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ABSTRACT

In the power distribution system, the missing or incorrect file of users-transformer relationship (UTR) in low-
voltage station area (LVSA) will affect the lean management of the LVSA, and the operation and maintenance of the
distribution network. To effectively improve the lean management of LVSA, the paper proposes an identification
method for the UTR based on Local Selective Combination in Parallel Outlier Ensembles algorithm (LSCP). Firstly,
the voltage data is reconstructed based on the information entropy to highlight the differences in between. Then,
the LSCP algorithm combines four base outlier detection algorithms, namely Isolation Forest (I-Forest), One-Class
Support Vector Machine (OC-SVM), Copula-Based Outlier Detection (COPOD) and Local Outlier Factor (LOF),
to construct the identification model of UTR. This model can accurately detect users’ differences in voltage data,
and identify users with wrong UTR. Meanwhile, the key input parameter of the LSCP algorithm is determined
automatically through the line loss rate, and the influence of artificial settings on recognition accuracy can be
reduced. Finally, this method is verified in the actual LVSA where the recall and precision rates are 100% compared
with other methods. Furthermore, the applicability to the LVSAs with difficult data acquisition and the voltage data
error in transmission are analyzed. The proposed method adopts the ensemble learning framework and does not
need to set the detection threshold manually. And it is applicable to the LVSAs with difficult data acquisition and
high voltage similarity, which improves the stability and accuracy of UTR identification in LVSA.
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Nomenclature

UTR Users-transformer relationship
LVSA Low-voltage station area
LSCP Local Selective Combination in Parallel Outlier Ensembles algorithm
I-Forest Isolation Forest
OC-SVM One-Class Support Vector Machine
COPOD Copula-Based Outlier Detection
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LOF Local Outlier Factor
DTW Dynamic time warping distance
MILP Mixed integer linear programming
LVDN Low-voltage distributed network
KNN K-Nearest Neighbor

1 Introduction

The users-transformer relationship (UTR) refers to the subordinate relationship between the end
user’s electricity meter and the transformer in the low-voltage station area (LVSA). The UTR of LVSA
in China is shown in Fig. 1. The correct UTR is the guarantee for outage management [1], LVSA line
loss calculation [2], line transformation, and other services [3]. The transformation and upgrading of
low-voltage distribution lines make the relationship between users and transformer change frequently
[4]. Delay or manual omission in the information update of power distribution system will lead
to wrong UTR files in LVSA. The incorrect UTR affects the operation and maintenance of the
distribution network [5], and causes the inconsistent measurement data of the marketing measurement
system between users and the transformer, which will lead to the abnormal line loss of the LVSA and
affect the lean management of the LVSA [6].
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Figure 1: The UTR of LVSA in China

To solve the problems, such as abnormal line loss caused by the wrong UTR, it is necessary to
identify the UTR in LVSA. Traditional engineering methods, including instantaneous power outage
method [7] and pulse current method [8,9], etc., require manual on-site verification and have low
accuracy and efficiency, which are not in line with the intelligent development goal of the distribution
network. Therefore, it is urgent to put forward a new method of the UTR identification, which can
meet the requirements of accuracy and intelligence and facilitate the digital transformation of the
distribution network [10].

In recent years, with the popularity of smart meters, the acquisition system has accumulated
massive electrical data of users, providing a basis for the UTR identification in the LVSA [11,12].
At present, the existing data-driven identification methods for UTR can be roughly divided into four
categories, which are based on the similarity of electrical data, conservation of electrical data, multi-
source data, and others.

1. Similarity of electrical data: the similarity of all customer voltage data was measured based
on the Pearson correlation coefficient [13–16] and discrete Frechet distance [17]. UTR was
identified according to the level of similarity. But the boundary between actual LVSAs voltage
data is fuzzy, resulting in the similarity threshold difficult to determine. So, users with high sim-
ilarity of voltage data cannot be distinguished. In [18], the voltage zero-crossing sequences were



EE, 2023, vol.120, no.3 683

constructed from raw voltage data. Accordingly, an improved spectral clustering algorithm
was proposed for UTR identification. In [19], the adaptive piecewise aggregate approximation
algorithm was used to extract the features of voltage data, and the improved density-based
spatial clustering of application with noise algorithm was used to get the users with wrong
UTR. In [20–22], the dynamic time warping distance (DTW) algorithm was used to analyze
the voltage data difference between users and transformer in LVSA, and the UTR was obtained
by clustering algorithm according to the DTW distance. The clustering method needs to obtain
the number and voltage data of adjacent LVSAs in advance, which is not suitable for the
identification of UTR without the boundary of a single station, and is susceptible to the
influence of noise data. In [23], an outlier detection algorithm was adopted to rectify the UTR,
but this algorithm relies on the selection of the number of neighborhood data points, and is
difficult to determine the parameter.

