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ABSTRACT

Aiming at the problems of multiple types of power quality composite disturbances, strong feature correlation and
high recognition error rate, a method of power quality composite disturbances identification based on multi-
resolution S-transform and decision tree was proposed. Firstly, according to IEEE standard, the signal models of
seven single power quality disturbances and 17 combined power quality disturbances are given, and the disturbance
waveform samples are generated in batches. Then, in order to improve the recognition accuracy, the adjustment
factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform
time-frequency domain analysis. On this basis, five disturbance time-frequency domain features are extracted,
which quantitatively reflect the characteristics of the analyzed power quality disturbance signal, which is less than
the traditional method based on S-transform. Finally, three classifiers such as K-nearest neighbor, support vector
machine and decision tree algorithm are used to effectively complete the identification of power quality composite
disturbances. Simulation results show that the classification accuracy of decision tree algorithm is higher than that of
K-nearest neighbor and support vector machine. Finally, the proposed method is compared with other commonly
used recognition algorithms. Experimental results show that the proposed method is effective in terms of detection
accuracy, especially for combined PQ interference.
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1 Introduction

With the continuous development of power grid, a variety of nonlinear, impact loads and
power electronic equipment are constantly increasing, and the power quality problem is becoming
increasingly serious, which has become a highly concerned issue in the world [1]. Accurate detection
and effective identification of Power Quality disturbance (PQD) signal is an important basis for
implementing the assessment, prediction, diagnosis, maintenance and management of Power Quality
problem, and also a premise and key factor to improve and enhance Power Quality.

In the complex power grid environment, the power quality disturbance signal is non-stationary,
and most of the disturbances are represented by the combination of multiple disturbances, that is,
the composite power quality disturbance. The characteristic quantity of the composite disturbance
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is not simply superimposed by a single power quality disturbance, but cross coupling between time-
frequency domain characteristics, which requires the signal analysis method to have high efficiency
[2]. Therefore, in recent years, composite PQD identification has become a hot and difficult point in
the field of power quality.

Generally speaking, PQD is mainly composed of three parts: disturbance signal detection, feature
extraction and disturbance identification as shown in Fig. 1 [3]. At present, common signal processing
technologies include Fast Fourier transform (FFT) [4], short time Fourier transform (STFT) [5],
wavelet transform (WT) [6–8], Hilbert Huang transform (HHT) [9,10], S-transform (ST) [11,12].
FFT is widely used in the field of power quality detection because of its many advantages such as
orthogonal and complete. However, FFT is only suitable for stationary signal analysis because of the
contradiction of localization in time domain and frequency domain. It cannot meet the requirements
of analyzing power quality disturbance signals with non-stationary characteristics such as transient
and abrupt change [4]. Although STFT overcomes the defect that FFT and its improved algorithm
cannot conduct local analysis to some extent, its window function length is fixed, which makes the
STFT analysis results of the same signal using different window functions are far from each other
[5]. WT has the ability of time-frequency analysis and is suitable for the analysis of non-stationary
signals with mutation characteristics, but it is susceptible to noise, and has problems such as large
computation amount and difficulty in generating function selection [7]. HHT is another commonly
used method for non-stationary signal analysis. It is sensitive to singularities of signals and has
good dynamic performance in analyzing transient power quality problems, but it also suffers from
poor anti-noise performance and long time consuming for high-order spline interpolation [10]. As a
combination of WT and STFT, S transform not only has good time-frequency analysis ability, but
also the transform result is directly related to its Fourier transform, which does not need to meet the
wavelet admissibility condition, so it is very suitable for the extraction of power quality disturbance
signal features, but it requires a large amount of calculation. The main classification and recognition
methods of power quality disturbance signal feature vectors are Fuzzy Logic (FL) [13], support vector
machine (SVM) [14,15], K-nearest neighbor (KNN) [16–22] and decision tree (DT) [23–26]. Both FL
and KNN methods have the advantages of simple principle and easy to understand, but with the
increase of disturbance signal types, the fault tolerance and complexity of the system will greatly
limit its classification ability [13]. Although SVM algorithm is simple, when the number of samples
increases and there is mutual aliasing among samples, the number of support vectors will increase
and the training difficulty will increase [15]. Compared with other methods, Decision trees require less
data preparation in the process of preprocessing, do not need to normalize the data, and do not need
to scale the data. Although the classification accuracy of DT depends on the selected features, DT is
easier to construct and its real-time processing ability is better than other methods. If the features can
be clearly distinguished, the efficiency of DT method is very high.

