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ABSTRACT

With the goal of “carbon peaking and carbon neutralization”, it is an inevitable trend for investing smart grid to
promote the large-scale grid connection of renewable energy. Smart grid investment has a significant driving effect
(derivative value), and evaluating this value can help to more accurately grasp the external effects of smart grid
investment and support the realization of industrial linkage value with power grid investment as the core. Therefore,
by analyzing the characterization of the derivative value of smart grid driven by investment, this paper constructs the
evaluation index system of the derivative value of smart grid investment including 11 indicators. Then, the hybrid
evaluation model of the derivative value of smart grid investment is developed based on anti-entropy weight (AEW),
level based weight assessment (LBWA), and measurement alternatives and ranking according to the compromise
solution (MARCOS) techniques. The results of case analysis show that for SG investment, the value of sustainable
development can better reflect its derivative value, and when smart grid performs poorly in promoting renewable
energy consumption, improving primary energy efficiency, and improving its own fault resistance, the driving force
of its investment for future sustainable development will decline significantly, making the grid investment lack
derivative value. In addition, smart grid investment needs to pay attention to the economy of investment, which is
an important guarantee to ensure that the power grid has sufficient and stable sources of investment funds. Finally,
compared with three comparison models, the proposed hybrid multi-criteria decision-making (MCDM) model
can better improve the decision-making efficiency on the premise of ensuring robustness.
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1 Introduction

The continuous increase of global greenhouse gas emissions has promoted climate warming and
seriously affected the sustainable development of mankind. Many countries have fully recognized
the impact of carbon dioxide on the climate, and have formulated the goal of “carbon peaking and
carbon neutralization” (dual carbon) and introduced relevant policies. The energy sector is a key area
of carbon emissions, and promoting energy transformation is the key to achieving the dual carbon
goal. Renewable energy power generation has the characteristics of clean and low-carbon. Expanding
the scale of renewable energy power generation and accelerating the construction of green and low-
carbon power systems are important ways to promote carbon emission reduction in the energy field.
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However, renewable energy power generation is uncertain, and its large-scale access to the power grid
will significantly affect the safe and stable operation of the power grid. Therefore, it is necessary to
strengthen the power grid construction to meet the development of renewable energy, which is also a
key support for the achievement of dual carbon goal.

As an important development direction of power grid, smart grid (SG) is based on the integrated,
high-speed two-way communication network. Through the application of advanced sensing and
measurement technology, equipment technology, control methods and decision support system tech-
nology, SG can achieve the goals of reliability, safety, economy, efficiency, environmental friendliness
and safe use of power grid. Its main features include self-healing, encouraging and protecting users,
resisting attacks, providing power quality to meet users’ needs, allowing access to various forms of
power generation, supporting the power market and optimizing the efficient operation of assets. With
the large-scale renewable energy access to the power grid under the dual carbon goal, the importance
of SG construction is increasingly urgent.

However, unlike traditional power grids, SG investment faces new challenges. On the one hand, SG
investment needs to consider a variety of external factors, such as supporting high-quality economic
development, promoting energy transformation, ensuring the security of power supply, and enhancing
the competitiveness of the state-owned economy; At the same time, the supervision of SG investment
has been continuously strengthened and the examination of transmission and distribution pricing
costs has become stricter, making the pressure on SG operation assessment and investment capacity
be increased [1,2]. On the other hand, with the increase of uncertain factors of SG investment, it is
necessary to dynamically balance the relationship between investment demand and investment capac-
ity, and the relationship between long-term development and short-term demand [3,4]. Therefore, it
is necessary to further analyze the value of SG investment, excavate and quantitatively evaluate the
derivative value of its investment in driving social development [5,6], to promote the linkage of energy
related industries, enable the construction of SG-related industries, and support the construction of
new power systems and the realization of dual carbon goal.

The existing research on the evaluation of power grid investment value mainly focuses on the
direct value, such as increasing power grid transmission income, improving power system reliability,
etc., so the evaluation indicators mainly include economic benefits and technical benefits. Reference [7]
established an effective capital input-output evaluation system for the power grid, and constructs an
index system from the perspectives of assets, costs, benefits, and efficiency. Reference [8] constructed
an index system for the investment value evaluation of power grid planning projects in the current
environment based on three levels: technology, efficiency, and project maturity. References [9–11]
analyzed and evaluated the economy of power grid investment from the perspective of financial
benefits, providing support for power grid investment decisions. References [12–14] comprehensively
considered the economy of investment and the reliability of system operation and constructed the eval-
uation index system of power grid investment value. References [15–17] introduced social indicators
based on economic indicators and technical indicators, such as promoting employment and taxation,
supporting economic development, etc., and more comprehensively evaluated the value of power grid
investment. References [18–20] introduced environmental benefits, such as pollutant emissions, and
renewable energy consumption, into the evaluation index system of power grid investment value,
further highlighting the comprehensive value of power grid investment.

In the evaluation method of power grid investment value, the multi-criteria decision-making
(MCDM) method has been widely concerned. When determining the index weight, the weight-
ing methods can be divided into subjective weighting methods, objective weighting methods, and
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combined weighting methods. The mainstream subjective weighting methods include analytic hierar-
chy process (AHP) [21], Delphi method [22], best-worst method (BWM) [23], and binomial coefficient
method [24]. Mainstream objective weighting methods include entropy weight method [25], anti-
entropy weight (AEW) method [26], and coefficient of variation method [27]. The subjective weighting
method and objective weighting method have certain limitations [28–30]: the subjective weighting
method can not make full use of the objective information of indicators, and the process of indicator
weighting is greatly affected by the subjectivity of experts. The objective weighting method pays too
much attention to the differences between the original information of the indicators, neglects the
meaning of the indicators themselves, and has significant data dependence, resulting that the stability
and interpretability of the weighting results being weak. Therefore, relevant scholars have proposed the
combined weighting method [31,32], which can effectively integrate the advantages of the subjective
weighting method and objective weighting method, overcome the limitations of a single weighting
method, and ensure the reliability of index weighting results.

