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ABSTRACT

As an effective carrier of integrated clean energy, the microgrid has attracted wide attention. The randomness of
renewable energies such as wind and solar power output brings a significant cost and impact on the economics
and reliability of microgrids. This paper proposes an optimization scheme based on the distributionally robust
optimization (DRO) model for a microgrid considering solar-wind correlation. Firstly, scenarios of wind and solar
power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula
function; then the generated scenario results are reduced by K-means clustering; finally, the probability confidence
interval of scenario distribution is constrained by 1-norm and ∞-norm. The model is solved by a column-and-
constraint generation algorithm. Experimental studies are conducted on a microgrid system in Jiangsu, China and
the obtained scheduling solution turned out to be superior under wind and solar power uncertainties, which verifies
the effectiveness of the proposed DRO model.
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Nomenclature
Indices

WT The wind turbine.
PV The photovoltaic.
CHP The combined heating and power.
EB The electric boiler.
BT The battery storage.
HS The heat storage.
G The micro gas turbine.
DR Demand response load.
IL Interruptible load.
SL Shiftable load.
CHL Cuttable heat load.
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t, s Time intervals (in h), scenarios of uncertain parameters.
i System equipment (WT, PV, CHP, EB, BT, and HS).
j System equipment that counts start-up and stop-down (CHP, BT, and HS).
b Renewable energy equipment (WT and PV).
p Energy storage equipment (BT and HS).
l Demand response load (IL, SL, and CHL).

Parameters

T Time horizon of the problem (in 24 h).
S A collection of scenarios.
ps Probability of scenario s.
Cbuy

grid,t, Csell
grid,t Purchased and Sold prices at period t (in $/kWh).

λ, ξ Heat efficiency of CHP and EB.
ηch

p , ηdis
p The charging and the discharging efficiency of equipment p.

Pgrid
max Maximum purchased and sold electricity power (in kW).

Ns Scenario numbers of the uncertain power output of WT and PV.

Variables

ci Operation cost of the system equipment under scenario s (in $).
cb Operation cost of the renewable energy equipment under scenario s (in $).
cl Compensation factor of the demand response load under scenario s (in $).
Pbuy

s,t , Psell
s,t Electricity purchased and sold power under scenario s at period t (in kWh)

Ppre−w
s,t , Ppre−v

s,t Power forecast output of WT and PV under scenario s at period t (in kW).
Pw

s,t, Pv
s,t Power actual output of WT and PV under scenario s at period t (in kW).

Pl
s,t Power output of demand response load l under scenario s at period t (in kW).

Pi
s,t Power output of equipment i under scenario s at period t (in kW).

Pch
p,s,t, Pdis

p,s,t Charging and discharging power of equipment p under scenario s at period t (in kW).
uj

s,t State of charging and discharging of equipment j under scenario s at period t, are binary
variables.

1 Introduction

In recent years, renewable resources such as wind and solar have been incorporated into the
grid on a large scale through the form of the microgrid (MG) to ease the growing energy crisis and
environmental pressure. MG is a comprehensive power distribution system [1] with distributed power
supply, energy storage device, and load as the main body. However, the uncertainty of distributed
power generation (DG) output poses a great challenge to the security of the system [2].

The deterministic optimization model has a simple form, but the scheduling results are influenced
by uncertainty [3]. To solve the uncertainty of DG output, current research mainly focuses on
stochastic programming and robust optimization. Stochastic optimization assumes that the output
of renewable energy can meet a certain probability distribution, and selects a large number of typical
scenarios in the actual operation for optimization. This method applies to the scenario with the
probability of the uncertainty parameters considered [4]. However, because of the complexity of factors
affecting variable uncertainty, this method generally does not accurately reflect the actual pattern.
Robust optimization does not consider the statistics of random variables, and only obtains the interval
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information of random variables. This method uses uncertain sets to describe the possible range of
random variables and minimizes the running cost of the random variables in the worst scenarios
[5]. However, the optimization results are often somewhat conservative, resulting in a poor economy
[6]. To compensate for the limitations of these two methods, distributed robust optimization (DRO)
is proposed. By building a reasonably distributed fuzzy set of random variables and looking for
the worst probability distribution, DRO addresses the problems of data scarcity and the difficulty
of accurately describing random distributions in random programming methods, as well as the
conservative results of robust optimization. Traditional DRO is mostly based on the Wasserstein metric
or the corresponding moment information to construct the probability distribution set [7–9]. After
obtaining complex non-deterministic polynomial problems, simplify and solve them [10]. To avoid
solving complex dual problems, we can obtain the historical data of many systems by data-driven
methods; and bound the confidence interval by using norms.