In order to realize accurate identification of power quality composite disturbances, this paper
proposes a power quality disturbance signal identification method based on multi-resolution S-
transform (MST) and decision tree. MST algorithm is an improved algorithm of ST, which can achieve
controllable time-frequency resolution through parameter adjustment window function. In addition,
this method has been successfully applied to the research of seismic signal processing. MST was used
to analyze the time-frequency characteristics of PQ signals, and five characteristic statistics of each
PQ signal were obtained. On this basis, DT classifier is used to classify PQ signals according to feature
statistics. Due to the effectiveness of MST, the efficiency of DT classifier can be guaranteed. And
compared with other power quality disturbance identification algorithms, simulation and comparison
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results show that the proposed algorithm can accurately and quickly classify and identify power quality
disturbance signals.
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Figure 1: Block diagram of power quality disturbance identification

2 PQDS Signal Model and Waveform

According to IEEE-1159 and literature [27–30] the signal models and parameter ranges of 7
single power quality disturbances and 17 power quality composite disturbances are given. The basic
frequencies of the disturbance models studied are 50 Hz. The 17 power quality composite disturbances
include: (1) 12 kinds of dual disturbances, including harmonic + sag, harmonic + swell, harmonic +
interrupt, harmonic + flicker, Impulsive Transient (IT) + sag, IT + voltage swell, IT + flicker, IT +
harmonic, Oscillatory Transient (OT) + sag, OT + swell, OT + flicker, OT + harmonic; (2) Three
kinds of triple disturbances, including harmonic + OT + sag, harmonic + OT + swell, harmonic +
IT + flicker; (3) There are two kinds of quadruple disturbances, including harmonic + OT + sag +
IT, IT + OT + swell + flicker. Parameters are randomly generated within a given range. The power
quality disturbance signal model is shown in Table 1.

Table 1: Power quality disturbance signal model

Lable Disturbance
class

Modeling equations Equations’ parameters

S1 Sag X (t) = {1 − k [u (t − t1) − u (t − t2)]} sin (ωt) 0.1 ≤ k ≤ 0.8, T ≤ t2 − t1 ≤ 9T
S2 Swell X (t) = {1 + k [u (t − t1) − u (t − t2)]} sin (ωt) 0.1 ≤ k ≤ 0.8, T ≤ t2 − t1 ≤ 9T
S3 Interrupt X (t) = {1 + k [u (t − t1) − u (t − t2)]} sin (ωt) 0.8 ≤ k ≤ 0.1, T ≤ t2 − t1 ≤ 9T
S4 Flicker X (t) = [1 + k1 sin (βωt)] sin (ωt) 0.1 ≤ k1 ≤ 0.2, 0.1 ≤ β ≤ 0.4

S5 Impulsive
Transient (IT)

X (t) = sin (ωt) + k2e− (t−t3)
τ {[u (t − t3) − u (t − t4)]} 1 ≤ k2 ≤ 10, 0.1 ≤ β ≤ 0.4,

0.008 ≤ τ ≤ 0.04, 0.5T ≤ t4 − t3 ≤ 9T

S6 Oscillatory
Transient (OT)

X (t) = k2e− (t−t3)
τ {[u (t − t3) − u (t − t4)]} sin (βωt)

+ sin (ωt)
0.1 ≤ k2 ≤ 0.8, 0.008 ≤ τ ≤ 0.04,
0.1 ≤ β ≤ 0.4, 0.5T ≤ t4 − t3 ≤ 9T

S7 Harmonic X (t) = sin (ωt) + k3 sin (3ωt) + k5 sin (5ωt) +
k7 sin (7ωt)

0.02 ≤ k3 ≤ 0.1, 0.02 ≤ k5 ≤ 0.1,
0.02 ≤ k7 ≤ 0.1

According to the above power quality disturbance signal model, Matlab 2018a is used to simulate
the power quality signal, and the waveform is shown in Fig. 2.
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Figure 2: 24 power quality disturbance waveforms

3 Power Quality Disturbance Analysis and Feature Extraction
3.1 Principle of Multi-Resolution S-Transform

From the perspective of single disturbance, the characteristics of voltage sag, rise, interruption and
flicker are mainly concentrated in the low-frequency part, and the fundamental frequency distortion
characteristics are different; Harmonics are mainly concentrated in the intermediate frequency part;
The oscillation is mainly concentrated in the high-frequency part. The composite disturbance has
the characteristics of different disturbance types at the same time, which are reflected in different
frequency domains. Therefore, features can be extracted from different frequency domains for
disturbance recognition. Compared with other methods, feature extraction in frequency domain can
obtain more targeted features through the multi-resolution characteristics of MST.