Based on determining the index system and weighting methods, the existing MCDM methods
for the evaluation of power grid investment value mainly include two types: single scheme evaluation
method and multi scheme ranking method. The commonly used single scheme evaluation methods
include fuzzy comprehensive evaluation [33,34], matter-element extension [35], etc. This kind of
method has low data requirements for the evaluation object, and the evaluation process is relatively
simple, but the evaluation results have some subjectivity. Commonly used multi-scheme ranking
methods include Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [36,37],
VIse Kriterijumski Optimizacioni Racun (VIKOR) [38], grey correlation analysis [39], etc. This kind
of method has a high demand for data information on alternative schemes. The evaluation process is
more objective, and the subjectivity of the results is low, but the calculation process is more complex.

In line with the above discussion, under the background of the “dual carbon” goal, the role
of SG is more prominent, which is of great significance for the evaluation of its investment value.
However, there are some gaps in the existing literature: firstly, it pays less attention to the intelligence
level when carrying out the investment value evaluation of the power grid, and the embodiment of
the characteristics of SG is not enough. Secondly, power grid investment has a significant driving
effect (derivative value), and in addition to the traditional evaluation of comprehensive benefits from
the economy, technology, society, and environment, it should also carry out targeted derivative value
evaluation of SG investment. By this, it can more accurately grasp the external effects of SG investment
and support the realization of industrial linkage value with power grid investment as the core.

Based on this, this paper focuses on the derivative value of SG investment under the “dual carbon”
goal, and analyzes the value derivative mechanism of SG to economy and society driven by investment.
Then, an evaluation index system for the derivative value of SG investment including three dimensions
called power grid investment performance, operation and maintenance performance, and sustainable
development performance is constructed, and a derivative value evaluation model for SG investment is
developed. Finally, the effectiveness of the model is verified by the case study. Overall, the contributions
of this paper mainly include:

(1) Different from previous studies, this paper focuses on the derivative value of SG investment
and constructs a targeted evaluation index system. This paper analyzed the characterization
of SG derivative value driven by investment, and constructs an evaluation index system of
the derivative value of SG investment including 11 indicators from the three dimensions of
power grid investment performance, operation and maintenance performance, and sustainable
development performance, which can comprehensively and objectively reflect the potential
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value of SG investment to the economy, society, and environment, and also lays the foundation
for the scientific evaluation of the derivative value of SG investment.

(2) A hybrid MCDM model for the derivative value evaluation model of SG investment is
developed. Based on the constructed index system and MCDM theory, the SG investment
derivative value evaluation model based on anti-entropy weight (AEW) and level based weight
assessment combination weighting and measurement alternatives and ranking according to
the compromise solution (MARCOS) is proposed. On the one hand, the proposed combined
weighting method can make full use of the objective information carried by the index and
consider the connotation of the index itself, ensuring the interpretability of the weight results
and avoiding subjectivity. On the other hand, the proposed MARCOS method considers the
comprehensive utility value between the alternative scheme and the positive and negative ideal
solutions at the same time, which makes the evaluation result more credible. The model validity
test also shows that the proposed hybrid MCDM model can better improve decision-making
efficiency on the premise of ensuring robustness.

The rest of this paper is organized as follows: Section 2 analyzes the derivative value of SG
investment and constructs the evaluation index system. Section 3 introduces the proposed hybrid
MCDM model for evaluating the derivative value of SG investment. Section 4 carries on the example
analysis and the model validity test. Section 5 is the main conclusion of this paper.

2 Evaluation Index System of SG Investment Derivative Value
2.1 Analysis of the Derivative Value of SG Investment

The derivative value of SG investment is a derivative system related to power grid investment,
and specifically refers to the current and potential value derived from the original assets, which is
reflected in the security, environmental protection, economy, and technological progressiveness of the
power grid. According to the evolution of energy and power system in complex environments, the
value derivative chain and mechanism of power grid investment in stimulating industrial development,
promoting technological progress, and renewable consumption, thus supporting dual carbon targets
are significant, which is the specific derivative value brought by SG investment. Generally speaking,
the SG investment derivative value criteria should be applied to government regulators, power industry
associations, and relevant business departments of power grid enterprises. For each application
scenario, the following SG investment derivative value criteria should be followed:

1) Support the strategic layout of power grid enterprises and power grid construction. Under
the dual carbon goal orientation, SG investment derivative value evaluation can guide the
productivity layout, planning and construction of relevant business departments of power grid
enterprises, optimize the power grid investment structure and mode to meet the infrastructure
needs for the low-carbon transformation of electricity, and carry out the value evaluation
of investment projects and apply them in power grid investment, to provide support for the
sustainable and stable operation and development of enterprises.

2) Guide the optimization of productivity layout and structure in the energy industry. Through
SG investment derivative value evaluation, it can promote the energy industry and power grid-
related enterprises to focus on key technological fields, optimize investment and orderly devel-
opment of energy industry and power grid related enterprises, and provide a demonstration of
technical methods for investment planning and evaluation for energy industry enterprises. By
this, it can promote the transfer of resource elements in the energy industry to areas with higher
derivative value (such as renewable energy technology), thereby promoting green technology
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progress in the energy industry and power grid enterprises, providing support for achieving
low-carbon development in the energy sector, and helping to achieve the dual carbon goal.

3) Serve the implementation of national strategies and policies. The evaluation of SG investment
derivative value can provide decision-making reference for the implementation of major strate-
gies such as dual carbon strategy, national energy security strategy and regional coordinated
development strategy, and can provide technical and programmatic support for participating
in national energy planning and construction, energy structure optimization, industrial coor-
dinated development, etc.

