavoidable uncertainties still exist in the
output results of these serial integrated methods due to the employed framework.
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Figure 1: Schematic diagram of the “serial integrated” method

Compared to the “serial integrated” pattern, the “parallel integrated” pattern is obviously more
robust and it can obtain a more definite (to some extent, more reliable) transient stability assessment
result. The key challenge of parallel integrated methods is to construct a reasonable function that
directly links model-driven and data-driven methods. Considering the great robustness of the “parallel
integrated” pattern, this paper proposes a new “parallel integrated” method, which combines model-
driven methods and data-driven methods to assess the transient stability of the power system. In the
model-driven stage, the rate of change of kinetic energy method is used to determine the transient
stability by calculating the critical clearing time of faults, because this method does not need the
numerical integral calculation of the whole transient process and has a strict theoretical basis, fast
calculation speed, and reliable results. In the data-driven stage, the support vector machine algorithm
and the extreme learning machine algorithm with different internal principles are respectively used
to assess the transient stability. In order to quantify the credibility level of data-driven methods, the
credibility index of the output results is proposed. Then the switching function which controls whether
the rate of change of the kinetic energy method is activated or not is established based on this index.
Finally, a new parallel integrated model-driven and data-driven online transient stability assessment
method is proposed.

2 Model-Driven Rate of Change of Kinetic Energy Method

The model-driven rate of change of kinetic energy (RCKE) method is introduced, as below. The
classical model is used to analyze the transient stability of a multi-machine power system. For the ith
generator, the rotor motion equation is
dδi

dt
= ωi (1)

dωi

dt
= 1

Mi

(Pmi − Pei) (2)

where δi is the angle of the rotor; ωi is the angular velocity of the rotor; Mi is the moment of inertia of
the generator; Pmi is the mechanical power of the prime mover; Pei is the electromagnetic power of the
generator, which can be expressed as

Pei = E2
i Gii +

n∑
j=1
j �=i

EiEjYijcos
(
θij − δi + δj

)
(3)

where Ei is the voltage behind the transient reactance of the generator; Gii is the self-conductance of the
internal node of the generator; Yij is the transfer admittance between internal nodes of the generators;
θij is the angle corresponding to Yij; n is the total number of generators.

The kinetic energy Wi of the ith generator can be expressed as

Wi = 1
2

Miω
2
i (4)
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The rate of change of kinetic energy Pki of the ith generator can be obtained by taking the derivative
of time on both sides of the equation, as follows:

Pki = dWi

dt
= Miωi

dωi

dt
(5)

Substitute Eq. (2) into Eq. (5) to obtain

Pki = ωi (Pmi − Pei) (6)

When the fault is cleared, according to the power network configuration after the fault, the rate
of change of kinetic energy can be expressed as

Pki = ωic (Pmi − Pei) (7)

Eq. (7) describes how the kinetic energy of the generator caused by the fault is absorbed and
converted into the potential energy of the system. When the system is about to lose its transient
stability, at least one generator will lose synchronization. It can be considered that the instability
process of the system is caused by an equivalent “key” generator, and the RCKE of the key generator
has a negative maximum at the critical clearing time [26]. Thus, the key generator, together with the
rest of the system, constitutes a single-machine infinite bus system.

Therefore, the RCKE method can be used to assess the transient stability of the multi-machine
power system, and its steps are as follows [5], and the flow chart is given in Fig. 2:

Step 1. Use the power flow data before the fault to calculate the initial state of the multi-machine
power system.

Step 2. The differential-algebraic equations corresponding to the classical model during the fault
period are solved by the numerical integration method, and the angles and angular velocities of each
generator rotor at the end time of the integration step (time t1) are calculated.

Step 3. Assuming that the fault is cleared at time t1, calculate the rate of change of kinetic energy
Pki of each generator after the fault is cleared, i = 1, 2, . . . , n and store it as (Xi).

Step 4. Calculate the angle and angular velocity of each generator rotor at the next time t2 (time
t2 = t1 + Δt, where Δt is the integration step) by using the numerical integration method.

Step 5. Assuming that the fault is cleared at the new time t2, calculate the rate of change of kinetic
energy Pki of each generator after the fault is cleared, i = 1, 2, . . . , n, and store it as (Yi).

Step 6. If there is Yi < Xi, i = 1, 2, . . . , n in the amplitude, then the corresponding time t2 is the
critical clearing time; otherwise, let Xi = Yi, and perform Step 4 to Step 6 again.

Step 7. If the actual fault clearing time of the system is less than the critical clearing time obtained
above, the system has transient stability; otherwise, the system will lose transient stability.
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Figure 2: Flow chart of rate of change of kinetic energy method

3 Data-Driven Machine Learning Method
3.1 Support Vector Machine

The Support Vector Machine (SVM) classifier is a nonparametric machine learning algorithm,
which does not need to assume prior knowledge. The basic idea of SVM is to map the input vector
from the sample space to the feature space, find an optimal hyperplane in the feature space, and
separate the two types of samples to maximize the separation distance. SVM uses “input-output”
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(i.e., “feature-label”) data pairs for training to obtain a decision function that can correctly classify
a given input quantity into its corresponding label class. This optimal decision function is called the
optimal hyperplane and is determined by a small number of vectors in the training data set (called
“support vectors”).