According to Heisenberg uncertainty principle, the time width and frequency width of the signal
cannot tend to infinity at the same time, and for a specific given signal, the product of time width and
frequency width is a constant. The misjudgment of voltage interruption signal as voltage sag signal
in document [21] is caused by the insufficient time resolution of S-transform near the fundamental
frequency. In order to overcome the defect of S-transformation, literature [31] introduced a single
regulating factor λ Adjust the time-frequency resolution of S-transform. For transient disturbance
signals such as voltage rise, fall or interruption in the low frequency band, a higher time resolution is
required to identify such signals, and for harmonic disturbances in the high frequency band, a higher
frequency resolution is required to identify them. However, the actual power quality disturbances
are often multiple disturbances occurring at the same time, and the composite disturbances have
the characteristics of different disturbance types at the same time, which are reflected in different
frequency domains. Therefore, the time-frequency domain of the disturbance signal is divided into
three different regions, and three different adjustment factors are introduced to change the time
resolution and frequency resolution of the corresponding region.
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The discrete form of MST is expressed as
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where T is the sampling interval and N is the total number of sampling points. k, m and n are integers
between 0 and N−1.

The corresponding relationship between n and λx can be estimated as [32]

λx =
⎧⎨
⎩

2, n ≤ 100 Hz

1/
√

6, 101 Hz ≤ n ≤ 700 Hz
λHF , 700 Hz ≺ n

(2)

where n represents the reserved frequency point obtained after threshold filtering, λx is the MST
window width adjustment factor. Therefore, MST adaptively sets the window width adjustment factor
of the high-frequency part, and judges whether the signal contains fundamental frequency disturbance
(sag or interruption) through the fundamental frequency fast Fourier spectrum value AF . In order to
avoid noise interference, through statistical experiments, it is set when 0.997 pu ≤ AF ≤ 1.003 pu, judge
that the fundamental frequency of the signal is undisturbed, and take λHF = 1/

√
6; Otherwise, judge

that the fundamental frequency of the signal is disturbed, and take λHF = √
2 [32].

3.2 Feature Extraction of Disturbance Signal
From the perspective of disturbance analysis, low-frequency disturbance analysis includes signal

amplitude change and start and end point positioning, which requires MST to have a higher time
resolution; The analysis purpose of intermediate frequency disturbances such as harmonics is to
determine whether the signal contains harmonic components, which requires higher frequency domain
resolution; High frequency features are used to identify oscillations and compound disturbances with
oscillations, and the influence of high-frequency energy and noise of other types of disturbance signals
should be avoided. Therefore, the setting values of window width adjustment factors in different
frequency domains need to be introduced, respectively.

Power quality disturbances can be mainly divided into instantaneous disturbances and
steady-state disturbances. Instantaneous disturbances refer to unexpected changes in the amplitude
characteristics of disturbance signals, such as voltage sag, voltage sag and voltage interruption, while
steady-state disturbances represent significant degradation of the components of disturbance signals,
such as voltage flicker and harmonics. Specifically, the characteristics of flicker interference are always
included in the low frequency, while the characteristics of sag, surge and interruption signal can be
reflected by the fundamental frequency content (50 or 60 Hz). In addition, when analyzing frequency
components from 100 to 700 Hz and above 700 Hz, harmonic and transient interference should be
detected respectively.

Time frequency analysis of power quality signals the two-dimensional matrix of MST contains
a large amount of signal time-frequency information, and the characteristics of each power quality
signal should be reflected by its energy and frequency characteristics. In order to effectively extract
the time-frequency information of the signal, the following five features are extracted according to the
distribution characteristics of power quality disturbances in the time-frequency domain:

Feature 1: minimum amplitude of fundamental frequency component

Zmin = min [R (m)]
R0

(3)
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Feature 2: maximum amplitude of fundamental frequency component

Zmax = max [R (m)]
R0

(4)

where R(m) and R0 refer to the average value of PQ interference and fundamental frequency content
of standard signal. Specifically, R(m) can be obtained in the following ways, where the expression of
J(t) is

R (m) = 1
n

mN∑
tm=1+(m−1)N

J (tm) (5)

J (t) = Smst (t, f ) (6)

where J(tm) represents the time position tm The fundamental frequency curve around m, while in this
study, N is set to 50. Smst (t, f ) is the time-frequency matrix of MST.