2.2 Construction of SG Investment Derivative Value Evaluation Index System
The construction of indicators is the top priority in the field of evaluation. Its suitability not

only determines the scope of application of the evaluation, but also affects the feasible value of the
evaluation. In fact, the influencing factors of the derivative value of SG investment are complex. “Dual
carbon” goal puts forward new requirements for energy transformation. In addition, it is necessary to
ensure the calculability, subjectivity and objectivity of the evaluation indicators. Therefore, considering
the connotation of SG investment derivative value under the dual carbon target, this paper draws
on relevant literature [8,16,18] and measures the derivative value of SG investment from three
aspects: power grid investment performance, operation and maintenance performance, and sustainable
development performance. The index framework is shown in Fig. 1.

Figure 1: The index framework for evaluating the derivative value of SG investment

According to Fig. 1, the power grid investment performance index is the intuitive embodiment
of the derivative value of SG investment, reflecting the direct economic and physical benefits of SG
investment, including revenue rate per unit investment, voltage qualification rate per unit investment,
reserve rate per unit investment, increased load per unit investment and system overload reduction per
unit investment. The operation and maintenance performance index indicates the reliability guarantee
generated by SG investment, including user failure self-healing rate, equipment failure rate, and time
delay rate of information transmission. The sustainable development performance index represents
the development potential of SG investment, including renewable energy investment ratio, electric
vehicle investment ratio, and primary energy efficiency. The constructed SG investment derivative
value evaluation index system takes into account the multiple goals of SG development under the dual
carbon goal, that is, SG investment needs to enhance the strong level and power supply guarantee
ability of the power grid system while obtaining appropriate economic benefits, so that the power



2884 EE, 2023, vol.120, no.12

grid can withstand the impact of large-scale renewable energy uncertainty, and thus ensure the large-
scale consumption of renewable energy from the infrastructure level. The connotation and calculation
method of each secondary indicator are shown in Table 1, and the names of relevant parameters are
shown in Table 2.

Table 1: Connotation and calculation method of each secondary indicator

Indicators Meanings Calculations

c11 The ratio of total benefit and total investment
in the whole life cycle of power grid in a
certain region

c11 = R/T0

c12 Increased number of nodes whose voltage
meets the qualified standard in a certain
power grid area under unit investment

c12 = Nnode/T0

c13 Increase number of lines that meet the “N-1”
principle in a certain power grid area under
unit investment

c13 = NN−1/T0

c14 Added load power in a certain power grid
area under unit investment

c14 = Pinv/T0

c15 The descending number of heavy load lines
and heavy load transformers in a certain
power grid area under the unit investment

c15 = Nload/T0

c21 The ratio of the number of users who achieve
fault self-healing to the total number of failed
users within the statistical period of power
grid

c21 = Nh/Ng × 100%

c22 The ratio of shutdown time caused by
equipment failure to the planned working
time

c22 = ∑
Tf

/(∑
Tf + ∑

Tr

) × 100%

c23 Time delay of real-time data transmission
during power system operation

c23 = (Tk − Tz)
/
Tz × 100%

c31 Increased renewable energy capacity in a
certain power grid area under unit investment

c31 = Cre

/
T0

c32 The proportion of added charging piles and
electric vehicles in a certain power grid area
under unit investment

c32 = Cch

/
(T0 × Ccar)

c33 The ratio of the sum of effective heat, cold
and electric energy obtained in the power grid
area to the total energy generated by the
primary energy fuel on the supply side

c33 = (Wheat + Wcold + Wel)
/
Wsum × 100%
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Table 2: Names of relevant parameters

Parameter Meanings Parameter Meanings

R Total revenue of the power grid in a
certain area in the whole life cycle

Tk Time of data update in the system

T0 Total investment of the power grid in a
certain area

Tz Time of data being sensed and
collected by the system

Nnode Increased number of nodes whose
voltage meets the qualified standard

Cre Increased renewable energy
capacity

NN−1 Increased number of lines that meet the
“N-1” principle

Cch Added numbers of charging piles

Pinv Added load power Ccar Total number of electric vehicles
in the region

Nload The descending number of heavy load
lines and heavy load transformers

Wheat Effective heat energy obtained in
a certain grid area

Nh The number of users who realize fault
self-healing within the statistical period
of power grid

Wcold Effective cold energy obtained in
a certain grid area

Ng The total number of failed users within
the statistical period of power grid

Wel Effective electric energy obtained
in a certain grid area

Tf The shutdown time caused by
equipment failure

Wsum Total energy generated by the
primary energy fuel on the
supply side

Tr The planned equipment working time

3 Evaluation Model of SG Investment Derivative Value Based on Hybrid MCDM
3.1 Framework of the Proposed Hybrid MCDM Model

The framework of the SG investment derivative value evaluation model proposed in this paper
is shown in Fig. 2. Based on the evaluation index system shown in Fig. 1, the hybrid MCDM model
includes two parts:

Part 1: Indicator weighting. A weighting model integrating subjective and objective weighting
methods (called AEW and LBWA method) is developed in this paper based on the constructed
evaluation index system. Firstly, based on all indicators’ values of multiple alternatives, the anti-
entropy values of each indicator is calculated, and then the anti-entropy values are normalized to
obtain the objective weights. Secondly, invite experts to judge the importance of each indicator, layer
the indicators based on the judgment results and construct an LBWA judgment vector, and then
calculate the influence function of each indicator. Based on this, calculate the subjective weight based
on LBWA. Finally, an optimization model is constructed by minimizing the heterogeneity between
objective and subjective weights, and the integrated weights can be obtained to evaluate the derivative
value of SG investment.