For a binary classification problem, given a series of “feature-label” data pairs (xi, yi), i =
1, 2, . . . , n, where xi is an m-dimensional column vector which represents the input characteristics of
the ith sample; yi ∈ {1, −1} is the classification label of the ith sample (for example, y = 1 indicates
transient stability and y = −1 indicates transient instability). Taking the given data pair as the training
data set, the SVM can be expressed as the optimization model [7] shown in the following formula:

minw,b,ξ

1
2

wTw + C
n∑

i=1

ξi

s.t. yi

(
wTφ (xi) + b

) ≥ 1 − ξi, i = 1, 2, . . . , n (8)

ξi ≥ 0, i = 1, 2, . . . , n

where w is an m-dimensional weighted column vector; b is a constant representing the offset term; ξi

is the relaxation variable corresponding to xi, which represents the tolerance of sample classification
errors; C is the margin parameter, also known as the penalty factor, which represents the degree of
punishment for sample classification errors; φ(x) is a high-dimensional function that maps the vector
x from the original space to the characteristic space, and is usually called “kernel function”. There
are many different types of kernel functions, among which the radial basis function can approximate
any function with any error, and there is only one undetermined parameter, which applies to both
large and small samples [8]. Therefore, the radial basis kernel function is adopted in this paper, and its
expression is

φ
(
xi, xj

) = exp
(
−γ

∥∥xi − xj

∥∥2
)

(9)

where γ is the kernel parameter.

The values of w, b, and ξi can be obtained by solving the optimization model shown in Eq. (8),
while the values of parameters C and γ need to be calculated by grid search or heuristic algorithms.

3.2 Extreme Learning Machine
The Extreme Learning Machine (ELM) classifier is a machine learning algorithm based on a

single hidden layer feedforward neural network. When it is used to solve the binary classification
problem, the structure of ELM is shown in Fig. 3. As can be seen from Fig. 3, ELM consists of the
input layer, hidden layer and output layer. Among them, the input layer has N nodes, corresponding
to the dimension of each input vector; there are L nodes in the hidden layer; and the output layer
has one node, which corresponds to the output variable. When the network structure is determined
in the training stage, ELM does not need to solve it iteratively like the traditional artificial neural
network algorithm but only needs to calculate the linear matrix to determine the network structure
and parameters, so it has a faster training speed.
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Figure 3: Structure of extreme learning machine

Similar to SVM, a given series of “feature-label” data pairs (xi, yi), i = 1, 2, . . . , n (where xi is
an m-dimensional column vector; yi ∈ {1, −1}) as the training data set of ELM, then ELM can be
expressed as the following optimization model [21]:

min
n∑

j=1

∥∥oj − yj

∥∥

s.t.
L∑

i=1

βiϑ
(
wi

Txj + bi

) = oj, j = 1, 2, . . . , n

(10)

where wi is an m-dimensional weighted column vector, which links the input features represented by
the input vector with the ith hidden node; bi is the offset term of the ith hidden node; ϑ(x) is the
activation function; βi is the output weight, which links the ith hidden node with the output node.

Because the activation function is infinitely differentiable, βi will be the only parameter to be solved
when wi and bi are randomly initialized. Introduce vector β, o and matrix H as follows:

β = [β1, β2, . . . , βL]T (11)

o = [o1, o2, . . . , on]
T (12)

H =

⎡
⎢⎢⎢⎣

υ
(
w1

Tx1 + b1

)
υ

(
w2

Tx1 + b2

) · · · υ
(
wL

Tx1 + bL

)
υ

(
w1

Tx2 + b1

)
υ

(
w2

Tx2 + b2

) · · · υ
(
wL

Tx2 + bL

)
...

...
. . .

...
υ

(
w1

Txn + b1

)
υ

(
w2

Txn + b2

) · · · υ
(
wL

Txn + bL

)

⎤
⎥⎥⎥⎦ (13)

Then, according to the matrix theory, by solving Moore-Penrose generalized inverse matrix H+ of
matrix H, the least square solution of vector β can be obtained [27], as follows:

β̂ = H+o (14)

After the training of the ELM classifier is completed, for a certain sample (x, y) to be classified, x
is taken as the input of the ELM classifier, and its output o is obtained. If o ≥ 0, then y = 1; If o < 0,
then y = −1.
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3.3 Original Input Features
The selection of original input features has a significant impact on the output results of the

machine learning algorithms. In this paper, a large number of samples in different fault scenarios are
first generated by time domain simulation. Considering the configurations of Wide Area Measurement
Systems (WAMS) in the practical power grids are usually limited, at the same time, in order to
correspond to the input information used in the model-driven RCKE method adopted in this paper,
the fault information (including fault type, fault location, and fault duration) and the power flow
quantities before the fault occurs are taken as the original input features of each sample, which are
summarized as follows (as shown in Table 1). It should be pointed out that the fault type and fault
location are discrete variables, while all the rest are continuous variables. All these data except the
fault duration actually represent the initial state of the transient process of the power system, and the
transient stability result can be inferred if all these data are treated as known variables. That is why
the power flow information before the fault occurs (other than after the fault occurs) is chosen as the
original input feature.