2. Conservation of electrical data: In [24,25], the objective function was constructed according to
the power conservation and solved with an optimization algorithm to obtain the membership
relationship of users in LVSA. In [26,27], a UTR identification model was constructed based
on Kirchhoff’s law of current, and the mixed integer linear programming (MILP) algorithm
was used to get the results. However, this method has complicated calculation and high
requirements for data integrity. It is not applicable to the LVSA where data collection is
difficult.

3. Multi-source data: In [28], principal component analysis and independent component analysis
were used to extract features from voltage data. Then, the K-means clustering method is used
to classify the voltage data into corresponding groups due to the users in the same LVSA
have the same voltage characteristics. Finally, the Pearson correlation coefficient between the
different groups of users’ total current and transformer’s current was compared to realize UTR
identification. In [11], a multiple linear regression model using voltage and power data of
users meters was established to estimate topology, line parameters, and user and line phasing
connections in LVSA.

4. Other methods: In [29], a UTR identification algorithm that combines the data preprocessing
with multi-dimensional prior knowledge based on voltage characteristics in low-voltage dis-
tributed network (LVDN) was proposed to get users with wrong UTR and their real UTR.
Each LVDN has its own special structure. The prior knowledge of voltage characteristics
extracted from a single LVDN may not be applicable to the identification of the UTR
of massive LVSA. In [30], the knowledge graph of LVDN topology was constructed by
integrating data in multiple LVDN information systems, and UTR in LVDN information
system was verified based on the knowledge graph. However, the formation rules of the
knowledge graph of the LVDN topology are complex, which require the fusion of multiple
data. The disadvantage of the method lies in the difficulty of obtaining GIS data and the high
requirements for the accuracy of data. Table 1 provides a brief summary of the literature on
UTR identification.
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Table 1: Brief summary of the literature on UTR identification

UTR identification Key words References

Similarity of electrical data Pearson correlation coefficient [13–16]
Discrete Frechet distance [17]
Clustering [18–22]
Outlier detection [23]

Conservation of electrical data Power conservation [24,25]
Current conservation [26,27]

Multi-source data Voltage data and current data [28]
Voltage data and power data [11]

Other methods Prior knowledge [29]
Knowledge graph [30]

Based on the voltage distribution characteristics in LVDN, the similarity of voltage data changes
is low due to the fact that users in different LVSA belong to different outgoing lines and have a long
electrical distance [31]. Based on the voltage data difference of users in different LVSAs, an outlier
detection algorithm can be used to identify users with wrong UTR. Zimek et al. [32,33] have studied the
ensemble method of outlier detection. Compared with a single outlier detection model, the ensemble
method combines multiple outlier detection models to achieve better performance and reliability. The
ensemble learning is also widely used in electricity theft detection [34], power dispatching data anomaly
detection [35], and time series anomaly detection [36]. Therefore, to enhance the stability and accuracy
of identification results, the outlier detection method with an ensemble framework is applied to the
UTR identification.

Different electrical characteristics of different LVSAs, high similarity between individual LVSAs
voltage data, and limited data, lead to low accuracy, weak applicability and low reliability of
UTR identification in the existing methods. To solve these problems, this paper proposes a UTR
identification method based on Local Selective Combination in Parallel Outlier Ensembles (LSCP)
algorithm. The main contributions of the paper are listed as follows:

1. Information entropy is used to reconstruct the original voltage data to highlight the difference
between data and reduce the impact of data noise.

2. Based on the voltage characteristics of the LVDN, an identification method of UTR based
on the ensemble framework LSCP algorithm is proposed, which increases the accuracy and
stability of identification results of UTR in the LVSA.