Features 1 and 2 describe the evolution trend of the fundamental frequency component. The
energy distribution of power quality signal shows obvious expansion and depression trends, which
can accurately describe the characteristics of power quality signal.

Feature 3: correlation coefficient of fundamental frequency component, periodic fluctuation
mode is an important feature for detecting flicker events. In addition, scintillation events with
different amplitude ranges have similar characteristic fluctuation characteristics. Therefore, flicker
events should be effectively identified by checking whether there are obvious periodic fluctuations. On
this basis, the correlation coefficient between the scintillation event and the fundamental frequency
component is defined as feature 3, and the expression is as follows:

Sb = Cov [J(t), J0 (t)]√
Var [J (t)] · Var [J0 (t)]

(7)

where, J(t) and J0(t) represent the fundamental frequency components of the analysis signal and flicker
interference, respectively.

Feature 4: energy of row vector corresponding to frequency f

Eh =
N∑

t=1

(Smst (t, f ))
2 (8)

Feature 5: root mean square of row vector corresponding to frequency f

Arms =
√

1
N

Eh =
√√√√ 1

N

N∑
t=1

(Smst (t, f ))
2 (9)

where t is the sampling point, and N is the number of sampling points of the interference signal.

The time-frequency diagram of the composite disturbance waveform formed by the superposition
of two different kinds of disturbances after multi-resolution S-transform can accurately distinguish
the transient component and the steady-state component at the same time, and can visually see the
amplitude changes of the disturbance signal in time domain and frequency domain. Taking ten typical
PQDS as examples, the time-frequency three-dimensional view of the results obtained by using MST
fast algorithm is shown in Fig. 3.



EE, 2023, vol.120, no.5 1139

Figure 3: (Continued)



1140 EE, 2023, vol.120, no.5

Figure 3: Time-frequency three-dimensional view of composite disturbance MST

In Fig. 3, the characteristics of various power quality disturbance signals can be extracted from
the time-frequency matrix of the result of the signal MST fast algorithm. Specifically, the amplitude
of time-domain characteristic curve of voltage sag and voltage interruption decreases first and then
increases with time; The change trend of voltage transient rise is just the opposite, that is, the amplitude
of time-domain characteristic curve of the signal rises first and then decreases; The amplitude of time
domain characteristic curve of flicker fluctuates up and down; With the increase of frequency, some
spikes can be seen in the frequency domain characteristic curves of fundamental wave and higher
harmonic.

4 Power Quality Disturbance Identification Method

In order to identify power quality events such as voltage sag, voltage sag, voltage interruption,
voltage flicker, voltage harmonics, voltage sag with harmonics, voltage sag with harmonics and
voltage interruption with harmonics, five disturbance time-frequency characteristics are extracted
through multi-resolution S-transform time-frequency domain analysis. In addition, three classification
methods are studied to identify power quality composite disturbance signals. These classifiers are
k-nearest neighbor algorithm (KNN), support vector machine algorithm (SVM) and decision tree
algorithm (DT).
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4.1 KNN Algorithm
K-nearest neighbor (KNN) algorithm is one of the simplest methods in data mining classification

technology, and has been widely used in many fields. The core idea of KNN algorithm is that if most
of the k nearest samples in the feature space belong to a certain category, the sample also belongs to
this category and has the characteristics of samples in this category. In determining the classification
decision, this method only determines the category of the samples to be divided according to the
category of the nearest one or several samples. KNN algorithm is only related to a very small number
of adjacent samples in class decision-making. KNN algorithm assigns space to the nearest neighbor
training data to classify the new test data and identify single and complex interference [33]. The
algorithm is based on Euclidean distance. The formula of Euclidean distance is as follows:

Dj

(
Xi, Yj

) =
√∑p

k=1

(
Xi,k − Yj,k

)2
(10)

Parameter Dj(X i, Y j) is the dependence based on Euclidean distance between the ith p-dimensional
input eigenvector X i and the jth p-dimensional eigenvector Y j in the training set [23]. KNN algorithm
classifies the new input vector (X i) into classes with minimum K similarity parameters among all
members. As the number of symbols increases, the accuracy of the traditional KNN algorithm based
on Euclidean distance decreases. Therefore, in order to improve the accuracy of KNN classification,
the weighted KNN classification method is very useful. The main advantages of this method are as
follows: this method is easy to understand and implement, can deal with electrical measurement with
oscillation trend, and can be realized in real time. In addition, KNN algorithm is easy to deal with
multi class data sets, and the nonparametric nature of KNN provides advantages in some cases where
data is very unusual.

