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ABSTRACT

To improve the operation efficiency of the photovoltaic power station complementary power generation system,
an optimal allocation model of the photovoltaic power station complementary power generation capacity based
on PSO-BP is proposed. Particle Swarm Optimization and BP neural network are used to establish the forecasting
model, the Markov chain model is used to correct the forecasting error of the model, and the weighted fitting
method is used to forecast the annual load curve, to complete the optimal allocation of complementary generating
capacity of photovoltaic power stations. The experimental results show that this method reduces the average loss of
photovoltaic output prediction, improves the prediction accuracy and recall rate of photovoltaic output prediction,
and ensures the effective operation of the power system.
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1 Introduction

Photovoltaic power stations only generate electricity during the day, and their output is zero
at night. In the daytime, due to the random change of weather conditions, the photovoltaic power
will fluctuate greatly, and the power change can even reach 50% in a few minutes. To keep the
grid frequency within the qualified range, when the output of photovoltaic power station increases,
the conventional power supply in the grid needs to reduce its output, and the released load is
supplied by photovoltaic power generation [1–2]. When the output of the photovoltaic power stations
decreases, the output of the conventional power supply must increase rapidly to supplement the power
shortage caused by the reduction of photovoltaic power generation. The natural characteristics of
photovoltaic power generation determine the grid-connected operation of photovoltaic power plants,
so it is necessary to optimize the configuration of the complementary power generation capacity
of photovoltaic power plants and provide compensation and adjustment. Relevant scholars study
the rational allocation of power generation capacity of photovoltaic power stations. Hou et al. [3]
constructed the optimal allocation model of wind energy and solar energy storage capacity, which
set up the evaluation index aiming at the total cost of the system, and obtained the wind-solar
complementary characteristics, power loss rate, and contribution rate of the wind-solar hybrid power

https://www.techscience.com/journal/energy
https://www.techscience.com/
http://dx.doi.org/10.32604/ee.2023.027968
https://www.techscience.com/doi/10.32604/ee.2023.027968
mailto:zhanruo413933@163.com


1718 EE, 2023, vol.120, no.7

generation system. The Cat swarm algorithm is used to solve the model and optimize the indexes
of the wind-solar-storage hybrid power generation system. However, this method has the problem of
complicated calculation. Jin et al. [4] constructed the equivalent polymerization model of the large-
scale photovoltaic power stations. By establishing a three-layer reactive power control strategy for
photovoltaic power stations, the active and reactive power losses of the power grid can be obtained,
the penetration rate of photovoltaics in the power grid can be improved, the voltage overflow problem
of grid-connected large-scale photovoltaic power stations can be solved, and the stable operation of
the power grid can be ensured. However, this method has the problem of data redundancy. Li et al. [5]
built a photovoltaic energy storage complementary grid-connected power generation system model
controlled by the virtual synchronous generator. Under the condition of load power fluctuation, it
should take corresponding active power according to its capacity and adjust the power balance within
the system. Establish an energy storage unit to release and store electric energy according to the
fluctuation of photovoltaic output, and improve the tracking control effect of the maximum power
point. However, this method has the problem of a long response time. Wang et al. [6] proposed a
hybrid forecasting method for short-term photovoltaic power generation. The noise level is introduced,
and the asymmetric photovoltaic power output function is established by using the complementary
integrated empirical mode decomposition algorithm. According to the shape factor, crest factor,
and kurtosis comprehensive factor, the IMF is adaptively divided into groups containing similar
fluctuation components. Particle swarm optimization is used to optimize the parameters of the
support vector machine, improve the global and local search ability, make particles traverse the global
space, and enhance the local convergence performance. However, this method has a long time delay.
According to the above research status, this paper considers natural conditions, regions, precipitation,
and other factors, and adopts a particle swarm optimization algorithm to build the optimal allocation
model of complementary power generation capacity of photovoltaic power stations, which solves
the problems of complicated calculation, redundant data, and poor response effect. On this basis,
a prediction model is established by using particle swarm optimization and BP neural network, which
reduces the amount of data calculation. Markov chain model is used to correct the prediction error of
the model, which reduces the calculation time and system delay. The weighted fitting method is used
to predict the annual load curve, optimize the complementary power generation capacity, reduce the
influence of rainy weather on the photovoltaic system forecast, and ensure the stable operation of the
photovoltaic system.

