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ABSTRACT

The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation
intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness.
With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In
order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and
ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic
power generation based on the improved multi-scale permutation entropy, local mean decomposition and singular
spectrum analysis algorithm. Firstly, taking the power output per unit day as the research object, the multi-scale
permutation entropy is used to calculate the eigenvectors under different weather conditions, and the cluster
analysis is used to reconstruct the historical power generation under typical weather rainy and snowy, sunny,
abrupt, cloudy. Then, local mean decomposition (LMD) is used to decompose the output sequence, so as to extract
more detail components of the reconstructed output sequence. Finally, combined with the weather forecast of the
Meteorological Bureau for the next day, the singular spectrum analysis algorithm is used to predict the photovoltaic
classification of the recombination decomposition sequence under typical weather. Through the verification and
analysis of examples, the hierarchical prediction experiments of reconstructed and non-reconstructed output
sequences are compared. The results show that the algorithm proposed in this paper is effective in realizing the
short-term prediction of photovoltaic generator, and has the advantages of simple structure and high prediction
accuracy.
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1 Introduction

With the development of photovoltaic power generation, the proportion of solar energy in
renewable energy is increasing, and the installed capacity of photovoltaic power stations is also
increasing [1]. As a kind of clean energy, the power output state of solar energy is unstable under
the influence of weather conditions [2]; Due to the influence of the earth’s rotation, the power output
takes the unit day as the cycle [3]. If photovoltaic power generation can be predicted, it will not only
improve the efficiency of photovoltaic grid connection but also help to ensure the quality of power
supply.
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At this stage, the power prediction of photovoltaic power generation mainly includes direct
prediction and indirect prediction [4–6]. Direct prediction is conducive to the historical output
sequence to train intermediate parameters. Its main characteristics are low prediction accuracy, long
training cycles, and poor adaptability [7,8]. Indirect prediction is to predict photovoltaic output power
by analyzing factors that affect photovoltaic power generation, such as solar radiation angle, and
temperature, and by forecasting meteorological conditions [9,10].

In direct prediction, literature [11] established a BP neural network short-term prediction model
based on historical power output data, which has high requirements on the number of sample sets
and poor universality due to different environmental conditions in different places. Literature [12]
established a Mathematical model of the Markov chain according to the characteristics of photovoltaic
power generation, and directly predicted the power sequence through the state transition matrix.
Although the structural model of the prediction algorithm is simple, it is not sensitive enough in the
face of mutation, and the prediction stability is poor.

In indirect prediction, literature [13,14] analyzed the meteorological conditions of similar days,
takes similar days as the training set, and uses the improved support vector machine algorithm to
achieve the short-term prediction of photovoltaic power generation. Although different meteorolog-
ical conditions are considered, the analysis of the characteristic factors affecting the output power
is too little. In literature [15–17], feature factor analysis was used for preprocessing, such as kernel
principal component analysis and information fusion technology analysis. When the comprehensive
index of the principal component is used for linear regression prediction, the difference between
different meteorological conditions is not considered, and the output power under different seasons is
not treated differently, so the adaptability of short-term prediction is poor.

Based on the above analysis, to eliminate the influence of weather conditions, in addition to
the indirect prediction method, this paper also improves the direct prediction method and proposes
the short-term prediction of photovoltaic power generation based on LMD permutation entropy
and singular spectrum analysis. Firstly, multi-scale permutation entropy was used to measure the
characteristics of PV power series under different weather types, and the historical power series were
reconstructed in daily units. Secondly, the hierarchical prediction method is used for the recombination
sequence, and the LMD algorithm is used to decompose it to extract more frequency components.
Finally, the singular spectrum analysis algorithm is used to predict the decomposed components, and
the prediction results of each component are reconstructed. The validity of the proposed algorithm is
verified by an example under different prediction algorithms, and the prediction accuracy is improved.

The main innovation points of this paper are as follows: 1) To eliminate the influence of
weather factors, the multi-scale permutation entropy is used to classify and process the photovoltaic
power generation sequence under different meteorological conditions. 2) After reassembling the
reconstructed sequence, the LMD algorithm is used to extract the detailed components. 3) Use the
singular spectrum analysis algorithm to achieve the hierarchical prediction of photovoltaic power
generation.

2 Analysis of Photovoltaic Power Generation State Elements

The calculation of output current and output power of photovoltaic power generation on the unit
array is shown in Eqs. (1) and (2) [18].