3. Based on the historical line loss rate data in LVSA, the key input parameter of the proposed
model is determined automatically, which increases the accuracy of the identification result,
avoids the artificial parameter setting, and is more suitable for the implementation of the UTR
identification in the massive LVSAs.

The rest of this paper is organized as follows. Section 2 describes the mathematical model of the
proposed ensemble learning outlier detection algorithm. Section 3 deduces the realization process of
UTR identification based on the proposed model. The tests and results are illustrated in Section 4.
Lastly, the conclusion of the study and the future work are drawn in Section 5.
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2 Ensemble Learning Outlier Detection Model

The core function of the outlier detection method is to identify the data with different regularity
from most data in the input dataset. Compared with the outlier detection algorithm of the general
ensemble framework, the LSCP algorithm is a completely unsupervised outlier detection algorithm
integrated with multiple outlier detection algorithms in parallel [37].

2.1 Introduction of LSCP Algorithm
To strengthen the stability and robustness of the identification result of the UTR in LVSA, we

adopt the LSCP algorithm to identify the UTR. Fig. 2 is the overall framework of the LSCP algorithm,
The characteristics of the LSCP algorithm are as follows: (1) Multiple base outlier detection models are
calculated independently and executed in parallel; (2) According to the performance of the base outlier
detection model, the combined base model is dynamically selected; (3) Feature sample subspaces are
constructed from subsequences of different dimensions of randomly sampled data to emphasize local
anomalies; (4) Support the base outlier detection model of heterogeneous or isomorphic.
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outlier detector

Anomaly score

Define pseudo target

Define data local space

Local space
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Figure 2: The framework of the LSCP algorithm

The specific flow of outlier data detection by the LSCP algorithm is as follows:

1) Train base outlier detector

Enter the voltage dataset X ∈ Rn×d to be detected. The base outlier detector is C = {C1, C2, · · ·, CR}.
The basic outlier detectors are trained, then the abnormal score matrix O (X) ∈ Rn×R is obtained in
Eq. (1).

O (X) = [C1 (X) , C2 (X) , · · · , CR (X)] (1)

2) Define data local space

For each piece of voltage data xi ∈ X, xi ∈ R1×d, construct the feature subsequence xi
′ of the

dimension [Min_dimension, Max_dimension] by random sampling, and get a set of feature subspace
of dataset X. In feature subspace, calculate the Euclidean distance with xi

′, using the method of
K-Nearest Neighbor (KNN), and get the nearest K neighbor samples.
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T group random sampling is carried out to obtain T group feature subspace. In the adjacent
samples of the feature subspace of data xi, the samples that exceeds the threshold of sample number
(Threshold) are taken as the local space ψ i of xi in Eq. (2).

ψ i = {
xi

∣∣xi ∈ X, xi ∈ KNN (i)
ens

}
(2)

The cardinality b of the local space of each data xi is different, that is, the number of samples it
contains is different.

3) Calculate the local anomaly score of data

After the local region of voltage data xi is obtained, the base detection model is used to obtain
the local anomaly score matrix O

(
ψ i

) ∈ Rb×R from O (X) ∈ Rn×R. Assuming that the local region of
xi contains 10 data samples, and the anomaly scores of the data local region are calculated by the R
base detection model, finally, a 10 × R dimensional anomaly score matrix O

(
ψ i

)
is obtained.

4) Pseudo target

The maximum score of R base anomaly detector is taken as the pseudo target of the data sample
in Eq. (3). The pseudo target of the data xi is target (xi) ∈ Rb×1.

target (xi) = fmax

(
O

(
ψ i

))
(3)

5) Choose base detection model

The Pearson Correlation Coefficient is calculated between the local anomaly score matrix O
(
ψ i

)
and the pseudo target, and we select the x base detection models that are most similar to the pseudo
target through the correlation coefficient.

6) Anomaly score of data

According to the selected x base detection models, the anomaly score matrix O (xi) of the data xi

is calculated, and the average value of the x anomaly scores is used as the final anomaly score of the
data xi in Eq. (4).

s = favg (O (xi)) (4)

7) Judge outlier data

After obtaining the anomaly scores matrix S ∈ Rn×1 of all the data in the test dataset, the parameter
of outlier data contamination (c) is used to control the number of outlier data in the test dataset in
Eq. (5). The first Y data with high score in S is regarded as outlier data, and the user with voltage
outlier data is considered as the user with the wrong UTR.

n × c = Y (5)

where n is the number of samples in the test dataset, Y is the number of outlier data in the test dataset.