2 Building PSO-BP Prediction Model

Particle Swarm Optimization has the characteristics of simple implementation, few adjustable
parameters, and strong global search ability [7]. However, particle swarm optimization is easy to
fall into the local optimal state. Combining with BP neural network can approximate any nonlinear
continuous function with arbitrary precision, and can automatically extract the reasonable rules
between output data and output data through learning in the training process [8]. At the same time, BP
neural network can adaptively convert learning into weights, thus solving the problem of local optimal
value. Therefore, the particle swarm optimization algorithm combined with BP neural network can
effectively balance global exploration and local refinement, which is of great significance to grid-
connected photovoltaic power generation and optimal resource allocation.

2.1 Design PSO-BP Algorithm Structure
BP neural network is a popular nonlinear mapping algorithm at present. The algorithm can

be applied to the prediction of photovoltaic power generation output. Through the training and
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prediction of neural networks. Finally, the exact solution can be effectively approximated. However,
this algorithm has the characteristics of backward propagation of errors and forward propagation of
thresholds [9]. Its learning speed is slow, it is easy to fall into the local calculation and affect the overall
progress, and its promotion ability is limited. It is not easy to predict PV system input curves [10–11].

Particle swarm optimization (PSO) can make up for the shortcomings of neural networks. The
behavior of each particle of the algorithm is relatively simple and represents a possible solution [12].
Through population information, individuals and populations are continuously optimized to quickly
find the optimal solution. The algorithm is simple to operate and easy to converge, so it can be widely
used in function optimization and so on. Based on this, the parameter threshold and initial weight of
the BP neural network are trained by the PSO algorithm. In this way, the prediction process of the
PSO-BP algorithm is obtained as follows:

(1) According to the situation of the photovoltaic system, a neural network is constructed.
(2) Determines the number of particles in a particle swarm. And initialize the parameter threshold

and initial weight of the BP neural network.
(3) After the two algorithms are combined, the advantages are complementary. Greatly improve

the optimization speed of the whole algorithm.
(4) The PSO algorithm optimizes the most suitable two values above and returns them to the BP

model for prediction.
(5) Use it for PV networks when the network meets performance requirements. Predict the

outcome of its processing.

The specific PSO-BP algorithm prediction process is shown in Fig. 1.
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Figure 1: PSO-BP algorithm structure diagram

2.2 Correction of Structural Errors of PSO-BP Algorithm
To reduce the influence of natural environmental factors on the output of the photovoltaic

systems. In this paper, the Markov chain model, which is widely used in time series models, is used
to modify the structure of the PSO-BP algorithm. The Markov chain model has the “memoryless
property”, that is, the probability distribution of the next stage of the process depends only on
the current state. Applicable scenarios are in line with different weather conditions in this paper.
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Probability estimation for abnormal weather such as cloudy, rainy, hail, etc. Substitute the results
into the original model to make the predicted results more accurate.

A Markov chain is composed of a series of discrete random variables, which are used in this
paper to represent different weathers. Due to its memorylessness, the selection of its state is generally
determined by conditional probability in the process. Its transition probability is defined as:

P(k)

ij = P
(
Xi+k = Sj |Xi = Si) (1)

Among them, P_ij∧((k)) represents the probability of state transition [13]. S stands for the state.
X is a random parameter. k represents the number of steps.