I = IL − IDe
(

V+IRS
nT

)
−1 − V + ISRS

RSh

(1)
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PS = ξSI [1 − 0.005 (T − 25)] (2)

In Eqs. (1) and (2), I is the output current of photovoltaic power generation, IL is the photocurrent
determined by the solar radiation intensity; T is the temperature of the day; ID is the diode current
determined by the number of photovoltaic cells and T ; IS is determined by the resistance on the PV
panel, V , RS and RSH are the PV voltage, series, and parallel resistance, respectively; S is the illuminated
area of photovoltaic power generation; ξ is the conversion efficiency of output power.

According to the above analysis, photovoltaic power generation status is mainly determined
by meteorological conditions: temperature, sunshine amount, solar radiation angle, and weather
conditions. In this paper, the PV output power between sunrise 6:00 and sunset 21:00 is firstly
counted. According to the historical data of a power plant, taking the meteorological data of the
China Meteorological Bureau on rainy and snowy days, sunny days, abrupt days, and cloudy days as
examples, its output power curve is shown in Fig. 1.
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Figure 1: PV power output curve under different weather

According to the output power curves under different weather conditions, the output power is
affected by the coverage of rain and snow on snowy days, and the PV output power is the lowest. In
lightning weather, influenced by meteorological mutation, photovoltaic power output randomness is
strong; under the influence of solar radiation intensity, the PV output power is lower on cloudy days
and sunny days.

Thus, on the other hand, the state of photovoltaic output power is determined by meteorological
conditions, and on the other hand, its mechanical structure. To realize the short-term prediction of
its output power, the first thing to be solved is to quantitatively analyze the output power under
different meteorological conditions, to make a more accurate short-term prediction of photovoltaic
power generation.

3 Algorithm Analysis
3.1 Local Mean Decomposition (LMD)

As a signal processing method, local mean decomposition has the advantage of processing
nonlinear and non-stationary signal sequences [19]. Compared with the small wave decomposition,
empirical mode decomposition, and variational mode decomposition, it does not need the adaptive
advantage of the basis function, and solves the frequency aliasing of the decomposed components,
avoiding the local effect of the endpoints of the signal sequence.
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The local mean decomposition algorithm uses the extreme points of time series to process the
moving average value and decomposes the original signal sequence x(t) into a Eq. (3).

x (t) =
n∑

i=1

PFi (t) + u (t) (3)

where PFi(t) is the corresponding decomposition component, u(t) is the residual component i ∈ [1, n],
and is the decomposition level variable. When the residual component does not have enough extreme
points, the decomposition level n is determined. The specific calculation steps of the LMD algorithm
are shown in Algorithm 1.

Algorithm 1: LMD
Input: Signal x (t)
Output: Monotone signal ui(t)

1 i ← 1, k ← 1 (initialization)
2 Initialize. r = x (t), ai (t) = 1
3 Determine the extreme point of r
4 The moving average method mik(t), aik (t)
5 ai (t) = ai (t) × aik (t)
6 hik (t) = r − mik (t)
7 sik (t) = hik(t)/aik (t)
8 If sik (t) is a pure FM signal then

9
PFi (t) = ai (t) × sik (t)
ui (t) = r − PFi (t)

10 If ui (t) is monotone signal then
11 Output ui(t)

12 Else
i = i + 1
r = ui (t)

13 Return Determine the extreme point of r

14 Else
k = k + 1
r = sik (t)

15 Return Determine the extreme point of r

Assume that the local extreme point of the original time series x(t) is nj, where j is the number of
extreme points. In the decomposition process, the average mi of two adjacent extreme points is taken as
the window, and the local mean component mik is formed after sliding and smoothing processing. The
corresponding ai is the estimated value of the envelope, and the envelope decomposition component
aik is formed after sliding smoothing.

In the decomposition process, hik(t) and sik(t) are intermediate parameters in the decomposition
process, and finally, the original time series is decomposed into decomposition components with
different frequency characteristics.

3.2 Improve Multi-Scale Permutation Entropy
Multi-scale permutation entropy is a measure of time sequence complexity index [20], with signal

sequence X = {x (i) |i = 1, 2, . . . , n} as an example, the specific calculation steps of multi-scale
permutation entropy are as follows:

Step1: Coarse granulation treatment
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Taking the scale factor s as the parameter, the coarsening process of time signal series X is shown
in Eq. (4).

ys
j = 1

s

js∑
i=(j−1)s+1

xi, 1 ≤ j ≤ [n/s] (4)

When the number of sampling points is insufficient, such as n = 200 and s = 4, and the length of
the sequence y after coarsening is 50, the following problems may be caused:

1) In the coarse granulation process of the one-dimensional signal sequence, the number of samples
decreases, and the feature representation is not sufficient;

2) Calculating the mean value under the scale factor may lead to decreased sensitivity to signal
sequence.