Table 1: Original input features for data-driven methods

Input features Physical meaning

t Fault duration
PGi Active power output of the ith generator before the fault occurs
QGi Reactive power output of the ith generator before the fault occurs
Vi Node voltage amplitude of the ith bus before the fault occurs
θi Phase angle of the node voltage of the ith bus before the fault occurs
Pi Active power injection of the ith bus before the fault occurs
Qi Reactive power injection of the ith bus before the fault occurs
PLi Active power on the ith transmission line before the fault occurs
QLi Reactive power on the ith transmission line before the fault occurs

It can be seen from Table 1 that these original input features are directly related to the transient
stability of the power system. However, in practical application, the Fisher discriminant method or
Pearson correlation coefficient method [28] should be used to calculate the impact coefficient of each
original input feature quantity on the final output result, and then only the input feature quantities
with significant influence on the output result should be selected so as to improve the robustness of
data-driven methods.

Moreover, because the features used above have different dimensions, the features of the order of
magnitude difference are relatively large. In order to avoid the model biased in learning large order of
magnitude data features, and in order to speed up the convergence of the algorithm, it is necessary to
normalize the original input data. Let the sample data matrix D = [

xij

]
n×N

, where n is the number
of samples, N is the number of features, xij represents the jth feature of the ith sample. Then the
normalization formula is as below:

x∗
ij = xij − mini

(
xij

)
maxi

(
xij

) − mini

(
xij

) (15)

The data after normalization is mapped to the range of [0, 1], and can be used as input for the
classifiers.
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4 Parallel Integrated Model-Driven and Data-Driven Method

As mentioned above, the model-driven methods which are based on mechanism analysis have
the advantages of clear mechanism, good interpretability, and high adaptability, while they also have
modeling difficulties and low computational efficiency, especially for complex power systems. On the
contrary, the data-driven methods which are based on correlation analysis between large data have the
advantages of high computational efficiency and a strong ability to deal with complex problems, while
their output results lack interpretability. Furthermore, the model-driven methods are deterministic
methods, while the output results of data-driven methods always contain some uncertainties inevitably.
To be exact, when the model-driven methods and the data-driven methods are respectively used to
predict the transient stability of the power system with a certain initial state, the prediction results of
the model-driven methods are always definite, while the prediction results of the data-driven methods
are uncertain because they are affected by the quality of input data and the trained parameters of
classifiers. Roughly speaking, the model-driven methods are trustworthy but inefficient, while the data-
driven methods are not trustworthy enough but efficient. Therefore, it is reasonable to combine these
two kinds of methods to get better output results by taking full advantage of their complementary
properties.

This paper proposes a new “parallel mode” to integrate these two kinds of methods, and the
feasibility analysis is given as below. The basic idea of the proposed method is when the output result of
the data-driven method is comparatively reliable we do not turn to the model-driven method otherwise
we must turn to the model-driven method. More specifically, two independent classifiers (i.e., SVM
classifier and ELM classifier) are employed in the data-driven stage to predict the transient stability
of the power system, and the model-driven stage employs the RCKE method. For each classifier in
machine learning, its credibility level can be evaluated because its output result is determined through
the demarcation point. Intuitively, the longer the distance between a sample to be classified and
the demarcation point, the higher the credibility level of the output result of this classifier for this
sample will be. Based on this observation, a “switching function” which comprehensively reflects the
credibility level of these two independent classifiers is established. If the switching function holds, it
indicates that the data-driven stage ends in failure because its credibility level does not meet the preset
quantitative criteria, and we must turn to the model-driven method, otherwise, we do not turn to the
model-driven method. Therefore, it is feasible to combine these two kinds of methods by the proposed
parallel mode.

4.1 Accuracy Evaluation of Classifiers
In the practical operation of a power system, the ratio of actual stable samples to actual unstable

samples is unbalanced. In order to evaluate the accuracy of the classifiers’ prediction results, it is
necessary to introduce the confusion matrix (as shown in Table 2), and then define the relevant
indicators of accuracy. In Table 2, TP and TN respectively represent the number of samples accurately
predicted by the classifiers as stable and unstable, FP represents the number of unstable samples missed
by the classifiers, and FN represents the number of stable samples misjudged by the classifiers. Let NP
and NN represent the total number of samples that are actually stable and unstable, respectively, then
NP = TP + FN and NN = FP + TN.

According to Table 2, the following five indexes can be defined to comprehensively reflect the
accuracy of the classifiers in predicting transient stability.
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Table 2: Confusion matrix

Actual states Predicted states

Stable state Unstable state

Stable state TP FN
Unstable state FP TN

The Accuracy Rate (AR) index refers to the ratio of the number of accurately predicted samples
to the total number of samples, as follows:

AR = (TP + TN)/(NP + NN) × 100% (16)

The Reliability Rate (RR) index indicates the ratio of the number of samples accurately predicted
by the classifiers to the total number of samples that are actually unstable, as follows:

RR = TN/NN × 100% (17)

The Safety Rate (SR) index indicates the ratio of the number of samples accurately predicted by
the classifiers to the total number of samples that are actually stable, as follows:

SR = TP/NP × 100% (18)

The Missed Detection Rate (MDR) index indicates the ratio of the number of unstable samples
missed by the classifiers to the total number of samples, as follows:

MDR = FP/(NP + NN) × 100% (19)

The False Alarm Rate (FAR) indicates the ratio of the number of stable samples misjudged by the
classifiers to the total number of samples, as follows:

FAR = FN/(NP + NN) × 100% (20)

If we misjudge the unstable samples as stable and do not take any measures, it can lead to
disastrous results, which must be avoided. On the other hand, if there is a large number of stable
samples which are misjudged as unstable, the assessment results will be too conservative. Therefore,
when evaluating the performance of different classifiers, we should first try to reduce the number of
unstable samples missed by classifiers FP, and use RR as the main index (the higher the better); use
AR as a secondary evaluation index. If a large number of stable samples are judged to be unstable,
FP will decrease, but FN will increase which means that the transient stability control devices will be
frequently triggered.