Part 2: MCDM. The constructed indicators are quantitative and this paper aims to evaluate the
derivative value of multiple SG investments, so an MCDM model based on the MARCOS technique
is proposed. Firstly, based on the values of multiple alternatives on all indicators, a normalized
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evaluation matrix is constructed, and then combined with the weight results, a weighted decision
matrix is constructed. Secondly, according to the weighted decision matrix, the utility functions of
each alternative for anti-ideal and ideal solutions are calculated as the distance. Finally, calculate the
comprehensive utility function of each alternative, and rank them accordingly.

Figure 2: The framework of the proposed hybrid MCDM model

3.2 Combined Weighting Method Based on AEW and LBWA
After the evaluation index is constructed, the index weighting method is the key to the quantitative

analysis of the derivative value of SG investment. To meet the multiple development goals of the future
power grid and implement the action plan of the “Dual Carbon” goal, the index weight needs to take
into account the nature of the index itself and the difference of the original data. Therefore, this paper
proposes a combined weighting method based on AEW and LBWA, which ensures the reliability of
index weight results through the fusion of subjective and objective ideas.

(1) Objective weighting method based on AEW

In this paper, the AEW method is used to determine the objective weight of the index. Entropy is
a concept used to measure the disorder degree of a system in a thermodynamic system. When there
are m states in the system, and the probability of each state is pj (j = 1, 2, . . . , m), then entropy is:

h = −
∑m

j=1
pjlnpj (1)

where 0 ≤ pj ≤ 1 and
∑

j pj = 1.

For AEW, assuming that there are m objects and n indicators for one MCDM issue, the index
value can be expressed as xij (i = 1, 2, . . . , n, j = 1, 2, . . . , m), and the corresponding decision matrix
can be written as X = [

xij

]
n×m

. Therefore, the anti-entropy value of each index can be expressed as:

hi = −
∑m

j=1
rij ln(1 − rij) (2)
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where rij = xij/
∑

j xij represents the dimensionless value of the index value. By normalizing the anti-
entropy value of the index, the AEW weight of the index (w1i) can be obtained:

w1i = hi/
∑

i
hi (3)

(2) Subjective weighting method based on LBWA

LBWA method is a subjective weighting method proposed by Serbian scholars Žižović et al. in
2019 [40]. Based on defining the most important indicators among the indicator system, the LBWA
method uses it as a benchmark to layer other indicators according to the degree of importance, and
then sort the importance of indicators within the layer and make adjacent comparisons and judgments.
This method can effectively deal with the inconsistency of ranking caused by a large number of
indicators through the index importance stratification, and simplify the index importance comparison
process through the index importance ranking within the layer and adjacent comparison judgment. In
recent years, the LBWA method has attracted the attention of relevant scholars and has been applied to
many MCDM fields, such as renewable energy alternative evaluation, and offshore wind farm location
decisions [41,42]. In this paper, the basic steps of using the LBWA method to determine the subjective
weight of indicators are as follows:

Step 1: determine the optimal index. According to expert opinions, determine the index with the
greatest importance in the index set C = {C1, C2, . . . , Cn} and define it as the optimal index CB.

Step 2: index stratification. The remaining indicators except the optimal indicator are divided into
different layers according to the importance of the indicators. The hierarchical basis is as follows:

S1 Layer: among the remaining indicators, indicators with the same importance as the optimal
indicator or indicators less than two times (excluding two times) the importance of the optimal
indicator are divided into this layer.

S2 Layer: among the remaining indicators, the indicators that are two to three times less important
than the optimal indicator (excluding three times) are divided into this layer.

Sk Layer: among the remaining indicators, indicators that are k times to k+1 times less important
than the optimal indicator (excluding k + 1 times) are divided into this layer.

Through the above indicator stratification, it can have a rough definition of the importance of
indicators. Assuming that for any indicator Ci, its importance can be expressed as S (Ci), then for the
divided layer Sk (k = 1, 2, . . . , K), there is:

S = S1 ∪ S2 ∪ · · · ∪ SK (4)

And for any p, q ∈ {1, 2, . . . , K}, if p �= q, then Sp ∩ Sq = ∅.

Step 3: hierarchical judgment of index importance. In any layer Sk =
{

C1
k, C2

k, . . . , CNk
k

}
, define the

optimal index CB
k in the layer, and then compare the importance of other indexes in the layer with the

optimal index, and the result is recorded as I ik
k . I ik

k indicates the importance of the k-th index compared
with the optimal index of the k-th layer. The greater the importance of the k-th index, the smaller the
value of I ik

k , and I ik
k is defined as an integer in the interval [0, r]. In particular, when k = 1, there is

CB
1 = CB and IB

1 = 0. r is a constant determined by the hierarchical results of index importance, that is:

r = max {|S1| , |S2| , . . . , |SK |} (5)

where |Sk| represents the number of indicators in the set Sk.
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Step 4: determine the LBWA elasticity coefficient r0. The constant r represents the maximum
difference in the judgment of the importance of indicators in the layer. According to the value of r,
the elasticity coefficient of LBWA r0 is defined to meet r0 > r. According to Žižović et al. [40], and
Torkayesh et al. [43], it can be r0 = r + 1.

Step 5: calculate the influence function f
(

Cik
k

)
of each index, and the formula is as follows:

f
(

Cik
k

)
= r0

k × r0 + I ik
k

(6)

where Cik
k represents the ik-th index in the k-th layer.

Step 6: calculate the index weight. According to f
(

Cik
k

)
, the weight of the optimal index can be

expressed as:

w2B = 1∑K

k=1

∑Nk
ik=1 f

(
Cik

k

) (7)

Further, the weights of other indicators are:

w
C

ik
k

= f
(

Cik
k

)
× w2B (8)

So far, the subjective weights of all indicators under the LBWA method are obtained, which are
recorded as w2i.