Table 2 summarizes the adjustable parameters when the LSCP algorithm is used to identify
the UTR.
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Table 2: LSCP algorithm parameter description

Parameter symbol Parameter description

c Proportion of outlier data
K Number of KNN nearest neighbor samples
T Random sampling times
Min_dimension A random sampling of the lowest dimension
Max_dimension A random sampling of the highest dimension
Threshold Threshold of sample number in feature subspace

The proportion of outlier data c is a key input parameter, which controls the number of users with
wrong UTR. Other parameters are mainly related to the local space construction of the dataset, such as
the number of KNN nearest neighbor samples (K), random sampling times (T), random sampling of
the lowest dimension (Min_ dimension), random sampling of the highest dimension (Max_ dimension),
and threshold of sample number in feature subspace (Threshold).

2.2 Selection of Base Outlier Detection Model for LSCP Algorithm
In this paper, the ensemble learning LSCP algorithm is combined with heterogeneous base outlier

detection model, and four classical outlier detection algorithms are used as the base model. The choice
of the base detection is Isolation Forest (I-Forest), One-Class Support Vector Machine (OC-SVM),
Copula-Based Outlier Detection (COPOD), and Local Outlier Factor (LOF). The four base outlier
data detection algorithms are used to detect different angles of data anomalies, promote the learning
of different characteristics of the data, and improve the reliability and stability of the detection model.

The Isolation Forest algorithm realizes outlier detection of a dataset based on the idea of partition.
The less the sample is divided, the more easily it is isolated, and the higher the anomaly degree of the
sample is. The anomaly score of each data is shown in Eq. (6) [38].

s (x, n) = 2− E(h(x))
c(n) (6)

where h (x) is the length of the path through which data x is divided; E (h (x)) is the expected path
length of data x in a batch of isolated trees; and c (n) is the average value of path length when the given
data sample number is n.

OC-SVM is an outlier detection algorithm proposed for unbalanced samples. By mapping original
data to high-dimensional space through kernel function, there are significant differences between
normal data and abnormal data. A hyperplane is constructed to separate the two accordingly. The
decision function to judge whether the data is abnormal is shown in Eq. (7) [39].

f (x) = sgn
(
ωTφ (x) − ρ

)
(7)

where ω is the normal vector of hyperplane; φ (·) is the nonlinear mapping function; and ρ is the
hyperplane intercept. If the output is 1, the data is normal; if the output is −1, the data is abnormal.

COPOD realizes anomaly detection based on statistical methods. Aiming at the diversity of data
distribution and the multidimensional data, it calculates the tail probability of each data point and
calculates the skewness of distribution to correct the tail probability of data, so as to estimate the
anomaly degree of data. The anomaly score of data x is shown in Eq. (8) [40].



688 EE, 2023, vol.120, no.3

s (x) = max {pl, pr, ps} (8)

pl = −
∑d

j=1
log

(
Ûj,i

)
(9)

pr = −
∑d

j=1
log

(
V̂j,i

)
(10)

ps = −
∑d

j=1
log

(
Ŵj,i

)
(11)

where pl, ps is the left tail probabilities; pr is the right tail probabilities; and Ûj,i, V̂j,i, Ŵj,i is the empirical
copula observations.

LOF is based on the idea of density. It detects anomalies by comparing the density of each
point with its neighboring points. Moreover, the LOF algorithm calculates the density through the
kth neighborhood of the point, without causing abnormal misjudgment due to different data density
dispersion. The local outlier factor of xi is shown in Eq. (12) [41].

LOFk (xi) =
∑ Irdk(xj)

Irdk(xi)

|Nk (xi)| (12)

where Irdk (x) is the locally accessible density of data x; and Nk (x) is the k-distance neighborhood of
data x.

3 Identification of Users-Transformer Relationship in the Station Area

The voltage data of users in different LVSAs are different, showing different trends and character-
istics, and the proportion of users with the wrong UTR is very small. Therefore, the problem of UTR
identification can be defined as outlier data detection of unbalanced samples. To ensure the accuracy
and reliability of the results, this paper adopts the LSCP algorithm with an ensemble framework to
identify the relationship between users and the transformer in LVSA.