4.2 Credibility Evaluation of Classifiers
4.2.1 Credibility Evaluation of SVM Classifier

When the optimization model shown in Eq. (8) is solved, the optimal hyperplane found is

wTφ (x) + b = 0 (21)

For a sample (x, y) to be classified, let

g (x) = wTφ (x) + b (22)
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Then the magnitude of g (x) reflects the distance between the sample x and the optimal classifi-
cation hyperplane, and the sign of g (x) indicates which side of the optimal classification hyperplane
the sample x is located on.

The longer the distance between a sample to be classified and the optimal classification hyper-
plane, the higher the credibility of the classification result of the SVM classifier for this sample will
be. When a sample to be classified is closer to the optimal hyperplane, it should be considered that the
credibility of the classification result of the SVM classifier for this sample is lower. In this paper, by
introducing the Sigmoid function, the distance between the sample to be classified and the optimal
hyperplane is mapped into the interval [0, 1], i.e.,

P (C1 |x) = 1/(1 + exp (−g (x))) (23)

P (C−1 |x) = 1/(1 + exp (g (x))) (24)

where P (C1 |x) and P (C−1 |x) respectively represent the probability that the sample x to be classified
is classified into Class 1 and Class -1 by the SVM classifier.

The Eqs. (12) and (13) are added together to obtain

P (C1 |x) + P (C−1 |x) = 100% (25)

Therefore, the credibility index of the classification result of the SVM classifier for the sample x
can be defined as

R1 = max {P (C1 |x) , P (C−1 |x)} (26)

For the binary classification problem in transient stability prediction, the credibility index R1
ranges from 50% to 100%. When R1 is 50%, it represents that the distance between the sample x and
the optimal classification hyperplane is zero, and the probabilities of being classified into Class 1 and
Class -1 are equal, i.e., the credibility of the transient stability prediction is 50%.

4.2.2 Credibility Evaluation of ELM Classifier

For a given sample (x, y) to be classified, take x as the input of the ELM classifier, and obtain
its output o. Similar to the SVM classifier, when the output o of the ELM classifier is close to the
critical point of classification (i.e., 0), its transient stability prediction result will be highly uncredible
[29]. Therefore, we can still use the Sigmoid function to evaluate the credibility of the ELM classifier.
The credibility R2 of the classification result of the ELM classifier for the sample x can be defined as

R2 = max {1/(1 + exp (−o)), 1/(1 + exp (o))} (27)

4.3 Relation between Accuracy and Credibility
The accuracy indexes and credibility indexes of the SVM classifier and ELM classifier have

been established, as above. In order to comprehensively evaluate the performance of the classifiers,
the relation between accuracy and credibility can be obtained by using statistical analysis for the
performance of the classifiers applying to the samples in testing sets. For illustration, the relation
between the accuracy rate index and credibility index of the SVM classifier is shown in Fig. 4, as
follows.
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Figure 4: Relation between accuracy rate and credibility of SVM classifier

As can be seen, the abscissa axis is the credibility index (CI) defined in Eq. (26), and the vertical
axis is the accuracy rate index (ARI) defined in Eq. (16). The plotted ARI-CI curve can reflect the
relation between the accuracy and credibility of the SVM classifier. Under a random guess situation,
when CI is 50%, ARI is 50% too (because if ARI is less than 50%, the result is worse than a random
guess, which means failed classification). With the increase of CI, ARI of the SVM classifier will
also increase. The ideal ARI-CI curve is shown as the plotted dotted diagonal line, which means the
classification accuracy of samples (which are 100% credible) should also be 100%.

4.4 Cross-Validation of Classifiers
In the process of applying the classifiers, the data is generally divided into two parts, which

are respectively used for training and testing to verify the validity of the classifiers. The common
validation methods include simple validation and cross-validation. A simple validation is to take a
certain proportion of data from the original data as the number of tests. However, the randomness of
test set selection will affect the final results.

Therefore, it is better to use cross-validation, and the basic idea is to divide the data into N
groups randomly where each subset of data is used as a test set, and the other N − 1 groups
are used as the training sets to build the classifier. A total of N experiments are performed, and
the average values of the performance indexes (including accuracy indexes and credibility indexes)
are obtained to comprehensively evaluate the classifiers. Cross-validation can eliminate the random
selection of training sets, and avoid over-learning and under-learning effectively. In this paper, 5-fold
cross-validation is used for applying the classifiers.

4.5 Scheme of Proposed Parallel Integrated Model-Driven and Data-Driven Method
When the model-driven RCKE method is used for transient stability prediction, the prediction

result is always determined because the adopted physical mechanism model itself is determined, that
is, the accuracy and credibility of the prediction result of the RCKE method can be considered as
100%.
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On the contrary, in the process of applying the data-driven methods, because of their “black-box”
properties and poor interpretability, the accuracy evaluation and credibility evaluation of their output
results must be investigated, respectively.