(3) Subjective and objective integrated weighting method

The fundamental principle of integrating weights is to minimize the heterogeneity between the
objective weights and the subjective weights [44]. Thus, the subjective and objective integrated weights
can be obtained by solving the following optimization problems:

min
∑n

i=1 [(w0i − w1i)
2 × (w0i − w2i)

2]
s.t.

∑n

i=1 w0i = 1 (9)

where w0i is the normalized subjective and objective integrated weight of the i-th index.

3.3 Evaluation Method Based on MARCOS
In this paper, the evaluation object of SG investment derivative value is the power grid of multiple

regions, so it can be studied through the attribute integration method with the ranking function.
TOPSIS method is a common multi-alternative ranking method. The traditional TOPSIS takes the
relative closeness degree as the basis for alternative ranking, while the relative closeness degree of
TOPSIS only considers the relative distance between the alternative and the ideal solution, and is
prone to the vertical problem [45]. Based on this, this paper adopts the evaluation method named
measurement of alternatives and ranking according to compromise solution (MARCOS), which is
developed in 2020 [46]. The specific steps of MARCOS are as follows:

Step 1: Construct the initial decision matrix. Set a multi-criteria model with n indicators and m
alternatives. According to the actual date of each alternative, the evaluation matrix is obtained.

Step 2: Construct the extended initial matrix X = [
xij

]
m×n

. The ideal solution (AI) and anti-
ideal solution (AAI) are defined to extend the initial matrix. The ideal solution AI has the best
characteristics, and the anti-ideal solution AAI has the worst.
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X =

c1 c2 · · · cn

AAI
A1

A2

· · ·
Am

AI

⎛
⎜⎜⎜⎜⎜⎜⎝

xaa1 xaa2

x11 x12

x21 x22

· · · · · ·
xm1 xm2

xai1 xai1

· · · xaan

· · · x1n

· · · x2n

· · · · · ·
· · · xmn

· · · xai1

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

According to the attribute of indicators, the values of AAI and AI are:

AAI = min
i

xij, if j ∈ B and max
i

xij, if j ∈ C (11)

AI = max
i

xij, if j ∈ B and min
i

xij, if j ∈ C (12)

where B represents the benefit type indicator, and C represents the cost type indicator.

Step 3: Calculate the normalized decision matrix N = [
nij

]
m×n

. The normalized decision matrix is
obtained by normalizing the initial matrix:

nij = xij

xai

, if j ∈ B (13)

nij = xai

xij

, if j ∈ C (14)

Step 4: Determine the weighted normalized decision matrix V = [
vij

]
m×n

. It is obtained by
multiplying the normalized decision matrix and weight vector:

vij = nij × wj (15)

Step 5: Calculate the utility degree of the alternative Ki relative to the anti-ideal and ideal solutions:

K−
i = Si

Saai

(16)

K+
i = Si

Sai

(17)

where S(i = 1, 2, . . . , m) represents the sum of elements in the weighting matrix V , which is
calculated by:

Si =
∑n

j=1
vij (18)

Step 6: Determine the utility function f (Ki) of the alternative by the following formula:

f (Ki) = K+
i + K−

i

1 + 1 − f (K+
i )

f (K+
i )

+ 1 − f (K−
i )

f (K−
i )

(19)

where f (K−
i ) is the utility function of the alternative for the anti-ideal solution, and f (K+

i ) is the utility
function of the alternative for the ideal solution. Their expressions are:

f
(
K+

i

) = K−
i

K+
i + K−

i

(20)

f
(
K−

i

) = K+
i

K+
i + K−

i

(21)
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Step 7: Rank the alternatives according to the utility function value in Eq. (19). The final
realization takes the alternative with the highest utility function value as the ideal alternative.

4 Case Study and Discussion

This section takes 7 regional SGs as examples, uses the constructed MCDM model to evaluate the
derivative value of regional SG investment, and verifies the effectiveness of the proposed model.

4.1 Indicator Weighting Results
(1) AEW weighting results

The basic information of the examined 7 regional SGs is listed in the Appendix (Table A1). Collect
the original data of each regional SG on each index (the descriptive statistical results are listed in
Table 3), calculate the anti-entropy value of each grid on each index, as shown in Table 4, and then
calculate the anti-entropy weight of each index according to Eqs. (2) and (3), as shown in Fig. 3.

Table 3: Descriptive statistical results of all indicators

Indicators Sample Mean Max. Min. Standard deviation

c11 7 14.92 17.35 13.07 1.66
c12 7 16.74 25.69 12.44 4.25
c13 7 17.31 21.37 13.44 3.09
c14 7 34.02 38.89 28.78 3.60
c15 7 123.44 145.73 102.04 14.72
c21 7 14.12 16.91 12.33 1.39
c22 7 5.00 6.80 3.30 1.14
c23 7 0.33 0.41 0.23 0.05
c31 7 11.94 19.24 4.30 4.46
c32 7 0.07 0.11 0.05 0.02
c33 7 89.52 93.09 82.90 3.45

Table 4: Anti-entropy values and AEW results of all indicators

Indicators Anti-entropy value
SG1 SG2 SG3 SG4 SG5 SG6 SG7

c11 0.0174 0.0167 0.0302 0.0282 0.0206 0.0233 0.0196
c12 0.0232 0.0176 0.0219 0.0542 0.0197 0.0160 0.0119
c13 0.0196 0.0262 0.0312 0.0212 0.0136 0.0342 0.0130
c14 0.0202 0.0273 0.0183 0.0241 0.0213 0.0291 0.0156
c15 0.0236 0.0245 0.0312 0.0174 0.0197 0.0253 0.0148
c21 0.0227 0.0207 0.0321 0.0204 0.0218 0.0214 0.0166
c22 0.0269 0.0202 0.0420 0.0161 0.0300 0.0177 0.0093
c23 0.0240 0.0184 0.0348 0.0202 0.0229 0.0271 0.0110
c31 0.0229 0.0287 0.0603 0.0259 0.0204 0.0149 0.0027