3.1 Selection and Processing of Algorithm Input Data
At present, the data in the user information collection system of the LVSA includes voltage,

current, electricity consumption, and power. In this paper, voltage data is selected as the input of the
LSCP algorithm, because the variation patterns of voltage data are not similar for users in different
LVSAs due to electrical distances and different outgoing lines [31]. The voltage curves of normal users
(users with right UTR) and abnormal users (users with wrong UTR) in the LVSA are shown in Fig. 3.

As can be seen from Fig. 3, there are different trends between them. To highlight the difference,
two-day voltage data of all users in the LVSA are selected as input dataset.
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Figure 3: Voltage curve of users in the station area

Meanwhile, to highlight the difference in users’ voltage data, this paper reconstructed voltage data
based on the information entropy. Information entropy refers to the degree of ordering or complexity
of voltage data at different times. When the information entropy of voltage data at a certain time is
large, it indicates that the voltage data of the user at that time is greatly different from that of other
users. The user’s voltage data Y can be expressed as:

Y =

⎡
⎢⎢⎣

y11 y12 · · · y1N

y21 y22 · · · y2N

...
... · · · ...

yM1 yM1 · · · yMN

⎤
⎥⎥⎦ (13)

where, M is the number of users; N is the number of voltage data samples; and ymn is the voltage of the
mth user at time nth.

Voltage information entropy at different moments can be defined as follows [42]:

�ymn = ymn − max (yn)

min (yn) − max (yn)
i = 1, 2, · · · , m (14)

Hn = − lg

(
M

M∑
m=1

Δymn lg (Δymn)

)
(15)

where the column vector yn represents the voltage vectors of all users at the nth moment; Δymn is the
voltage at the nth moment of the mth user after normalization; and Hn is the voltage information entropy
at the nth moment.

Based on the information entropy of voltage data, the voltage data reconstruction coefficient is
calculated, as shown in Eq. (16). And the original voltage data Y is reconstructed to obtain the matrix
Y ′, as shown in Eq. (17).

αm = Hm∑M

m=1 Hm

(16)

Y ′ = [α1y1, α2y2, · · · , αNyN] (17)

where aj is the reconstruction coefficient obtained according to information entropy.
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3.2 Determine the Key Input Parameter of the LSCP Algorithm
Based on the LSCP algorithm, the principle of the identification method of the UTR is as follows:

input the voltage data reconstructed by information entropy of all users in the LVSA, use the LSCP
algorithm to accurately detect the abnormal trend of the voltage data, judge the abnormal degree of the
voltage data, and get the abnormal score of the voltage data of each user. The individual user with the
highest data anomaly score is regarded as the user with wrong UTR, and the output is 1. Other users
are regarded as normal users, and the output is 0. Among the input parameters of the LSCP algorithm,
the proportion of outlier data is a key input parameter, which controls the number of users with the
wrong UTR. In the UTR identification, the proportion of users with the wrong UTR is unknown. If
the proportion of outlier data is set to a fixed value, the accuracy and efficiency of calculation results
will be affected. This paper tries to optimize the key input parameters selection of the LSCP algorithm
from the perspective of line loss rate, to avoid artificially setting parameters affecting the identification
results and improve the practicability of the proposed method. The procedure for determining the key
input parameter is as follows:

1. Input different proportions of outlier data values. The LSCP algorithm is used to get the serial
number of users with wrong UTR. In this paper, the proportion of outlier data is in the interval
[0, 0.10], and the value is traversed every 0.01. This is because the number of users in LVSA
in this paper is about 100. When the interval is 0.01, the number of users with wrong UTR
output each time increases by about 1. If 0.005 is selected, the amount of calculation will
increase; if 0.02 is used, the parameter changes are too large, and it is difficult to find the
optimal parameter.

2. The sum of electricity consumption of users with the right UTR is selected to calculate the line
loss rate of the LVSA.

3. Considering the LVSA existing line loss, the minimum line loss rate threshold should be set
according to the historical line loss record of the system or the actual LVSA characteristics.