This paper proposes a new parallel mode to integrate the model-driven and data-driven method,
and the mechanism of the proposed method is clarified as below. Generally speaking, the model-
driven methods utilize the physical mechanisms of a power system to infer its characteristics, construct
corresponding detailed physical models to describe the relationship between the feature domain and
the target domain, and establish the mapping from power system features X1 to output results Y , i.e.,
F : X1 → Y . The data-driven methods avoid complex analysis of internal mechanisms, reflect the
power system characteristics through a large number of data tests and experiments, and use different
data processing algorithms to construct the relationship between the feature domain and the target
domain, and establish the mapping from power system features X2 to output results Y , i.e., G : X2 → Y .
The diagram of the proposed parallel integrated method is shown in Fig. 5, where H is the proposed
“switching function” and it controls whether the model-driven method should be activated or not.
Two independent classifiers (i.e., SVM classifier and ELM classifier) are employed in the data-driven
stage, because they both output the same transient stability assessment result usually means the output
result is quite reliable. More specifically, combined with the credibility evaluation of the single classifier
which is given in Sections 4.2 and 4.3, the switching function is constructed by introducing a credibility
threshold. Thus, the model-driven method and date-driven method are integrated, and the steps are
as follows.

Figure 5: Schematic diagram of the proposed parallel integrated method

Firstly, after collecting data (such as load level, power network structure, and fault set) and
generating sample data sets by time domain simulation method, the sample sets are randomly divided
into training set 1 and testing set 1 for the SVM classifier. For the ELM classifier, the sample sets are
randomly divided into training set 2 and testing set 2. This is to ensure that the SVM classifier and
ELM classifier are independent of each other. The five accuracy indexes proposed in this paper are
used to comprehensively evaluate the accuracy of the two classifiers. If the accuracy of SVM or ELM
does not meet the requirements, it is necessary to reset the parameters, train, and test.

Secondly, after the training of the two classifiers is completed and their accuracy meets the
requirements, they can be used for online transient stability prediction. And the prediction result in Z1,
credibility index R1, the prediction result in Z2, and credibility index R2 can be obtained, respectively.
By setting the credibility threshold Rth (for example, Rth = 90%), the case-by-case discussion can be
conducted according to the credibility evaluation of the two classifiers.
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When the prediction results in Z1 and Z2 are different, the corresponding credibility indexes R1
and R2 have the following four situations.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1 ≥ Rth, R2 ≥ Rth

R1 ≥ Rth, R2 < Rth

R1 < Rth, R2 ≥ Rth

R1 < Rth, R2 < Rth

(28)

It can be seen that when R1 ≥ Rth and R2 < Rth, the prediction result Z1 should be adopted;
when R1 < Rth, R2 ≥ Rth, the prediction result Z2 should be adopted; and the other two situations
mean that the data-driven methods fail to predict, and it is necessary to use the model-driven method
to predict.

When the prediction results in Z1 and Z2 are the same, the corresponding credibility indexes R1
and R2 also have four situations as shown in Eq. (26). It can be seen that only when R1 < Rth, R2 < Rth,
the model-driven method needs to be used for prediction, while under the other three situations, we
can directly output the prediction result Z1 as the final result.

Therefore, the switching function which controls whether the model-driven RCKE method is
activated or not can be constructed as follows:

(R1 ≥ Rth&&R2 ≥ Rth) ‖ (R1 < Rth&&R2 < Rth) == True (29)

(R1 < Rth&&R2 < Rth) == True (30)

When Eqs. (29) or (30) is satisfied, it indicates that the data-driven methods end in failure, and the
model-driven RCKE method must be used for prediction. Otherwise, it means that the credibility of
the data-driven methods meets the requirements, and their prediction results can be directly used as
the final output results.

In conclusion, when the model-driven methods and data-driven methods are used to predict the
transient stability of a multi-machine power system in the same initial state, the accuracy and credibility
of the output results of the model-driven methods are high, but the calculation efficiency is relatively
low. The data-driven methods have high computation efficiency, but the accuracy and credibility of
their output results are relatively low. Based on the proposed switching function controlling whether
the model-driven RCKE method is activated or not, this paper suggests a new parallel integrated
model-driven and data-driven online transient stability assessment method, and the flow chart of this
proposed method is shown in Fig. 6.
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Figure 6: Parallel integrated model-driven and data-driven method for online transient stability
assessment
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5 Case Study

In this paper, the New England 10-machine 39-bus standard system is used for example analysis.
The topology of this system is shown in Fig. 7. This system contains 10 synchronous generators, 39
buses, and 46 transmission lines. The voltage level of the system is 345 kV, the rated frequency is 60 Hz,
and the base value of power is 100 MW.

Figure 7: Topology of the New England 39 bus system

In the data-driven stage, the sample data set is generated by the Monte Carlo method, and the load
level on each bus is set to randomly range from −20% to 20% of the base value of power. The fault
types include three-phase short-circuit grounding faults, two-phase short-circuit grounding faults and,
single-phase short-circuit grounding faults. The fault duration is set to follow the normal distribution
(its average value is 0.1 s and its standard deviation is 0.01 s). The time domain simulation method
is used to assess the transient stability of the generated samples, that is, whether the relative power
angle difference between any two generators is less than 360 within 5 s after fault removal is used as
the transient stability criterion. Finally, a sample data set with a total of 6,000 samples is generated,
including 4,269 stable samples and 1,731 unstable samples.