For higher-order functions, the k-step transition probability of a Markov chain is expressed as:

P(k) =

⎡
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The relationship between the steps is represented by the correlation coefficient rk, and the weight
of its influence is represented by uk, which is defined as:

rk =
∑N−k

i=1

[
X (i) − X

] [
X (i + k) − X

] / ∑N

i=1

[
X (i) − X

]2
(3)

uk = |rk|
/ ∑K

k=1
|rk| (4)

The formula, X represents the average value of random parameters [14]. K represents the step size
of the Markov chain.

The probability distribution matrix P(t) for predicting the state of the PSO-BP model at time t is:

P (t) =
∑K

k=1
ukP (t − k)

k (5)

2.3 Constructing Predictive PSO-BP Model
PSO-BP model aims at minimizing the output error of the BP neural network to learning

samples, and optimizes the weights and thresholds of the BP neural network. A deep belief network is
constructed by layer-by-layer superposition, and each CRBM in the network is trained layer by layer
by the unsupervised greedy learning algorithm. Set the input amount as daily meteorological data, and
determine the neuron state of the DBN network according to the change in photovoltaic power:

Ei = ϕi

n∑
i=1

(
GiP(k) + ziξ

)
(6)

where ϕi is the reconstructed value of the ith particle, n is the dimension of the particle, Gi is the output
error of the network, zi is the connection weight of the network, and ξ is the machine disturbance
factor [15]. Choose a reasonable fitness function to calculate the fitness value of each particle:

ti =

n∑
i=1

Ei

(
sp

) − Oiφ

Li

(7)

where sp is the capacity of the photovoltaic power station, Oi is the power generation, φ is the distance
angle, and Li is the active power [16]. When the change of the group extreme value meets the minimum
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limit or reaches the preset maximum iteration number, the global optimal solution is solved and the
PSO-BP model is optimized:

Di =
n∑

k−1

ψi (k) × ti (8)

where ψi is the FM target power and k is the compensation integral coefficient.

2.4 Predicting PSO-BP Model Performance Indicators
There are many evaluation indicators for the prediction model of photovoltaic systems, to

characterize the effect of photovoltaic output. This paper mainly uses two parameters of error
percentage MAPE and root mean square error RMSE to describe the system performance. They are
respectively defined as:

MAPE = 1
N

∑N

i=1

∣∣∣∣Ppi − Pmi

Pmi

∣∣∣∣ × 100% (9)

RMSE = 1
PN

√
1
N

∑N

i=1

(
Ppi − Pmi

)2
(10)

In the above two expressions, Ppi represents the predicted power value of the photovoltaic power
station at the ith time point. Pmi represents the real power value at that moment. N represents the total
number of samples.

3 Optimal Configuration of the Photovoltaic System

Based on the complementary principle and characteristics of photovoltaic power plants, the PSO-
BP forecasting model is solved by short-term optimal scheduling under the condition of determining
the global optimal solution of multi-objective particle swarm optimization. In particle swarm iteration,
the velocity of each particle swarm is:

vi = βiλ + c1r1 (Wi + bi) + c2r2 (Wi + bi) (11)

where βi is the individual extreme value of the i-th sample, λ is the inertia weight, c1 and c2 are learning
factors, r1 and r2 are increasing the randomness of particle flight, Wi is the initial particle speed, and
bi is the random number of particle running speed. Based on obtaining the particle velocity, solve the
particle position change:

vϕ = θiWn

Fα
vi (12)

where θi is the influence of the i-th sample on the particle trajectory, Wn is the initial velocity of the
particle, F is the best position experienced by the particle, and α is the random number of the position.
The global optimal solution of the target particle swarm is obtained by formulas (8) and (9), and on
this basis, the output power of the photovoltaic power station is calculated:

Pv =
∣∣∣∣Lv

vϕ

− 1

∣∣∣∣ K (vi × 
L) (13)

where Lv is the unit output power of photovoltaic power generation, K (·) is the Gaussian function, and

L is the marginal probability density function. After the photovoltaic power station is connected to
photovoltaic power generation, the output during the day will be higher than that at night. Therefore,
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to ensure the base load output of the photovoltaic power station, it is necessary to establish power
constraints:

Hj ≥ Hj min (14)

where Hj is the output of the photovoltaic power station and Hj min is the minimum operating output
of the photovoltaic power station. The photovoltaic power station needs to meet the heat capacity
constraint on the branch to establish the power flow constraint, namely:

Uj min ≤ Uj ≤ Uj max (15)

where Uj min is the upper limit of the node voltage Uj and Uj max is the lower limit of the node voltage Uj.
Under the constraint conditions, the PSO-BP prediction model is solved:

Ri =

n∑
i=0

xlDi

(
ϑi − yj

)

C
(16)

where xl is the branch heat capacity, C is the number of neurons output, ϑi is the light intensity, and yj

is the expected value of the j-th output of the samples. According to the output weights of neurons, the
expected output values in the new data set of training samples are defined, to complete the expected
output of the single implicit feed forward neural network and realize the solution of the algorithm
model.

4 Experimental Results and Analysis
4.1 Experimental Dataset

Before the experiment, images of 7 kinds of target equipment such as cabinets and servers of
photovoltaic power plants were obtained, and a data set was established. And establish the basis for
intelligent image recognition through image preprocessing. The selected photovoltaic power station
will be connected to the grid on July 19, 2021. A dual-axis tracking photovoltaic array was established
by using a crystalline silicon module and Huawei 50 kW series inverter. When considering the training
of the PSO-BP model, it is necessary to keep the image size consistent. Therefore, it is unified into
224224 and 299299 in this paper.

Aiming at the characteristics of deep convolutional neural networks that require a high number
of training samples. In this paper, the method of data augmentation is used to train the model. The
specific training methods are as follows: (1) In the plane where the image is located, move the image
for a certain distance in a certain direction. (2) Enlarge or reduce the image, and restore the changed
image to its original size by cropping or filling. (3) Change the image orientation by rotation. (4) Set
the interference conditions. (5) Adjust the image brightness and contrast to change its visual effect.

4.2 The Overall Process of the Experiment
The entire testing process is divided into three parts:

(1) Set up the computer vision development environment and get the best weights for the YOLO
test model through training and testing. According to the standard of obvious features and
comprehensive classification, 8851 pictures were screened, and the experimental data set was
determined.
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(2) According to the variety of image content, the data is preliminarily divided into seven categories
as shown in Table 1. Images of the above categories were classified using the image annotation
software labeling. And according to the ratio of 5:1:1 to allocate image sample sets, as shown
in Table 1.

Table 1: Data set sample distribution

Numbering Equipment
category

Training
samples

Validation
samples

Test sample Total

01 Cabinet 553 100 100 753
02 Server 836 200 200 1236
03 Monitor 859 150 150 1159
04 UPS 593 100 100 793
05 Switch 869 200 200 1269
06 Router 1193 200 200 1593
07 Other devices 1448 300 300 2048

(3) According to the sample distribution of the dataset shown in Table 1. The YOLO test model
is used for detection and identification, as shown in Fig. 2.
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Figure 2: Target detection identification flow chart
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(4) In the above experimental environment settings, the proposed algorithm is compared with the
methods of reference [3], methods of reference [4], methods of reference [5], and methods of
reference [6]. And record the detection and evaluation results of each algorithm.

4.3 Analysis of Results
4.3.1 Average Loss Analysis

The average loss data set is divided into three parts: training set, verification set, and test set.
When training the model, the validity of the model is often diagnosed according to the average loss
of the training set and the average loss of the verification set. The average loss curve is used to verify
the accuracy of the neural network. The better the curve fitting effect, the better the training effect of
the method to optimize parameters. The average loss curve results of five different methods are shown
in Fig. 3.
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Figure 3: Average loss curve

According to Fig. 3, the loss value of the proposed method decreases greatly at the beginning of
training, indicating that the learning rate is suitable for gradient decline. After learning to a certain
stage, the loss curve tends to be stable, and the minimum value is about 0.3. However, the loss values
of the methods in reference [3] and reference [5] fluctuate greatly, and the methods in reference [4] and
reference [6] gradually converge after a long repetition. It shows that the proposed method has good
stability. This is because the proposed method adopts BP neural network, which adaptively converts
learning into weights in the training process.