Literature [11] adopted the stochastic planning method to generate a large number of discrete
scenarios to represent the uncertainty of DG output and load based on the scenarios method, then
transformed the uncertainty problem into a deterministic problem treatment. Literature [12] used
tunable robust optimization to establish the worst scenarios set to characterize the uncertainty of
wind power; then transformed the model into a linear model by linear optimization strong dual
theory. Based on Literature [12–13] added power to gas devices to the microgrid system to improve
the wind and solar power accommodation, then built a two-stage DRO model considering both
economy and environmental protection. Literature [14] used the adaptive robust optimization method
to characterize the uncertainty of DG and load; then used the tri-layer decomposition algorithm of
the original and dual-cut planes to optimally configure the DG in the distribution network. However,
most of the above documents ignore the correlation between wind power and photovoltaic output. And
there are nonlinear terms in the model, which makes the solution more complex and time-consuming.

Given the above defects, some scholars have carried out research on solar-wind correlation.
According to the literature [15], Pearson Coefficient was utilized as a measure of the correlations
between the wind turbine power deviations, and the time constraint. The threshold of certain
conditions was used to establish the uncertainty of considering the time correlation of a single Wind
turbine output at different moments and the spatial correlation between multiple Wind turbines.
However, Pearson Coefficient is a linear correlation coefficient, which is difficult to apply to nonlinear
monotone transformation. Literature [16] used Spearman and Kendal correlation coefficients to
describe the correlation between wind speed and wind output of two wind farms, and various Copula
functions were used to model the joint distribution. Then two-stage maximum likelihood estimation
was used to estimate the unknown parameters, but the correlation was not extended to the solar and
wind power. Considering the different characteristics of different Copula functions, literature [17]
proposed a method of generating wind and solar scenarios based on nonparametric kernel density
estimation and combined Copula functions, then obtained the uncertainty and correlation sequence
of wind power and solar power generation in a typical day. However, due to the selection of multiple
functions, the solution would be relatively complicated. Literature [18] further selected the Frank-
Copula function as the connection function to deal with solar-wind correlation, but the uncertainty
probability distribution of the generated scene is not constrained.

This paper establishes a distributed robust optimization model for the Microgrid which considers
the correlation of wind and solar power output and the probability distribution constraints. The main
contributions of this paper are as follows:
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(1) A method to generate scenarios of wind and solar power output using non-parametric kernel
density estimation and Frank-Copula functions is proposed. The uncertainty and correlativity of
wind and solar power output can be better described by kernel density estimation than by parametric
estimation.

(2) A two-stage distributed robust optimization model is constructed and combines the 1-norm
and ∞-norm while constraining the confidence set of the uncertainty probability distribution. The
column and constraint generation algorithm is used to solve the problem.

Other sections of this paper are organized as follows. The framework flowchart of the DRO
method is proposed in the Second Section. The Third Section presents the generation and reduction
of wind and solar power scenarios. The MG deterministic model considering multiple scenarios is
established in the Fourth Section and the distributed robust optimization model for MG is established
in the Fifth Section. The Sixth Section provides illustrative examples and analysis. Conclusions are
given in the Seventh Section.

2 Framework Flowchart of the DRO Method

A multi-scenario DRO method is proposed with consideration of the multiple uncertainties of
wind and solar power output. The framework flowchart of the proposed method is illustrated in
Fig. 1. Firstly, scenarios of wind and solar power output are generated based on non-parametric
kernel density estimation and the Frank-Copula function; then the generated scenario results are
reduced by K-means clustering; finally, the probability confidence interval of scenario distribution
is constrained by 1-norm and ∞-norm. The model is solved by a column-and-constraint generation
(C&CG) algorithm.

Start

Input relevant given parameters

Annual wind and solar power output

Gaussian kernel Function and Frank-Copula

10000 groups of wind and solar daily power output
curves with correlation

k-means Clustering Reduction

Typical daily wind and solar power output curves with
correlation and original probability

Probability confidence intervals for the 1-Norm and �-Norm
constrained scenario distributions

Analyze optimization results

End

Build a MG two-stage modeland Solve multi-stage problems
based on C&CGalgorithm

Figure 1: Framework flowchart of the multi-scenario DRO method
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3 Scenarios Generation and Reduction

The distributed robust optimization method based on scenario probability distribution has high
requirements for both the number of scenarios generation and its accuracy. In the actual scenario,
considering that wind power and photovoltaic are affected by the geographical environment and
human factors, there is always some correlation between their output. In this paper, to fully consider
the randomness and correlation of output, we use non-parametric kernel density estimation and the
Frank-Copula function to generate output scenarios; and use K-means clustering to reduce the many
scenarios into four typical daily outputs. Here we choose the data of wind and solar power output for
an area in Jiangsu Province, China, for the whole year of 2017.