In the model-driven stage, the time-domain simulation model is built in BPA, in which the
generator adopts the fifth-order model and the load model adopts the constant impedance model. The
critical clearing time of the system is calculated by the energy function method and RCKE method to
assess its transient stability, respectively.

After the sample data set (including 6,000 samples in total) for data-driven methods is generated,
the sample set is randomly divided into training set 1 (including 5,400 samples in total) and testing
set 1 (including 600 samples in total) for the SVM classifier. For the ELM classifier, the sample set
is randomly divided into training set 2 (including 5400 samples in total) and testing set 2 (including
600 samples in total). Therefore, the SVM classifier and ELM classifier are independent of each other
in predicting transient stability. It should be pointed out that the sample data set generated in this
paper only considers the typical short-circuit fault types, despite the fact that there are also many
other large disturbances that can cause transient stability (including generator tripping, sudden load
change, open-circuit of transmission lines and cut-off or input of transmission apparatus). In order to
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cope with these large disturbances, the proposed method needs further procedures, e.g., adjusting the
functions of the RCKE method and tuning hyperparameters of SVM and ELM classifiers.

5.1 Performance of Data-Driven Methods
In order to show the performance of data-driven methods, it is necessary to select the features of

the generated sample data sets. For each sample, as shown in Table 1, its selectable features include
fault duration (1 feature), active output of each generator (10 features), the reactive output of each
generator (10 features), the amplitude of node voltage on each bus (39 features), the phase angle of
node voltage on each bus (39 features), injected active power of each bus (39 features), injected reactive
power of each bus (39 features), the active power of each branch and reactive power of each branch (92
features), which are 269 features in total. The Fisher discriminant method [28] is used to calculate the
impact coefficient of each feature on the assessment results when online transient stability assessment
is conducted by using a support vector machine and extreme learning machine, respectively, as shown
in Figs. 8 and 9. It can be seen that for the two data-driven methods, only the first 177 features have
a significant impact on the assessment results, while the last 98 features have little impact. Therefore,
the first 177 features should be selected as the feature set.

Figure 8: Feature impact coefficient of SVM

Figure 9: Feature impact coefficient of ELM

For the SVM classifier, the grid search method is used to determine its optimal parameters. For
the ELM classifier, the optimal number of hidden layer nodes is determined by 5-fold cross-validation,
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and the result is shown in Fig. 10. It can be seen that both the results of the training set and testing set
indicate that the number of hidden layer nodes of ELM classifier should be set to 300.

Figure 10: Optimum of hidden layer nodes of ELM

The proposed five accuracy indexes (including AR, RR, SR, MDR, and FAR) are used to
comprehensively evaluate the accuracy of the classifiers. If the accuracy of SVM and ELM does not
meet the requirements, it is necessary to reset the parameters, train, and test.

After the prediction results in Z1 of SVM and Z2 of ELM are obtained, the credibility of the
prediction results made by the two data-driven methods is evaluated by introducing the Sigmoid
function, and the credibility index R1 of SVM and the credibility index R2 of ELM are obtained
respectively. To illustrate the relationship between the credibility and accuracy of SVM and ELM, the
relationship curve between them can be given by setting different credibility thresholds, as shown in
Fig. 11.

Figure 11: Relation between credibility and accuracy

5.2 Performance of Model-Driven Method
The model-driven time domain simulation method, energy function method and, RCKE method

are used to assess the transient stability of the New England system, respectively. It is necessary to
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elaborate the steps of the standard energy function method first. Since the classical model of a multi-
machine power system has been given in Eqs. (1)∼(4), where Eq. (4) represents the kinetic energy of
the ith generator, the transient energy function of the system at any time can be expressed as

V = 1
2

n∑
i=1

Miω
2
i +

n∑
i=1

∫ δi

δ0i

(
PIII

ei − Pmi

)
dδi (31)

where the first part corresponds to the kinetic energy of the system and the second part corresponds
to the potential energy of the system; δ0i is the reference point of potential energy; PIII

ei corresponds
to the electromagnetic power of the ith generator after the fault is cleared. Thus, the steps of the
energy function method are as below: firstly, substitute the unstable equilibrium point, i.e., (δu, 0), into
Eq. (31) and obtain the critical energy of the system Vcr; secondly, substitute the state of the system
when the fault is cleared, i.e., (δcl, ωcl), into Eq. (31) and obtain the energy of the system when the fault
is cleared Vcl; finally, Vcr > Vcl indicates the system is stable while Vcr ≤ Vcl indicates the system is
unstable.

The transient stability results and calculation time of these three methods are shown in Figs. 12
and 13, respectively. Among them, the fault locations are 2∗–3 (indicating that a three-phase short-
circuit fault occurred on bus 2, and the system cuts off 2–3 lines after the fault), 4∗–14, 6∗–11, 15∗–16,
24∗–23, and 25∗–26.