(Continued)
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Table 4 (continued)

Indicators Anti-entropy value
SG1 SG2 SG3 SG4 SG5 SG6 SG7

c32 0.0104 0.0275 0.0349 0.0581 0.0169 0.0120 0.0116
c33 0.0212 0.0231 0.0235 0.0239 0.0218 0.0221 0.0188

Figure 3: The AEW weighting results for each index

It can be seen in Fig. 3 that the c31 has the biggest AEW weight, followed by c32 and c12. According
to the principle of AEW, it can be explained that the performance differences of the 7 regional
SGs to be evaluated are the greatest in the above three indicators, that is, different SGs shows
significant differences in the promotion effect on the emerging source (renewable energy) and loads
(electric vehicles), as well as the support effect on system stability. Therefore, from a differentiation-
driven perspective, SG investment derivative value should focus on these indicators with significant
differences.

(2) LBWA weighting results

In order to calculate the LBWA weight of the index system, 9 experts from government agencies,
power grid enterprises and research institutions are invited to determine the optimal index in the index
system, and conduct index stratification and judgment. According to experts’ opinions, the renewable
energy investment ratio (c31) is the optimal index. The remaining indicators can be divided into three
layers according to their importance relative to the optimal indicator:

S1 = {c31, c11, c21, c33}
S2 = {c12, c14, c22, c23, c32}
S3 = {c13, c15}

According to Eq. (5), there is:

r = max {|S1| , |S2| , |S3|} = 5, r0 = r + 1 = 6
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Then, the importance judgment results of all indicators relative to the optimal indicator are
obtained according to expert opinions, that is:

S1 Layer: I31 = 0, I11 = 3, I21 = 2, I33 = 4;

S2 Layer: I12 = 3, I14 = 5, I22 = 4, I23 = 1, I32 = 2;

S3 Layer: I13 = 1, I15 = 2.

Based on Eq. (6), the influence function of each index is calculated as:

S1 Layer: f31 = 6
1 × 6 + 0

= 1, f11 = 6
1 × 6 + 3

= 2
3

, f21 = 6
1 × 6 + 2

= 3
4

, f33 = 6
1 × 6 + 4

= 3
5

;

S2 Layer: f12 = 6
2 × 6 + 3

= 2
5

, f14 = 6
2 × 6 + 5

= 6
17

, f22 = 6
2 × 6 + 4

= 3
8

, f23 = 6
2 × 6 + 1

= 6
13

,

f32 = 6
2 × 6 + 2

= 3
7

;

S3 Layer: f13 = 6
3 × 6 + 1

= 6
19

, f15 = 6
3 × 6 + 2

= 3
10

.

Furthermore, according to Eq. (7), the weight of the optimal index can be calculated as:

w31 = 1∑
f

= 1
5.6505

= 0.1770

Finally, the weight results of other indicators can be obtained according to Eq. (8). To sum up,
the LBWA weights of the SG investment derivative value evaluation index system are shown in Fig. 4.
It can be seen from Fig. 4 that the indicator with the highest weight is c31, followed by c21 and
c11, indicating that from the perspective of the indicator meanings under the dual carbon goal, the
promotion of renewable energy investment, the improvement of self reliability, and reasonable revenues
are the key points that need to be paid attention to in the derivative value of SG investment. It should
be noted that there are differences in the weight results between AEW and LBWA. This is because the
two weighting methods have different starting points. AEW only considers the differences in indicator
data, while LBWA only considers the meaning of the indicator itself. Both weight results have certain
limitations, so it is necessary to combine the two weight results to improve the reliability of the weight
results.

Figure 4: The LBWA weighting results for each index
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(3) Combined weighting results

On the basis of determining AEW weight and LBWA weight, MATLAB programming is used to
solve Eq. (9), and the subjective and objective integrated weight is obtained:

w0 = [0.1069, 0.0790, 0.0686, 0.0720, 0.0663, 0.1160, 0.0758, 0.0846, 0.1480, 0.0837, 0.0991]

It can be seen that the four indicators with the largest weight are renewable energy investment
ratio (c31), user failure self-healing rate (c21), revenue rate per unit investment (c11), and primary
energy efficiency (c33), with weights of 0.1480, 0.1160, 0.1069 and 0.0991, respectively. Among them,
two indicators reflect the sustainable development performance of SG, one indicator reflects the
investment performance of SG, and one indicator reflects the operation and maintenance performance
of SG, indicating that for SG investment, the sustainable development value can better reflect its
derivative value. Specifically, under the “dual carbon” goal, the scale of renewable energy is increasing.
On the one hand, the SG investment is required to support renewable energy access to the power grid
to a greater extent; on the other hand, the SG is required to have stronger fault self-healing ability
(an important direction of the development of power grid intelligence), while maintaining a good
investment revenue and ensuring a stable source of investment. Therefore, the future development
of SG should pay more attention to the promotion of renewable energy consumption, and further
improve the level of intelligence and pay attention to investment benefits.

4.2 Derivative Value Evaluation Results
According to Eqs. (11)∼(14), standardize the original data, so as to process the index data into

the form of a positive correlation with the evaluation goal. Then, the standardized decision matrix can
be obtained, as shown in Table 5.