3.1 Optimal Copula Function Selection
To describe the correlation between random variables, the Copula function, which connects the

joint distribution function of random variables with the respective marginal distribution function, has
been widely used. Based on the Copula theory, we can decouple the joint distribution of random
variables into the edge distribution and the correlation model, respectively. The edge distribution
describes the randomness of variables, while the Copula function describes the correlation [19]. It
mainly includes the elliptic distribution family Copula function (Normal-Copula, t-Copula) and the
Archimedean distribution family Copula function [20] (Frank-Copula, Gumbel-Copula, Clayton-
Copula). Different Copula functions have different properties in describing the correlation of the
scenarios. Since t-Copula fitting to multi-dimensional random variables is extremely time-consuming
and complex, only the remaining 3 Copula functions are considered in this paper.

To select the best Copula function to fit the wind and solar output characteristics, Spearman rank
correlation coefficients [21], Kendal correlation coefficients, and Euclidean distance are introduced
here and the Empirical-Copula function [22] of wind and solar power output is calculated. You can
see [21,22] for details. Among those functions, the more the rank correlation coefficient is close to the
rank correlation coefficient of the Empirical-Copula function, and the less Euclidean distance from
the function, the more suitable it is. In this paper, the wind and solar power at the example site are
selected as the output data, which can be seen in Fig. A1 in Appendix A1. The properties and specific
expressions of various copula functions are shown in Appendix A2.

The Normal-Copula, Frank-Copula, and Clayton-Copula functions are used to fit and calculate
the Empirical-Copula function, respectively; and obtain the rank correlation coefficient and the
Euclidean distance from the Empirical-Copula function are shown in Table 1:

Table 1: Rank correlation coefficient and Euclidean distance

Copula function Rank correlation coefficient Euclidean distance

Spearman Kendall

Normal-Copula −0.0765 −0.0342 7.1254
Frank-Copula −0.1711 −0.0786 4.7643
Clayton-Copula −0.0245 −0.0212 8.9734
Empirical-Copula −0.1932 −0.0702 /



1780 EE, 2023, vol.120, no.8

According to the Table 1, the rank correlation coefficient of the Frank-Copula function is close
and the Euclidean distance between them is small, so the Frank-Copula function is selected to describe
the correlation of wind and solar power output.

3.2 Scenario Generation and Reduction
First, the Gaussian kernel function based on the non-parametric kernel density estimation is used

to generate the probability density function (PDF) of the wind and solar power outputs in each hour
per day. Then, the optimized Frank-Copula function is adopted to establish the joint probability
distribution function (JPDF) of the wind and solar power outputs in each hour. The JPDF is then
sampled and the inverse transformation of Frank-Copula is performed on sampled data of the JPDF
to obtain the sampling data of the wind and solar power outputs in each hour. It is difficult to solve the
inverse function of its cumulative distribution function (CDF) because the PDF of the non-parametric
kernel density estimation is a summation form. Therefore, the cubic spline interpolation method is used
to solve the sampling values corresponding to its cumulative probability.

In summary, the steps of the scenario generation with considerations of the uncertainties and
correlativity of wind and solar power outputs are as the following:

(1) After getting the historical n-day wind and solar power output (1 point per hour), the Gaussian
kernel function is selected based on the non-parametric nuclear density estimation method to generate
the wind and solar power output probability density function [23] for each period within 24 h.

fm,t (xt) = 1
nm

n∑
d=1

K
(

xt − Xd,t

m

)
(1)

fm,t (yt) = 1
nm

n∑
d=1

K
(

yt − Yd,t

m

)
(2)

where t = 1, 2, . . . , 24, represents the 24 time periods. In period t, the xt and yt are the wind and
solar power outputs, respectively; the X d,t and Y dt are the wind and solar power outputs during the
t-time period of the day d; the m is window wide; the K(•) means a Gaussian kernel function, which
expressed as:

K
(

xt − X t
d

m

)
=

(
1√
2π

)
exp

[
−

(
xt − X t

d

)2

2m2

]
(3)

(2) According to the probability density function of the wind and solar power output in each
period, the cumulative distribution function is found, then the joint probability distribution function
of the wind and solar power output is established according to the Frank-Copula function, which is
specifically expressed as follows:

F̂ (xt, yt) = C
(

F̂xt (xt) , F̂yt(yt)
)

(4)

C (ut, vt; λt) = − 1
λt

ln
(

1 + (e−λtut − 1) (e−λtvt − 1)

e−λt − 1

)
(5)

where the C represents the two-dimensional Frank-Copula function; the F̂xt (xt) and F̂yt (yt) represent
the cumulative distribution function of the wind and solar power output, respectively; the ut and vt,
are the same value as the F̂xt (xt) and F̂yt (yt). The λt is the correlation parameter. When λt ∈ (−1, 1)
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and λt �= 0, λt → 0, ut and vt have better independence; when λt > 0, ut is positively correlated with vt,
when λt < 0, ut is negatively correlated with vt.