Therefore, in this paper, the coarse granulation process is improved progressively. Assuming s = 4,
the calculation method is as follows:

Firstly, the mean values of (x1, x2, x3, x4), (x2, x3, x4, x5), (x3, x4, x5, x6), (x4, x5, x6, x7) are respec-
tively processed as shown in Eq. (4).

Then, the above four coarse-graining values are taken as the first value of the improved coarse-
graining sequence, then the sequence of the second value of the first group of sequences after
corresponding improvement is (x5, x6, x7, x8), and the sequence of the second value of the second group
of sequences is (x6, x7, x8, x9), and so on.

Finally, the operations of Step2, Step3, and Step4 are carried out on the four groups of coarse
granulation respectively, and then the mean values of the four groups are taken to complete the
improvement of the multi-scale permutation entropy.

Step2: Phase space reconstruction

Assuming that the time delay parameter is τ and the embedding dimension is m, spatial recon-
struction is carried out for the coarse-grained one-dimensional signal sequence, and the reconstructed
matrix is shown in Eq. (5).⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(1) y(1 + τ) · · · y(1 + (m − 1)τ )

y(2) y(2 + τ) · · · y(2 + (m − 1)τ )
...

...
...

y(l) y(l + τ) · · · y(l + (m − 1)τ )
...

...
...

y(K) y(K + τ) · · · y(K + (m − 1)τ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where, l = 1, 2, . . . ,K, K = [n/s] − (m − 1)τ .

Step3: Calculation of permutation entropy

Each row of the reconstructed matrix is arranged in descending order, and the index column
number of the column where the vector element value resides can be expressed as:

S (l) = (i1, i2, . . . , im) (6)

where, l = 1, 2, . . . , K, K � m!.
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The probability value of S(l) in the line of the entire reconstruction matrix is Pl. After statistics,
the calculation result of multi-scale permutation entropy is shown in Eq. (7).

Hp (m) = −
m!∑

l=1

Pl ln Pl (7)

Step4: Standardized treatment

To realize the normalization and standardization of the entropy results, the entropy results of
Step3 are calculated as shown in Eq. (8).

Hp (m) = Hp (m)/ln(m!) (8)

The above entropy calculation process is mainly used to calculate the characteristic parameters of
time series. As a kind of characteristic quantity, multi-scale permutation entropy is conducive to the
establishment of signal sequence measurement standards on the one hand and improves the accuracy
of subsequent signal sequence processing when used as a correction parameter on the other hand.

3.3 Singular Spectrum Analysis (SSA)
SSA is a regression prediction algorithm for discrete signal sequences, which is suitable for

processing time series of nonlinear and potential structures [18]. On the one hand, photovoltaic power
is affected by the amount of sunshine and has a 24-h periodicity. On the other hand, it is affected by
uncertain factors, such as meteorological factors, geographical latitude factors, direct sun Angle, wind
speed, etc., resulting in strong randomness of time signal sequence. Therefore, the SSA algorithm first
meets its characteristics in terms of applicability. Secondly, the basic process of the SSA algorithm is
as follows:

Assumption: non-zero original signal sequence X∗ is shown in Eq. (9), where N is the length of
the signal sequence.

X∗ = [x1, x2, . . . , xN] (9)

Step1: Establish the trajectory matrix

Take the integer i as the variable, embed the original signal sequence X, and take the growth L
(1 < L < N) as the vector:

X i = [xi, xi+1, . . . , xi+L−1]
T (10)

where, the value range of i is [1, K] and K = N – L + 1. The corresponding trajectory matrix X is
shown in Eq. (11).

X = [X1; X2; . . . ; Xk] =
⎡
⎢⎢⎣

x1 x2 · · · xK

x2 x3 · · · xK+1

...
...

. . .
...

xL xL+1 · · · xN

⎤
⎥⎥⎦

(11)

Step2: Singular value decomposition

Firstly, S matrix is established according to the trajectory matrix X:

S = XXT (12)
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Then, λ1, λ2, . . . , λL is the eigenvalue of the matrix S, and satisfies λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0; the
corresponding orthonormal eigenmatrix is U1, U2, . . . , UL.