4.2 Support Vector Machine Algorithm
Support vector machine (SVM) is a data mining method based on statistical learning theory, which

can successfully deal with many problems such as regression problems (time series analysis) and pattern
recognition (classification problems, discriminant analysis) [34]. The mechanism of SVM is to find an
optimal classification hyperplane that meets the classification requirements, so that the hyperplane can
maximize the blank area on both sides of the hyperplane while ensuring the classification accuracy. In
theory, support vector machine can achieve the optimal classification of linearly separable data. The
distance between these hyperplanes and the nearest samples of each class is equal, resulting in a large
margin on each side. The data located on these edge ridges identifies the hyperplane and is named
support vector.

In order to find the location of the separation hyperplane, the following data sets must be
considered: (Xi, Yi) (i = 1, . . . , M), where M is the number of samples, Yi ∈ {−1, 1}. The main purpose
of this process is to cover the minimum value of w, which is expressed by the following equation:

f (X) = 〈
wT · X + b

〉
(11)

where w is an n-dimensional vector pointing to the hyperplane, and the b parameter is a scalar.
The hyperplane is located based on w and b, so it satisfies Yi · (

wT · Xi + b
) ≥ 1, b/||w|| parameter

determines the distance from the origin to the nearest data point [23].

4.3 Decision Tree Algorithm
The construction idea of decision tree (DT) is as follows: if all the samples in the training sample

set are of the same kind, they will be regarded as Leaf nodes; otherwise, according to certain branch
division rules, the sample set will be subdivided successively until Leaf nodes. For the same sample set,
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many decision trees can be generated, and branching rule is crucial to obtain an “optimal” tree [24]
Two methods are commonly used, such as Gain ratio standard and Gini index.

Gain ratio:

GainRatio (S, A) = Gain (S, A)

Split (S, A)
(12)

Gini index:

Gini (S, C) = 1 −
k∑

i=1

( |Ci|
|S|

)2

(13)

The input data to a decision tree algorithm is a data set that includes symbols and the data entered
with their symbolic values. Based on this problem, the decision tree classifier can induce a set of data,
which is represented as a tree by distribution. In addition, when generating decision trees, only symbols
that are sufficiently dependent on the classification problem are selected. When learning a decision
tree, the tree is used to predict new sample results. In addition, the decision tree learning algorithm is
called supervised learning method, and each sample in the dataset is classified according to a specific
category [26].

Decision tree (DT) classification is based on decision rules, so binary tree graphs are used to
discover correlations between input and output components. The decision tree consists of internal
nodes, branches, and terminal nodes. Internal nodes display tests on symbols, branches represent test
results, and terminal nodes define class labels. At each node, decisions are made based on the rules
obtained from the data. Decision tree learning is a predictive model that describes the observations of
a project to arrive at a target number for the project. The method is also used in data mining, machine
learning and statistics. Compared with other classification methods, decision tree is relatively fast and
more accurate.

4.4 Identification of Disturbance Signal
Fig. 4 shows the principle framework of power quality composite disturbance classification.

Firstly, according to the IEEE-1459 power quality disturbance standard [20], 24 kinds of disturbances
were generated by simulation, including 7 kinds of single disturbances and 17 kinds of composite
disturbances. Then, for the power quality disturbance waveform dataset generated in batches, using
MST time-frequency domain analysis, five kinds of disturbance time-frequency domain features are
extracted to quantitatively reflect the characteristics of the analyzed power quality disturbance signals.
The feature sample set was randomly selected and divided into two parts, 70% of which was used as
the training set and the remaining 30% as the test set. Secondly, the extracted feature vectors are read
into the classifier in the form of matrix, and the 70% feature vector training set is trained by SVM
classifier, DT classifier and KNN classifier respectively to construct the classification model. Finally,
for the remaining 30% sample set of feature vectors, the three classifiers obtained by the above training
are used successively to identify the disturbance signals.