(3) The joint distribution function of each period was sampled, and the sampling wind and
solar power output of each period with the cumulative probability was solved by the Cubic Spline
Interpolation method.

Set a small interval:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A =
[(

F̂Xd
t

)−1

(u) ,
(

F̂Xd+1
t

)−1

(u)

]

B =
[(

F̂Yd
t

)−1

(v) ,
(

F̂Yd+1
t

)−1

(v)
] (6)

Breaking the cumulative probability interval [0, 1] into d − 1 small intervals, in any interval A and
B, with the cumulative probabilities u and v as the independent variables and x and y as the dependent
variables, the Cubic polynomials on the interval are obtained as:⎧⎪⎪⎨
⎪⎪⎩

x =
(

F̂Xd
t

)−1

(u) = adu3 + bdu2 + cdu + ld

y =
(

F̂Yd
t

)−1

(v) = a′v3 + b′v2 + c′v + l′
(7)

where the d = 1, 2, . . . , n, f = 1, 2, . . . , F , and the F is the sampling size. For any sampling cumulative
probability values u(t)f and v(t)f , it must fall in an interval A and interval B, and substitute u(t)f and
v(t)f into the upper Eq. (7) to find the sampling wind and solar power output for each period.

(4) Considering the large sampling size, in order to balance the calculation speed and accuracy, the
K-means [24] clustering is used to cluster the annual photovoltaic and wind turbine power output data
to obtain the typical daily data and to calculate the probability of each scenario with consideration of
the calculation speed and accuracy. The specific steps are described in the literature [24].

4 Microgrid Deterministic Model Considering Multiple Scenarios
4.1 Structure of the MG

The MG consists primarily of a wind turbine (WT), a photovoltaic (PV), a combined heating and
power (CHP), an electric boiler (EB), battery storage (BT), and heat storage (HS). The inputs of the
MG are connected to the power grid. The electricity can be bought or sold to the power distribution
system. The direction of the arrows in Fig. 2 indicates the direction of energy flow. The scheduling
objective of MG is to minimize the total system cost and ensure a reliable energy supply considering
uncertainties and certain constraints. The structure of the Microgrid and the framework flowchart of
the proposed method is illustrated in Fig. 2.
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Figure 2: Structure schematic of the MG

4.2 Objective Function
In this paper, we use the box decomposition algorithm [25] to decompose the variables into a two-

stage solution model to minimize the total cost C, where the first stage considers the unit start-up and
stop-down to determine the start-up and shut-down costs Cmp; the second stage considers the total
cost Cope in MG operation in different scenarios. As shown in Eqs. (8)–(12):

min C = Cmp + Cope (8)

Cmp = cmp

Ns∑
s=1

23∑
t=1

γs,t (9)

Cope =
Ns∑
s=1

psCope,s (10)

where the cmp is the start-up and shut-down costs coefficient of the micro gas turbine; the γ s,t is the
linearized state variable of unit start-up and stop-down. The Cope,s is the total operating cost of the
system under each scenario s. The Ns is a set of all scenarios, taken as 4; and the ps is the probability
of scenarios s occurring.

Cope,s =
T∑

t=1

[
Cgrid,s,t + CG,s,t + CBT ,s,t + Cqw,s,t + Cqv,s,t + CDR,s,t

]
(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cgrid,s,t = cbuy
grid,tPbuy

s,t
− csell

grid,tP
sell
s,t

CG,s,t = cGPG
s,t

CBT ,s,t = cBT

(
Pch

BT ,s,t + Pdis
BT ,s,t

)
Cqw,s,t = cqw

(
Ppre−w

s,t − Pw
s,t

)
Cqv,s,t = cqv

(
Ppre−v

s,t − Pv
s,t

)
CDR,s,t = cILPIL

s,t + cCLPSL
s,t + cCHLPCHL

s,t

(12)
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where the T is the number of periods in the day, taken as 24. Eq. (11) indicates the total expression for
the operation cost. Eq. (12) indicates the specific system operation cost, including the interaction cost
with the distribution network Cgrid,s,t; micro gas turbine operation cost CG,s,t; battery aging cost CBT,s,t;
wind and solar curtailment cost Cqw,s,t, Cqv,s,t; and demand response load compensation CDR,s,t.