Figure 12: Transient stability assessment results of model-driven methods

It can be seen that, on the one hand, although both the energy function method and the RCKE
method belong to the direct methods, the accuracy of the assessment result of the latter method is
relatively higher, because the Lyapunov function constructed by the energy function method is usually
more conservative than the actual system. On the other hand, when applied to the online assessment of
transient stability of multi-machine power systems, the RCKE method is more efficient than the energy
function method because it adopts the piecewise solution methods, and the calculation efficiency of
the time domain simulation method is not suitable for online because it needs the integral solution of
the whole process.
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Figure 13: Computation time of model-driven methods

5.3 Performance of Proposed Parallel Integrated Model-Driven and Data-Driven Method
The Monte Carlo method mentioned above is used to generate a sample data set containing 1000

samples, which is used to test the performance of the proposed parallel integrated model-driven and
data-driven method and to show the average accuracy and average calculation time of its transient
stability assessment.

As shown in Section 4.5, there is only one hyperparameter in the proposed method: the credibility
threshold Rth. In essence, Rth represents the respective contributions of the model-driven method and
data-driven method, and it is a central element in determining the performance of the proposed
method because it controls how frequently the model-driven method needs to be activated. Based on
the relation between the accuracy and credibility of a single classifier which is discussed in Section 4.3,
a reasonable value of Rth seems to be about 90%. However, note that both the SVM classifier and ELM
classifier are used in the data-driven stage and that the switching function is established according to
the independence of these two classifiers, therefore, Rth should be determined by data experiment. In
summary, as for the performance of the proposed parallel integrated method, a larger Rth represents
the preference for credibility, while a smaller Rth represents the preference of efficiency.

The influence of the credibility threshold on the assessment performance of the proposed method
is shown in Table 3. It can be seen that with the gradual increase of the credibility threshold, on the
one hand, the average calculation time of the proposed method will be longer and longer, because the
higher credibility threshold means that the RCKE method needs to be activated more frequently for
transient stability assessment. On the other hand, the average accuracy of the proposed method will
increase continuously, and when the credibility threshold increases to 75%, the average accuracy will
reach 100%, which will remain unchanged thereafter. Therefore, considering the factors of assessment
accuracy and calculation time, this paper sets the credibility threshold as 80%.



EE, 2023, vol.120, no.11 2605

Table 3: Impact of credibility threshold on the performance of parallel integrated model-driven and
data-driven methods

Credibility threshold Rth (%) Average accuracy (%) Average calculation time (s)

60 97.26 0.535
65 98.17 0.913
70 99.81 1.236
75 100 1.541
80 100 1.727
85 100 1.979
90 100 2.218
95 100 2.342

Similarly, the sample data set with 1000 samples generated above is used to test the transient
stability assessment performance of the energy function method, support vector machine, and extreme
learning machine, and the results are shown in Fig. 14. It should be pointed out that Fig. 14 is
a double Y-axis diagram, where the left Y-axis represents the average computation time while the
right Y-axis represents the average accuracy rate. It can be seen that the computational efficiency of
the proposed method is greatly improved compared with the energy function method. On the other
hand, compared with the traditional single data-driven methods (such as support vector machine and
extreme learning machine), the proposed method has higher assessment accuracy. Furthermore, the
proposed method actually provides a route to adjust its credibility level (i.e., credibility threshold Rth

and switching function), and under extreme conditions (e.g., the quality of the input data set is too low)
the proposed method can totally degenerate into the model-driven RCKE method which represents a
100% credibility level, while the credibility of SVM and ELM classifiers is inherent which means their
output results always have some inevitable uncertainties. Therefore, the proposed method has higher
credibility than SVM and ELM, through Table 3 and Fig. 14.

For the actual power system, the measurement data obtained from the SCADA system often
contain noise, which will affect the accuracy of transient stability assessment results by data-driven
methods. In order to simulate a real scene, random variables that follow normal distribution are added
to the original feature set as irrelevant features in the sample data generation stage. The influence of
the number of irrelevant features on the average accuracy of transient stability assessment by different
methods is shown in Fig. 15. It can be seen that with the increasing number of irrelevant features,
the average accuracy of single data-driven methods (such as support vector machines and extreme
learning machines) will gradually decrease, while the average accuracy of the proposed method will
remain unchanged, which indicates that the proposed method of this paper has a better anti-noise
ability.
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Figure 14: Comparison of transient stability assessment results of different methods

Figure 15: Impact of the irrelevant feature on mean accuracy

6 Conclusions

In this paper, a new two-stage parallel integrated model-driven and data-driven online transient
stability assessment method is proposed, which has advantages over the traditional single-type driven
methods, and the following conclusions are obtained:

(1) In the data-driven stage, support vector machine classifiers, and extreme learning machine
classifiers with different internal principles are used to predict the transient stability, thus ensuring the
independence of each other.
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(2) The output results of data-driven methods depend on the input sample data and offline training
parameters, so they have some uncertainties. Based on the distance between the output results and the
classification critical points, the credibility index of data-driven methods is proposed to quantify the
credibility level of their transient stability assessment.

(3) A switching function based on the established credibility index is proposed, and whether the
model-driven rate of change of the kinetic energy method is activated or not is decided by the switching
function. Thus, the model-driven method and the data-driven methods are combined by a “parallel
integrated” pattern through the switching function. Compared with the single data-driven method, the
proposed method can obtain more reliable transient stability assessment results (i.e., higher credibility
level and stronger anti-noise ability) on the premise of ensuring the calculation efficiency.