4. If the line loss rate calculated according to different input parameters is lower than the
minimum line loss threshold, it is considered that an error occurs in the UTR. When the
outlier data proportion of input data is increased, the number of users with wrong UTR in
output will increase. The users with right UTR may be misjudged as abnormal users, which
will further reduce the total power consumption of users in the LVSA and increase the line loss
rate. Therefore, on the basis of the minimum line loss threshold, the input value corresponding
to the minimum line loss rate is selected as the optimal parameter with flowchart shown in
Fig. 4.

3.3 The Realization Process of Users-Transformer Relationship Identification
The specific implementation steps of the UTR identification method based on the proposed

method are as follows:

1) Data processing

Filter out and collect complete data from the user information collection system, including 2 days’
voltage data and 10 days’ daily electricity consumption data. Meanwhile, voltage data is reconstructed
based on information entropy.
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2) Determine the outlier data proportion c

The input parameter outlier data contamination c is traversed every 0.01 in the interval [0, 0.10].
The LSCP algorithm is used to obtain the users with wrong UTR. The line loss rate of the LVSA is
calculated and the best input parameter is determined.

3) Users-transformer relationship identification

Input the best parameter, use the LSCP algorithm to identify the UTR, and obtain users with
wrong UTR in the LVSA.

4) On-site verification

The staff verifies the users with abnormal UTR on-site and updates the system’s UTR files on time.

start

Input the outlier data contamination c

Recognition of the users-transformer 
relationship based on the LSCP algorithm

Get the users with normal users-
transformer relationship

Calculate the line loss rate L of the 
station area

?setL L<

?min is L L

c=c+0.01

c=c+0.01

Output the optimal parameter value

Figure 4: Flowchart of determining the key input parameter

4 Experiment

The electricity consumption and voltage data of Nanjing, Jiangsu Province in April 2020 is selected
as the dataset. The voltage data is used to identify the relationship between transformer and user, and
the electricity consumption data is used to determine the optimal input parameter of the algorithm.
Experiments are carried out in the actual LVSAs to verify the effectiveness and applicability of the
proposed method. The structure diagram of the LVSAs is shown in Fig. 5. The LVSA 1 has 107 single-
phase residential users. The LVSA 2 has 89 single-phase residential users. The LVSA 3 has 143 single-
phase residential users.
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Three simulation scenarios are set to verify the proposed UTR identification method. Simulation
scenario 1: There are 107 users in LVSA 1. 5 users are randomly selected from LVSA 2 and placed in
LVSA 1 as users with wrong UTR. Simulation scenario 2: There are 89 users in LVSA 2, and 3 users
are randomly selected from LVSA 1 and LVSA 3 respectively as users with wrong UTR. Simulation
scenario 3: There are 7 LVSAs in total. 5 users from one LVSA are randomly selected and assigned to
the other 6 LVSAs as users with wrong UTR. In this paper, recall and precision are used to evaluate
the effect of the method. The calculation of the two indexes is shown in Eqs. (18) and (19).

Recall% = A_u − M_u
A_u

× 100% (18)

Precision% = N − W_u
N

× 100% (19)

where A_u is the actual number of users with abnormal UTR; M_u is the number of missed users with
abnormal UTR; N is total number of users in the LVSA; W_u is the number of users whose UTR is
incorrectly identified.

4.1 Determine the Key Input Parameter of the Algorithm
The State Grid Corporation of China defines the abnormal line loss LVSA as that lasts over 10

days. In Simulation scenario 1, the average power consumption of users in the LVSA in 10 days is used
to calculate the line loss rate and determine the proportion of outlier data. Input parameters are taken
at 0.01 intervals in [0, 0.10], and traversal calculation is carried out to obtain the UTR membership
and LVSA line loss rate of each calculation. The LVSA line loss rate is shown in Table 3.