Finally, d = rank (X), the corresponding singular value decomposition results are shown in
Eq. (13).

X = X1 + X2 + · · · + Xd (13)

where, X i = √
λiU iV i

T,

V i = XTU i/
√

λi (i = 1, . . . , d).

Step3: Grouping of singular decomposition matrices

The set {1,2, . . . ,d} is reconstructed into m disjoint subsets, then subset I and corresponding
grouping matrix X I are shown in Eqs. (14) and (15).

I = {
i1, . . . , ip

}
(14)

X I = X i1 + · · · + X ip (15)

where, p is the length of the subset, and it can be obtained:

X = X I1 + · · · + X Im (16)

Step4: Recombination of the one-dimensional signal sequence

Signal sequence recombination mainly adopts the diagonal averaging method to recombine each
grouping matrix Y = X Ij into one-dimensional signal sequence y1, . . . ,yN, the specific calculation steps
are shown in Eq. (17).

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k

k∑
m=1

y∗
m,k−m+1 1 ≤ k ≤ L∗

1
L∗

L∗∑
m=1

y∗
m,k−m+1 L∗ ≤ k ≤ K∗

1
N − k + 1

N−K∗−1∑
m=N−K∗−1

y∗
m,k−m+1 K∗ ≤ k ≤ N∗

(17)

where, 1 < i < L, 1 < j < K; L∗ = min(L, K), K∗ = max(L, K). Thus, the two-dimensional matrix can
be expressed as the one-dimensional matrix as shown in Eq. (18).

y =[y1, y2, . . . yk,

yk+1, yk+2, . . . yL,

yL+1, yL+2, . . . yK+L−2, yK+L−1] (18)

Step5: Prediction of one-dimensional signal

Two algorithms, recursion, and matrix are mainly used for prediction using singular value
decomposition results. The recursive algorithm with a simpler algorithm is adopted in this paper, and
its main ways are as follows:

yj =
⎧⎨
⎩

xi i = 1, . . . , N
L−1∑
j=1

ajyi−j j = N + 1, N + M (19)
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where, xi is the time series reconstructed according to Eq. (17), yN+1, . . . , yN+M is the predicted sequence,
and the calculation method of weight characteristic parameter R = [aL−1, . . . , a1] is shown in Eq. (20).

R = 1
1 − v2

r∑
i=1

πipi (20)

Pi is an orthonormal vector in singular value decomposition, and v2 = π1
2 +· · ·+πr

2 (i = 1, . . . ,r),
πi is the final component of the vector Pi.

The singular spectrum decomposition algorithm uses a singular value matrix to decompose
the original signal sequence into different components from three directions of trend, vibration
component, and an unstable factor. SSA algorithm is not only suitable for nonlinear and discrete time
series but also has the advantage of not requiring specific parameter models and stability conditions.

4 Short-Term Forecasting Process of PV Power Generation

In the process of photovoltaic power generation, its output power is unstable due to the influence
of uncertain factors. To better realize photovoltaic grid connection and improve power supply quality,
this paper proposes a short-term prediction algorithm for photovoltaic power generation based on
LMD permutation entropy and singular spectrum analysis. The specific process is shown in Fig. 2.

Figure 2: Short-term forecasting process of PV power generations

1) Photovoltaic power generation is affected by the rotation of the earth, and its output power has
a 24-h periodicity. To eliminate the influence of weather factors on the output power of photovoltaic
power generation, the meteorological conditions can be roughly divided into sunny weather (sufficient
sunshine), rainy and snowy weather (less sunshine), cloudy day (insufficient sunshine), and abrupt
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weather (strong randomness of sunshine) according to the monitoring data of the Meteorological
Bureau and the permutation entropy characteristic analysis.

According to the above analysis, to better realize the short-term prediction of photovoltaic
power generation, firstly, the historical power curve of photovoltaic power generation is classified
according to four meteorological types. Then the output power curves of x1, x2, x3, and x4 under four
meteorological conditions are formed. Finally, the accuracy of the short-term forecast can be improved
according to different meteorological conditions.

2) x1, x2, x3, and x4 are selected as historical output power curves under different meteorological
types according to meteorological prediction and clustering results under the next one-day cycle. To
realize the classification prediction of photovoltaic power generation, the LMD algorithm is used to
process it, and IFM (u1), IFM (u2), . . . , IFM (un) decomposition components are obtained.