Table 5: The standardized decision matrix

Indicators SG1 SG2 SG3 SG4 SG5 SG6 SG7

c11 0.7671 0.7533 1.0000 0.9683 0.8323 0.8830 0.8138
c12 0.6676 0.5843 0.6497 1.0000 0.6178 0.5586 0.4842
c13 0.7660 0.8811 0.9569 0.7946 0.6425 1.0000 0.6289
c14 0.8393 0.9694 0.7999 0.9139 0.8611 1.0000 0.7400
c15 0.8749 0.8908 1.0000 0.7559 0.8029 0.9047 0.7002
c21 0.8475 0.8109 1.0000 0.8039 0.8301 0.8227 0.7294
c22 0.6000 0.6875 0.4853 0.7674 0.5690 0.7333 1.0000
c23 0.6853 0.7793 0.5739 0.7444 0.7018 0.6472 1.0000
c31 0.6325 0.7043 1.0000 0.6705 0.5977 0.5146 0.2235
c32 0.4393 0.7022 0.7858 1.0000 0.5551 0.4715 0.4632
c33 0.9449 0.9841 0.9919 1.0000 0.9571 0.9629 0.8905

Combined with the index weighting results, the weighted normalized decision matrix is calculated,
as shown in Table 6.
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Table 6: The weighted normalized decision matrix

Indicators SG1 SG2 SG3 SG4 SG5 SG6 SG7

c11 0.0820 0.0805 0.1069 0.1035 0.0889 0.0944 0.0870
c12 0.0528 0.0462 0.0514 0.0790 0.0488 0.0442 0.0383
c13 0.0525 0.0604 0.0656 0.0545 0.0441 0.0686 0.0431
c14 0.0604 0.0698 0.0576 0.0658 0.0620 0.0720 0.0533
c15 0.0580 0.0590 0.0663 0.0501 0.0532 0.0599 0.0464
c21 0.0983 0.0941 0.1160 0.0933 0.0963 0.0954 0.0846
c22 0.0455 0.0521 0.0368 0.0582 0.0431 0.0556 0.0758
c23 0.0580 0.0659 0.0485 0.0630 0.0594 0.0547 0.0846
c31 0.0936 0.1042 0.1480 0.0992 0.0885 0.0762 0.0331
c32 0.0368 0.0588 0.0658 0.0837 0.0465 0.0395 0.0388
c33 0.0937 0.0975 0.0983 0.0991 0.0949 0.0954 0.0883

According to Table 6, the ideal and negative ideal solutions are obtained as follows:

AI = (0.1069, 0.0790, 0.0686, 0.0720, 0.0663, 0.1160, 0.0758, 0.0846, 0.1480, 0.0837, 0.0991)

AAI = (0.0805, 0.0383, 0.0431, 0.0533, 0.0464, 0.0846, 0.0368, 0.0485, 0.0331, 0.0368, 0.0883)

According to the weighted normalized decision matrix, the compromise values of MARCOS
for each alternative relative to the ideal and negative ideal solutions are determined, and the utility
function results of each SG relative to the ideal and negative ideal solutions are calculated by using
Eqs. (16)∼(21), so as to judge the derivative value of SG investment. The evaluation results of the
derivative value of SG investment based on MARCOS are shown in Table 7.

Table 7: Compliance management evaluation results based on MARCOS

SG K−
i K+

i f (K−) f (K+) f (Ki) Ranking

SG1 0.0943 0.0673 0.4164 0.5836 0.0519 3
SG2 0.0763 0.0840 0.5238 0.4762 0.0533 2
SG3 0.0642 0.1301 0.6694 0.3306 0.0552 1
SG4 0.0647 0.0996 0.6063 0.3937 0.0515 4
SG5 0.0956 0.0617 0.3921 0.6079 0.0492 6
SG6 0.1013 0.0619 0.3792 0.6208 0.0503 5
SG7 0.1406 0.0535 0.2758 0.7242 0.0485 7

It can be seen that among the seven regional SGs, SG3 has the largest utility value, indicating
that the derivative value of the grid investment is the largest; SG7 has the smallest utility value, so
its investment derivative value is the smallest. In terms of the performance of secondary indicators,
among the four secondary indicators with the largest weight, SG3 performs best in c11, c21 and c31, and
second best in c33. In comparison, SG7 performs the worst in c21, c31 and c33, and the third worst in c11.



EE, 2023, vol.120, no.12 2895

Therefore, when SG investment performs poorly in promoting renewable energy consumption and
improving primary energy efficiency, its investment will significantly reduce the driving force for future
sustainable development, making grid investment lack derivative value. In addition, SG investment
also needs to be able to improve its fault resistance, which is reflected in the fact that the power grid can
achieve self-healing through intelligent ability in the event of a fault. Finally, on the basis of promoting
the consumption of renewable energy and improving its own fault repair ability, SG investment also
needs to pay attention to the economy of investment, which is an important guarantee to ensure that
the power grid has an adequate and stable source of investment funds.

4.3 Model Effectiveness Test
In order to verify the effectiveness of the constructed SG investment derivative value evaluation

model, three comparative models are designed to carry out the ranking consistency test and sample
separation test. The set comparison model is shown in Table 8, in which Model 1 is the model proposed
in this paper.

Table 8: Basic information on comparison models

Models Weighting method Attribute integration method

Model 1 AEW-LBWA MARCOS
Model 2 AEW MARCOS
Model 3 LBWA MARCOS
Model 4 AEW-LBWA TOPSIS

(1) Ranking consistency test

Ranking consistency is an important index to reflect the robustness of MCDM methods. Accord-
ing to references [47,48], this paper constructs the following ranking consistency index:

rS = 1 − 6 × ∑N

i=1(xi − yi)
2

N × (N2 − 1)
(22)

rW = 1 − 6 × ∑N

i=1 (xi − yi)
2 [(N − xi + 1) + (N − yi + 1)]

N × (N3 + N2 − N − 1)
(23)

WS = 1 −
∑N

i=1

(
2−xi

|xi − yi|
max {|xi − 1| , |xi − N|}

)
(24)

where rS, rW and WS are Spearman ranking correlation coefficient, weighted Spearman ranking
correlation coefficient, and WS ranking correlation coefficient, respectively. xi and yi are two ranking
results, and N is the number of alternatives in the ranking. The larger the correlation coefficient is, the
closer the two ranking results are.