Due to limited space, only the calculation results of parameters in the interval [0.02,0.06] are listed
in Table 3. In this paper, the minimum threshold of line loss rate is set as 2%. In practical application,
the minimum threshold can be modified according to the historical line loss value and the actual LVSA
characteristics. As can be seen from Table 3, based on the specified minimum line loss rate, when the
input parameter value is 0.04, the calculated line loss rate is the smallest. Therefore, 0.04 is selected as
the best input parameter.
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Table 3: Process of determining key parameters

Proportion of outlier data/c ID of abnormal user Line loss rate/% Optimum
parameter

0.02 108,109,112 1.05% no
0.03 108,109,110,112 1.39% no
0.04 108,109,110,111,112 2.25% yes
0.05 56,108,109,110,111,112 2.45% no
0.06 56,98,108,109,110,111,112 5.02% no

4.2 Example Analysis of Users-Transformer Relationship Identification Based on the LSCP Algorithm
Simulation scenarios 1 and 2 are used to verify the applicability and effectiveness of the identifi-

cation method of the users-transformer relationship in the station area based on the LSCP algorithm.
According to the calculation rules in Section 4.1, the optimal input parameter of the algorithm in
simulated scenarios 1 and 2 are 0.04 and 0.06, respectively. The LSCP algorithm selects I-Forest, OC-
SVM, COPOD, and LOF as its base outlier detection models, and sets the number of nearest neighbors
of the LOF algorithm as 10, 14, 18, and 22 to form a group of heterogeneous base models. Parameter
Settings of the LSCP algorithm are shown in Table 4. Input dataset is two-day reconstructed voltage
data based on information entropy with the collection frequency 1 h/time and a total of 48 points.

Table 4: Parameter settings of LSCP algorithm in simulation scenario

Parameter symbol Parameter value

K 30
T 20
Min_features 24
Max_features 48
Threshold 15

In practice, due to the close electrical distance between LVSAs, the voltage similarity of users
in different LVSAs is very high. In simulated scenarios 1 and 2, the Pearson correlation coefficient
method is used to measure the voltage data similarity index between the users with normal UTR and
users with abnormal UTR in the LVSA. The mean value of the correlation coefficient is shown in
Fig. 6.

As is seen from Fig. 6, in simulated scenario 2, the voltage data similarity between users in LVSA 2
and LVSA 3 is the highest, reaching above 0.9 because their electrical distance is relatively close. In the
simulation scenario with high voltage similarity, the method presented in the paper is used to identify
the UTR. The calculation results are shown in Table 5, and the anomaly scores of users’ voltage data
in the LVSA is shown in Fig. 7.
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Figure 6: Voltage data correlation coefficient average value
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Figure 7: Anomaly scores of users’ voltage data in LVSA

Table 5: Identification results of the proposed method in the paper

Simulation scenario ID of abnormal user Recall ratio/% Precision/%

Simulation scenario 1 108, 109, 110, 111, 112 100% 100%
Simulation scenario 2 90, 91, 92, 93, 94, 95 100% 100%

In Table 5, both recall and precision rates in the simulated scenario are 100%. In Fig. 7, the
anomaly scores of voltage data of users in the LVSA are very different, which is conducive to the
identification of users with wrong UTR. In view of the high similarity of voltage data, the method
based on the LSCP algorithm is more sensitive to the local difference of voltage curves between normal
and abnormal users by constructing the local feature space of data samples. Meanwhile, different
outlier detection algorithms based on different principles are used as the base detector, which further
ensures the high accuracy and reliability of the identification result.

To further illustrate the superiority of the method proposed in this paper in solving the UTR
identification problem in LVSAs, it is compared with the single outlier detection algorithm. The
comparison results are shown in Table 6.
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Table 6: Comparison of results of various methods

Method Recall ratio/% Precision% ID of abnormal users

Isolation Forest 100% 93.75% 8,34,56,59,96,98,100, 108,109,110,111,112
One-Class Support Vector
Machine

100% 93.75% 5,9,34,56,59,98,100, 108,109,110,111,112

Copula-Based Outlier
Detection

100% 93.75% 3,8,10,34,56,96,100, 108,109,110,111,112

Local Outlier Factor 100% 93.75% 30,33,38,40,88,98,103,
108,109,110,111,112

The proposed method 100% 100% 108,109,110,111,112

According to the test results in Table 6, general identification methods can cause misjudgment of
UTR with the accuracy rate of 93.75% and varied users of wrong UTR. It is also noted that general
identification methods detect outlier data from a single angle and do not optimize the input parameter
of the algorithm, resulting in poor accuracy and stability. The recall and precision of the proposed
method are both 100%, and the input parameter of the algorithm can adapt to the characteristics of
the actual station area.