In addition, when constructing the training set and test set of disturbance recognition, the whole
feature sample set of disturbance recognition was randomly divided into two independent parts with a
ratio of 70% to 30%. In this way, random extraction and random validation can ensure that the model
trained on the training dataset does not underfit. Due to the relative independence of the validation
set and the training set, overfitting of the model to the training data can be avoided to a certain extent.
Compared with other two algorithms, the results show that DT algorithm can accurately and quickly
classify and identify power quality disturbance signals.
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Figure 4: Principle framework of power quality composite disturbance classification

5 Example Analysis

According to IEEE-1459 standard and literature, 24 power quality disturbance databases are auto-
matically generated by using MATLAB 2018a software. The database contains 7 single disturbances
and 17 composite disturbances. The sampling frequency of the research signal is 3.2 kHz and the
sampling time is 0.4 s. During the simulation, the setting parameters of the disturbance signal are
randomly generated within the required range.

Figs. 5–7 summarize the results of power quality disturbance detection and identification through
three classification algorithms. Diagonal elements of confusion matrix are the correct classification
of PQD, and non diagonal elements are the wrong classification of PQD. From the confusion
matrix, it can be seen that most categories are correctly classified, the accuracy of single disturbance
classification is high, and the accuracy of mixed disturbance classification is relatively low, especially
S16 (transient pulse + voltage sag), S17 (transient pulse + voltage rise), S18 (transient pulse + voltage
flicker), S23 (harmonic + transient oscillation + voltage sag + transient pulse) reflect that it is difficult
to classify composite disturbances related to transient pulses.

Figure 5: Power quality event detection confusion matrix based on SVM classifier
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Figure 6: Power quality event detection confusion matrix based on DT classifier

Figure 7: Power quality disturbance detection confusion matrix based on KNN classifier

Fig. 5 classifies PQD using support vector machine classifier. Its confusion matrix shows that
most disturbances are incorrectly classified as voltage sag, harmonic, pulse + voltage sag, transient
pulse + voltage sag and harmonic + transient oscillation + voltage sag, with an overall accuracy of
95.9%. Fig. 6 uses decision tree classifier to classify PQD. The overall accuracy of DT classifier is
97.5%. Fig. 7 uses KNN classifier to classify PQD. The overall accuracy of KNN classifier is 96.6%,
showing medium performance in automatic classification of PQ interference. In addition, compared
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with the other two classifiers, the decision tree classifier is more accurate and has higher performance
in detecting and identifying PQ interference. The comparison of different PQ interference detection
methods is summarized in Table 2 below.

Table 2: Comparison of disturbance identification results with existing methods

Feature extraction
method

Classification
method

PQDs Characteristic
number

Classification
accuracy/%

ST [20] PNN [20] 11 4 97.4
MST [28] DT [28] 16 5 99.97
ST [24] Chaotic integrated

decision tree [24]
23 9 91.9

MST DT 24 5 97.5

It can be seen from Table 2 that the results of MST and decision tree classifiers are compared with
other methods in the existing literature. Literature [20] used S-transform for detection and probabilistic
neural network classifier to extract 11 PQDS features using 4 feature statistics, with an accuracy of
94.70%. Literature [28] used MST for detection, decision tree for classification, and 5 feature statistics
to extract 16 PQDS features, with an accuracy of 99.97%. Literature [24] used S-transformation for
detection, chaos integrated decision tree for classification, and 9 feature statistics to extract 23 PQDS
features, with an accuracy of 91.9%. In this paper, GST transform is used for detection, and five feature
statistics are used to extract the characteristics of the composite disturbance signal, which reduces the
amount of calculation and the calculation cost is relatively small compared with the literature [24].
Compared with literature [28], more composite disturbance signals are detected by using the same
characteristic statistics. Therefore, in terms of overall performance, the method proposed in this paper
has better comprehensive performance.

6 Conclusion

In this paper, a method for identifying power quality composite disturbances based on MST
and DT is proposed. The 24 power quality disturbance signal models and their waveforms were
analyzed in the time-frequency domain (MST). According to the characteristics of different types of
disturbances, five kinds of disturbance features were extracted. KNN, SVM and DT classifiers were
used to effectively identify complex power quality composite disturbances. The following conclusions
are obtained:

(1) Compared with the traditional S-transform, MST only needs to extract 5 feature statistics,
which is less than most other popular methods, and the calculation cost is relatively small.

(2) Three classifiers are used for testing, and it is found that the DT algorithm has the highest
accuracy (97.5%). In conclusion, the proposed method can effectively identify power quality
disturbances, especially for power quality composite disturbances.

(3) The characteristics of the composite disturbances with transient pulse power quality are
strongly correlated, and the identification error rate of the related composite disturbances is
high, and the identification difficulty is great. The design optimization of the related features
still needs to be further studied in the future.
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