3) Each decomposed component is analyzed and predicted by a singular spectrum, and the
hierarchical prediction results of IFM(u1), IFM(u2), . . . , IFM(un) are obtained. Then, The multi-
scale permutation entropy is used to construct photovoltaic series under different weather types, and
SSA prediction is carried out for them, and the error sequence e1 is obtained by comparing with the
initial sequence; The prediction sequence is predicted again, and the error sequence e2 is obtained
by comparing with the prediction sequence; By analogy, a complete error sequence is obtained to
correct the prediction results of different components, thus reducing the error. Finally, through the
reconstruction under the LMD algorithm, the photovoltaic power generation in the corresponding
next-day cycle is obtained, to realize the short-term prediction of power generation.

5 Case Analysis
5.1 Reorganization of Output Power Curve of Photovoltaic Power Generation

According to the analysis in Section 2, meteorological conditions are the main factors affecting
the output state of photovoltaic power generation. To eliminate their influence, this paper adopts a
multi-scale permutation entropy algorithm to realize the reorganization of the output power curve
of photovoltaic power generation. This paper selects the historical output power data of a power
plant, whose rated power generation is 50 MW. Taking the typical output power curves in Fig. 1
under different weather conditions as an example, the scale permutation entropy of photovoltaic power
generation output power in four different states iss calculated.

Photovoltaic power generation cycle within 24 h, taking 15 min as the sampling point, the number
of sampling points from 6:00 to 21:00 is n = 60, n� 5m! in reference [20], and the value of the embedded
dimension m is 3. When the time delay parameter τ = 1, the multiscale permutation entropy under the
output power curve of photovoltaic power generation under typical weather conditions as shown in
Fig. 1 is calculated, and its distribution curve is shown in Fig. 3.

As shown in Fig. 3, in the permutation entropy distribution of photovoltaic power output under
rainy and snowy, sunny, abrupt, and cloudy weather, the permutation entropy distribution is different
under different weather conditions, so it can be used as a recombination condition under the same
condition.

Firstly, the action power curve is divided into a sample set and a test set. The sample set includes
Group 1, Group 2, . . . , Group N, and N sample objects that have n different states (N � n), and the
test set is the type of typical meteorological conditions. When the daily power of different photovoltaic
power generation is clustered under the multi-scale permutation entropy, the fuzzy initial matrix
is composed of the permutation entropy of different components, and the fuzzy similarity matrix



1694 EE, 2023, vol.120, no.7

and fuzzy equivalence matrix are obtained by using the fuzzy cluster analysis method. When the
confidence factor takes a specific value, the test set and sample set are matched and classified. Then,
the recombination of the PV power output sequence under the same weather condition is completed.
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Figure 3: Permutation entropy distribution under typical weather conditions

Taking a sunny day as an example, the reconstituted output sequence is shown in Fig. 4.
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Figure 4: Reorganization of photovoltaic output power sequence under sunny weather conditions

It can be seen from the generation power diagram in Fig. 4 that the output power presents
nonlinear and unsteady characteristics. To fully characterize the characteristics of the curve, the multi-
scale permutation entropy of the output power series under the daily cycle is calculated, and the
PV output series is reconstructed by combining four typical weather conditions: a sunny day, rain
and snow day, abrupt weather, and cloudy day. Then, the original curve is decomposed into modal
function components with different frequency characteristics by LMD. Finally, it lays a foundation
for improving prediction accuracy.

5.2 LMD Processing of Power Sequence after Reconstruction
Given the power sequence reconstruction in the above section, the LMD algorithm has the

advantage of self-adaptation and decomposition, which is conducive to the realization of hierarchical
prediction. The decomposition process of LMD is shown in Algorithm 1. Taking the reconstructed
power series under sunny days as an example, the results after LMD processing are shown in Fig. 5.
Where IFM (u1), IFM (u2), . . . , IFM (u4) are different decomposition components.

As shown in Fig. 5, when decomposed to IMF(u4), the distribution of extreme points is insufficient
and meets the conditions for termination of decomposition. Under the same weather type, the center
frequencies of different decomposition components are different. In different weather types, the center
frequency of the same decomposition component is also different. After the original signal is processed
by LMD, it is beneficial to achieve hierarchical prediction and improve the prediction accuracy under
the condition that the properties of the original signal sequence remain unchanged.
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Figure 5: LMD processing of photovoltaic output power series under sunny weather conditions

5.3 Singular Spectrum Analysis of Power Sequence
5.3.1 Graded Prediction Results

If the original output power is simply used as the prediction input sequence, the influence of
weather factors is not considered for hierarchical prediction. Taking the historical power generation
series of a power plant as an example, this paper reorganizes the photovoltaic power generation series
under sunny weather in spring and uses the reconstructed 16-day historical power data as the training
set. According to the weather forecast of the Meteorological Bureau, the singular spectrum analysis
algorithm is used to make short-term forecasts for the next day, and the prediction result is shown in
Figs. 6 and 7.