At the same time, to verify the universality and reliability of the proposed method, under simulated
scenario 3, the voltage data of two days is used to identify the UTR of six LVSAs. The test results are
shown in Table 7.

Table 7: Test results under simulation scenario 3

LVSA Number of actual users Recall ratio/% Precision/%

LVSA 1 143 100% 100%
LVSA 2 116 100% 100%
LVSA 3 124 100% 100%
LVSA 4 156 80% 98.71%
LVSA 5 87 100% 100%
LVSA 6 134 100% 100%

In Table 7, the recall rate of the LVSA 4 is 80% and the precision rate is 98.71%, missing one user
with wrong UTR. The recall rate and precision rate of the other five LVSAs are 100%. However, for
the LVSA 4, the recall rate and precision rate can still reach 100% if voltage data of more than 2 days
is used for calculation. In practical application, for higher accuracy and reliability, voltage data of
more than 2 days can be used for calculation when the voltage data of the station area is sufficient.
Therefore, the method proposed in this paper has high accuracy and applicability in the identification
of the UTR in LVSA.

4.3 The Practical Analysis of this Method in Application
The influence of the voltage data of different days and the error of voltage data in transmission

on the identification result are considered to verify the method in the practical application.
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4.3.1 The Influence of Voltage Data in Different Days on the Result

In simulated scenario 1, voltage data of different days are taken as input data to identify the
relationship between users and the transformer and to verify the influence of voltage data of different
days on the identification result, as shown in Table 8.

Table 8: Influence of voltage data of different days on identification of the users-transformer
relationship

Number of days to enter the voltage data/day Recall ratio/% Precision/%

1 60% 98%
2 100% 100%
3 100% 100%
4 100% 100%
5 100% 100%

It can be seen from Table 8 that the proposed method can accurately identify the UTR by using
two-day voltage data. It is also applicable to the LVSA with poor collection function and difficulties
in obtaining multi-day complete voltage data, which shows that the proposed algorithm is not too
dependent on data. It improves the applicability and reduces the calculation cost.

4.3.2 The Influence of Random Error of Voltage Data Measurement on the Result

Considering the existence of random errors in the measurement and transmission of electricity
data, the influence of the errors on the identification results of the proposed method is verified. In
simulation scenario 1, the measured voltage data for 30 days in April in the LVSA (the actual measured
voltage data contains random measurement errors) is selected, and the two-day data was divided into
1 group. The average test results of 15 groups of data are shown in Table 9.

Table 9: Average test results of 15 groups of data

Simulation scenario Number of total
users

Number of
abnormal users

Average recall
ratio/%

Average
precision/%

Simulation scenario 1 112 5 98.66% 99.88%

When testing 15 groups of data, only the third group has a recall rate of 80% and a precision rate of
98.21%, while the other groups have a recall rate and precision rate of 100%. The average recall rate is
98.66% and the average precision rate is 99.88%. Therefore, the random error in voltage measurement
has no influence on the accuracy of the algorithm identification results, which further demonstrates
the practicability and anti-interference of the proposed method.

5 Conclusions

This paper proposes an ensemble learning LSCP algorithm to identify the relationship between
users and the transformer, which provides a new idea for solving the UTR correction. The proposed
method contributes to the lean management of the LVSA, which is of great significance to the
economic operation of the LVDN. The effectiveness of the proposed method is verified in the three
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designed simulation scenarios. It is concluded that the LSCP algorithm of the ensemble framework
is used to build an identification model for the UTR, which improves the accuracy and reliability
of identification results. The recall and precision rate of this method can reach 100%. The proposed
method can make use of two-day voltage data to identify the UTR accurately and avoid the dependence
on data, which is applicable to the LVSA where data acquisition is difficult while reducing the cost of
calculation. In the case of high voltage similarity of users in different LVSAs, the method presented in
this paper can still achieve accurate identification and meet the requirements of practical application.
In this paper, the optimal key input parameter of the algorithm is determined automatically by the
line loss rate index, which can adapt to the characteristics of different LVSAs actively and improve
the practicability. The shortcoming of the proposed method is that it can merely find there are users
with wrong UTR in LVSA, without automatically determining which LVSA the user belongs to. In
the future, we can study how to achieve UTR identification based on voltage characteristics when
photovoltaic and other renewable power generation are connected to the LVSA.
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