4.3.2 Accuracy of Analysis

Accuracy is the most intuitive evaluation index of machine learning. In the case of balanced
positive and negative samples, the accuracy of equipment identification of different methods is tested.
The closer the accuracy rate is to 100%, the higher the effectiveness of the method. The test results are
shown in Table 2.
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Table 2: Comparison of recognition accuracy of different models

Equipment
category

The recognition accuracy of each model/%

Proposed
algorithm

Methods of
reference [3]

Methods of
reference [4]

Methods of
reference [5]

Methods of
reference [6]

01 98.77 95.74 96.37 96.18 95.74
02 97.52 96.12 94.20 95.31 95.39
03 96.84 94.38 95.91 94.28 94.64
04 98.82 95.57 96.73 95.84 95.47
05 97.49 96.59 95.19 94.72 96.18
06 98.13 95.69 95.34 94.18 95.30
07 96.88 94.74 95.17 96.07 94.84

According to Table 2, the accuracy rate of the proposed method is high, and the average accuracy
rate can reach 97.78%. However, the average accuracy of reference [3] is 95.55%, that of reference [4] is
95.56%, that of reference [5] is 95.23%, and that of reference [6] is 95.37%. The main reason is that the
model in this paper uses the Markov chain model to correct the model prediction error and improve
the model recognition ability.

4.3.3 Recall Rate of Analysis

The recall rate is a measure of coverage, and many positive examples of the measure are divided
into positive examples. As far as image samples are concerned, the recall rate results can verify how
many positive examples in the samples are predicted correctly. The higher the recall rate, the more
retrieved content, and the better the effect of the method. The recall rates of five different methods are
tested, and the test results are shown in Table 3.

Table 3: Comparison of identification recall rates of different models

Equipment
category

The recognition rate of each model/%

Proposed
algorithm

Methods of
reference [3]

Methods of
reference [4]

Methods of
reference [5]

Methods of
reference [6]

01 97.45 96.98 94.28 95.94 94.71
02 96.17 95.46 95.78 95.43 94.04
03 98.28 96.84 96.64 96.14 96.55
04 97.35 95.96 94.94 94.87 96.04
05 96.38 94.39 95.75 95.34 95.32
06 96.17 95.74 94.04 95.18 94.94
07 97.47 94.48 95.51 96.42 96.73

According to Table 3, the recall rate of the proposed method is high, and the average recall rate
can reach 97.04%. The average recall rate of reference [3] is 95.69%, that of reference [4] is 95.28%, that
of reference [5] is 95.62%, and that of reference [6] is 95.48%. The main reason is that this model uses a
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particle swarm optimization algorithm to identify samples in a fast global search way, thus improving
the detection coverage effect of the target to be detected.

5 Conclusion

To optimize the complementary power generation capacity of the photovoltaic power stations and
improve the precision of photovoltaic power station equipment. In this paper, considering the influence
of different external factors, the PSO-BP algorithm structure is used to establish a photovoltaic power
station prediction model to realize multi-target detection. The experimental results show that the
average loss of this method is low, and the curve-fitting effect is excellent. After a certain stage of
learning in the training process, the loss curve tends to be stable, and the minimum value is about 0.3.
When the positive and negative samples are balanced, the accuracy of this method is high, reaching
97.78%. The more searched content, the higher the recall rate of this method, and the average recall
rate can reach 97.04%. Therefore, the proposed method can provide a data basis for the configuration
of complementary power generation capacity of photovoltaic power plants, and provide theoretical
support for the subsequent intelligent identification of equipment and the design of the control system.
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