According to the graded prediction results in Fig. 6, the root means square error (RMES) and
mean relative error (MRE) is calculated to be 25.67% and 15.21%, respectively. In Fig. 7, the root
means square error (RMES) and mean relative error (MRE) is calculated to be 21.89% and 11.56%,
respectively. Without considering the state of weather factors, abrupt weather or other weather is likely
to become uncertain factors, so the forecast results will inevitably be unstable.
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Figure 6: Short-term prediction results of photovoltaic sequence based on SSA
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Figure 7: Photovoltaic sequence short-term prediction results of SSA under multi-scale permutation
entropy

5.3.2 Refactoring-Grading Short-Term Forecast Results

Reconstruction-Classification short-term prediction is to reconstruct the original sequence
according to the weather type, then use LMD classification prediction, and finally recombine
the different decomposition components to achieve short-term prediction of photovoltaic power
generation. When the weather of the day is predicted to be sunny by the Meteorological Bureau, the
recombination sequence under sunny weather conditions is used as the historical power. When the
weather of the predicted day is rain and snow, the recombination sequence under typical rain and
snow weather conditions is used as the historical power. And the same goes for four typical weather
conditions.

Taking the reconstructed sequence in typical sunny weather in Fig. 4 as an example, combined
with the meteorological prediction conditions of the same day, the reconstructed historical data of the
16th day is taken as the training set, and the singular spectrum analysis algorithm is used to reconstruct
it. The short-term prediction results of the classification are shown in Fig. 8.
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Figure 8: Refactoring-grading short-term forecast results

Compared with the predicted results in Fig. 7, the predicted results in Fig. 8 show RMSE = 3.17%
and MES = 1.51%.

To further prove the advantages of singular spectrum analysis algorithm in photovoltaic power
generation sequence prediction, this paper selects multivariable support vector (SSVM) [19], extreme
learning machine (ELM) [20], BP neural network [21], and other algorithms for comparative analysis
[22–24]. The output power of photovoltaic power generation is affected by many uncertain factors. In
this paper, four different weather types in spring, summer, autumn, and winter are selected to predict
a total of 16 kinds of power generation. Taking a sunny day in spring as an example, and taking the
historical data of the first 20 days of the generation system as the training set, the corresponding
generation power curve is drawn, as shown in Fig. 5. For different prediction algorithms, the resulting
errors are shown in Table 1:

Table 1: Prediction errors under different prediction algorithms

Prediction algorithm MRE/% RMSE/%

SSVM 5.12 6.15
ELM 4.56 8.64
BP 3.84 5.14
SSA 1.51 3.17

Through the above analysis, the effectiveness of using multi-scale permutation entropy to recon-
struct the output sequence is proved, the influence of weather and other uncertain factors is eliminated,
the advantage of using the SSA algorithm to deal with the one-dimensional discrete sequence is
improved, and the prediction accuracy of photovoltaic power generation is improved.

6 Conclusion

Given the unstable phenomenon of PV power output state, this paper proposes the short-term
prediction of PV power based on LMD permutation entropy and singular spectrum analysis, and the
following conclusions are drawn through case demonstration:
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1) Using multi-scale permutation entropy as the state characteristic value of output power under
different meteorological conditions, the historical output sequence is reconstructed to eliminate the
influence of meteorological conditions on the forecast sequence.

2) LMD algorithm has the advantage of self-adaptation in signal processing and achieves
hierarchical prediction for the reconstructed sequence.

3) Using the advantage of singular spectrum analysis in processing discrete signal sequences, the
short-term power prediction is realized by the reconstructed sequence after the hierarchical prediction
of decomposed components.

Finally, an example is used to verify the short-term prediction of pure signal sequences considering
weather conditions. Then, the short-term prediction of photovoltaic sequences reconstructed under
the multi-scale permutation entropy algorithm under different meteorological conditions is compared.
The experimental results prove the improvement of RMSE and MES of the proposed algorithm in pho-
tovoltaic prediction. Compared with the experimental results under different prediction algorithms,
it is proved that singular spectrum decomposition is more beneficial to realizing photovoltaic grid
connection.
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