Based on the basic data of the above-mentioned 7 SGs on various indicators, the ranking results
of the 7 SG investment derivative value evaluations under each comparison model are obtained, and
then the ranking consistency of the three comparison models relative to Model 1 is calculated. The
results are shown in Figs. 5 and 6.
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Figure 5: Alternative rankings under four models

Figure 6: The ranking consistency of the three comparison models relative to Model 1

According to Fig. 6, the values of the three comparison models on the three ranking consistency
indicators are greater than 0.8, and the values of the other ranking consistency indicators are greater
than 0.85 except for the WS of Model 4, indicating that the ranking results of the comparison model
are highly consistent with those of the model proposed in this paper, which further verifies that the
model in this paper has high robustness and the model ranking results are relatively reliable.

(2) Sample separation test

Sample separation test is an important means to judge the effectiveness of the ranking results
of the MCDM model. According to references [49,50], the following four indicators for the sample
separation test are set, named standard deviation (σ ), relative range (θ ), coefficient of variation (ϑ)
and sensitivity (η):

σ =
√∑m

j=1(δj − δ)2

m
(25)

θ = δj,max − δj,min

δ
× 100% (26)

ϑ = σ/δ (27)
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η = δj,max − δj,sec

δj,max

(28)

where δj is the MARCOS comprehensive utility value of each alternative, δ is the average comprehen-
sive utility value, m represents the number of entities and m = 7 in this section. δj,max and δj,min are the
maximum and minimum values of the comprehensive utility value, respectively, and δj,sec is the second
largest value in δj. The larger the above four indicators, the better the sample separation degree of the
MCDM method used.

Similarly, this section uses the three comparison models in Tables 7 and 8 SGs to test the sample
separation, and the results are shown in Table 9. It can be seen from Table 9 that the four sample
separation indexes of Model 1 are greater than those of the other three models, indicating that
compared with the comparison model, the hybrid MCMD model proposed in this paper has better
performance in sample differentiation and can better reflect the differences in the derivative value
of different SG investments. Therefore, the SG investment derivative value evaluation model based on
AEW-LBWA weighting and MARCOS proposed in this paper can better improve the decision-making
efficiency on the premise of ensuring robustness.

Table 9: Sample separation test results

σ θ ϑ η

Model 1 0.0023 0.1315 0.0457 0.0352
Model 2 0.0013 0.1035 0.0398 0.0185
Model 3 0.0020 0.1177 0.0444 0.0057
Model 4 0.0016 0.1182 0.0282 0.0242

5 Conclusion

The continuous increase of global greenhouse gas emissions has promoted climate warming, and
countries have set the goal of “carbon peaking and carbon neutralization”. Expanding the scale of
renewable energy power generation and accelerating the construction of green and low-carbon power
systems are important ways to promote carbon emission reduction in the energy sector. SG has the
characteristics of strong self-healing ability and high stability, which is an important support for large-
scale grid connection of renewable energy. However, many external factors need to be considered
in SG investment, and the relationship between investment demand and investment capacity, long-
term development and short-term demand needs to be dynamically balanced. Therefore, mining and
quantifying the derivative value of SG investment driving social development is of great significance for
accurately grasping the external effects of SG investment and supporting the realization of industrial
linkage value with grid investment as the core. Based on the analysis of the value derivation mechanism
of the power grid to economy and society, this paper constructs the evaluation index system of SG
investment derivative value and the hybrid MCDM model, and verifies the effectiveness of the model.

The indicator weighting results show that two of the four indicators with the highest weight reflect
the sustainable development performance of SG, one indicator reflects the investment performance
of SG, and one indicator reflects the operation and maintenance performance of SG, that is, for
SG investment, the value of sustainable development can better reflect its derivative value. The
development of SG should pay more attention to the promotion of renewable energy consumption,
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and further improve the level of intelligence and pay attention to investment benefits. By evaluating
the investment derivative value of 7 regional SGs, it is found that when SG investment performs poorly
in promoting renewable energy consumption, improving primary energy efficiency, and improving its
own fault resistance, its investment will significantly reduce the driving force for future sustainable
development, making grid investment lack derivative value. In addition, SG investment needs to pay
attention to the economy of investment, which is an important guarantee to ensure that the power grid
has sufficient and stable sources of investment funds.

The hybrid MCDM model constructed in this paper has good applicability for evaluating the
derivative value of SG investment. On the one hand, the proposed subjective and objective integrated
weighting method based on the AEW method and LBWA method can make full use of the original
information of the index of the object to be evaluated, and can consider the meaning of the index
itself, ensuring the interpretability of the weight results and avoiding subjectivity. On the other hand,
the proposed MARCOS method takes into account the comprehensive utility value between the
alternative scheme and the ideal and negative ideal solution at the same time, which makes the
evaluation result more credible, can better improve the decision-making efficiency on the premise of
ensuring robustness, and has good applicability for evaluating multiple objects.

The evaluation of SG investment derivative value in this paper can guide the investment decision-
making of SG projects, but limited to the research topic, this paper does not delve into how to make
investment decisions based on investment derivative value. In the future, the concept of derivative
value proposed in this paper can be introduced into the decision analysis framework of SG project
investment, so as to break through the limitation of traditional investment decisions that pay too much
attention to financial benefits. In this way, the results of SG investment decisions can better meet the
requirements of dual carbon goals.
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Appendix

Table A1: Basic information on each regional SG

PGCP Coordination under minimum
load

Coordination under maximum
load

Network coordination

1 0.1604 0.1731 [0.1604,0.1731]
2 0.1583 0.1625 [0.1583,0.1625]
3 0.1590 0.1673 [0.1590,0.1673]
4 0.1618 0.1724 [0.1618,0.1724]
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