(4) This paper assumes that each synchronous generator of a multi-machine power system is
represented by the second-order classical model. However, nowadays fast controllers (e.g., automatic
voltage regulators, and governors) are equipped in practical power systems, and the proposed method
in this paper cannot cope with this complicated situation. In our future research, the RCKE method in
the model-driven stage should be replaced by a more powerful method such as the recursive approach
based on corrected kinetic energy which was proposed in reference [6], while the input features in the
data-driven stage should include details of practical synchronous generators and corresponding fast
controllers.
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11. Guo, T., Milanović, J. V. (2013). Probabilistic framework for assessing the accuracy of data mining tool for
online prediction of transient stability. IEEE Transactions on Power Systems, 29(1), 377–385.

12. Behdadnia, T., Yaslan, Y., Genc, I. (2021). A new method of decision tree based transient stability assessment
using hybrid simulation for real-time PMU measurements. IET Generation, Transmission & Distribution,
15(4), 678–693.

13. Zhang, C., Li, Y., Yu, Z., Tian, F. (2016). Feature selection of power system transient stability assessment
based on random forest and recursive feature elimination. 2016 IEEE PES Asia-Pacific Power and Energy
Engineering Conference, pp. 1264–1268. Xi’an, China.

14. Chen, Y., Mazhari, S. M., Chung, C. Y., Faried, S. O., Wang, B. et al. (2019). Power system on-line
transient stability prediction by margin indices and random forests. 2019 IEEE Electrical Power and Energy
Conference, pp. 1–6. Montreal, Canada.

15. Li, X., Liu, C., Guo, P., Liu, S., Ning, J. (2022). Deep learning-based transient stability assessment
framework for large-scale modern power system. International Journal of Electrical Power & Energy Systems,
139(6), 108010.

16. Ren, C., Xu, Y., Zhang, R. (2021). An interpretable deep learning for power system transient stability
assessment via tree regularization. IEEE Transactions on Power Systems, 37(5), 3359–3369.

17. Zhu, L., Hill, D. J., Lu, C. (2019). Hierarchical deep learning machine for power system online transient
stability prediction. IEEE Transactions on Power Systems, 35(3), 2399–2411.

18. Ren, C., Xu, Y., Zhang, R. (2022). An Interpretable deep learning method for power system transient
stability assessment via tree regularization. IEEE Transactions on Power Systems, 37(5), 3359–3369.

19. Zhao, T., Wang, J., Lu, X., Du, Y. (2021). Neural lyapunov control for power system transient stability: A
deep learning-based approach. IEEE Transactions on Power Systems, 37(2), 955–966.

20. Azman, S. K., Isbeih, Y. J., El Moursi, M. S., Elbassioni, K. (2020). A unified online deep learning prediction
model for small signal and transient stability. IEEE Transactions on Power Systems, 35(6), 4585–4598.

21. Li, Y., Yang, Z. (2017). Application of EOS-ELM with binary Jaya-based feature selection to real-time
transient stability assessment using PMU data. IEEE Access, 5, 23092–23101.

22. Zhang, Y., Zhao, Q., Tan, B., Yang, J. (2021). A power system transient stability assessment method based
on active learning. The Journal of Engineering, 2021(11), 715–723.

23. Wang, H., Wang, Q., Chen, Q. (2020). Transient stability assessment model with improved cost-sensitive
method based on the fault severity. IET Generation, Transmission & Distribution, 14(20), 4605–4611.

24. Li, F., Wang, Q., Tang, Y., Xu, Y., Dang, J. (2021). Hybrid analytical and data-driven modeling based
instance-transfer method for power system online transient stability assessment. CSEE Journal of Power
and Energy Systems, 1–10. https://ieeexplore.ieee.org/abstract/document/9420351

https://ieeexplore.ieee.org/abstract/document/9420351


EE, 2023, vol.120, no.11 2609

25. Li, F., Wang, Q., Tang, Y., Xu, Y. (2021). An integrated method for critical clearing time prediction based
on a model-driven and ensemble cost-sensitive data-driven scheme. International Journal of Electrical Power
& Energy Systems, 125(11), 106513.

26. Ai-Taee, M. A., Ai-Azzawi, F. J., Al-Taee, A. A., Al-Jumaily, T. Z. (2001). Real-time assessment of power
system transient stability using rate of change of kinetic energy method. IEEE Proceedings-Generation,
Transmission and Distribution, 148(6), 505–510.

27. Johnson, C. R. (1990). Matrix theory and applications, vol. 40. USA: American Mathematical Society Press.
28. Müller, K. R., Mika, S., Tsuda, K., Schölkopf, K. (2018). An introduction to kernel-based learning

algorithms. In: Handbook of neural network signal processing, pp. 4–10. USA: CRC Press.
29. Zhang, Y., Xu, Y., Dong, Z. Y., Xu, Z., Wong, K. P. (2017). Intelligent early warning of power system

dynamic insecurity risk: Toward optimal accuracy-earliness tradeoff. IEEE Transactions on Industrial
Informatics, 13(5), 2544–2554.


	Parallel Integrated Model-Driven and Data-Driven Online Transient Stability Assessment Method for Power System
	1 Introduction
	2 Model-Driven Rate of Change of Kinetic Energy Method
	3 Data-Driven Machine Learning Method
	4 Parallel Integrated Model-Driven and Data-Driven Method
	5 Case Study
	6 Conclusions
	References