4.3 Constraints
The above objective function is subject to the following constraints:

4.3.1 CHP Gas Turbine Unit Constraints{
0 ≤ PG

s,t ≤ PG
max

−PG
max(1 − uG

s,t) − rd ≤ PG
s,t − PG

s,t−1 ≤ PG
max(1 − uG

s,t) + ru

(13)

{
0 ≤ γs,t ≤ uG

s,t

uG
s,t + uG

s,t+1 − 1 ≤ γs,t ≤ uG
s,t+1

(14)

where Eq. (13) is the upper and lower limit of the gas turbine output and the ramping constraint of
the CHP unit and Eq. (14) is unit operating status constraint. The PG

max is the maximum power of the
micro gas turbine; the rd and ru respectively indicate the upward and downward climbing rate. The uG

s,t

represents the status variable of the micro gas turbine under the scenario s, 1 represents the gas turbine
operation, and 0 represents the shutdown.

4.3.2 Interaction with the Distribution Network Constraints{
0 ≤ Pbuy

s,t ≤ ugrid
s,t Pgrid

max

0 ≤ Psell
s,t ≤ (1 − ugrid

s,t )Pgrid
max

(15)

where Eq. (15) indicates the power interaction constraint between MG and the distribution network.
The Pgrid

max is the interactive power upper limit of the connection line between the MG and the
distribution network and the upper limit of the power sold to the MG; the ugird

s,t represents the status
variable of MG power purchase or sale in t period under scenario s, and 1 represents power purchase
from the grid, 0 represents power sale for the grid.

4.3.3 Energy Storage System Constraints{
0 ≤ Pch

BT ,s,t ≤ uBT
s,t Pe

max

0 ≤ Pdis
BT ,s,t ≤ (1 − uBT

s,t )Pe
max

(16)

ηch
BT

T∑
t=1

Pch
BT ,s,t −

1
ηdis

BT

T∑
t=1

Pdis
BT ,s,t = 0 (17)

⎧⎨
⎩SOCs,t =

[
E (0) + ηch

BT

t∑
t′=1

Pch
BT ,s,t′ − 1

ηdis BT

t∑
t′=1

Pdis
BT ,s,t′

]
/Ebat. max

SOCmin ≤ SOCs,t ≤ SOCmax

(18)



1784 EE, 2023, vol.120, no.8

where Eq. (16) represents the charging and discharge power constraints of energy storage. Eq. (17)
indicates that the capacity of battery storage is equal at the beginning and end of the scheduling, which
is conducive to the cycle scheduling of battery storage. Eq. (18) represents the State of Charge (SOC)
constraint. The uBT

s,t represents the charging and discharge state variable of the battery storage system
in t period under scenario s, where 1 represents charging and 0 represents discharge; the Pe

max represents
the maximum charge and discharge power allowed for battery storage. The ηch

BT and ηdis
BT represent the

power efficiency of the battery. The SOCs,t is the charge state of the battery in the t period under
scenarios s, the SOCmax and SOCmin are the upper and lower limits of the charge state of the battery,
respectively; the E(0) and Ebat.max are the initial and maximum capacity of battery storage.

4.3.4 Heat Storage System Constraints{
0 ≤ Pch

HS,s,t ≤ uHS
s,t Ph

max

0 ≤ Pdis
HS,s,t ≤ (1 − uHS

s,t )Ph
max

(19)

0.1sh ≤ ηch
HS

T∑
t=1

Pch
HS,s,t −

1
ηdis

HS

T∑
t=1

Pdis
HS,s,t + 0.5sh ≤ 0.9sh (20)

where Eq. (19) indicates the charging and discharge power constraints of the heat storage. Eq. (20)
indicates the heat storage capacity constraint. The Pch

HS,s,t and Pdis
HS,s,t are respectively the heat storage

charge and discharge heat power in the t period under the scenarios s. The uHS
s,t represents the energy

release state variable of the heat storage system in t under scenarios s, where 1 represents energy and
0 represents energy release. The Ph

max represents the maximum energy charging power allowed for heat
storage; the ηch

HS, and ηdis
HS are the efficiencies of charging and discharging the energy of the heat storage

system, respectively. The sh is rated capacity of heat storage equipment and taken as 300 kW.

4.3.5 Energy Balance Constraints⎧⎪⎪⎨
⎪⎪⎩

Pdis
BT ,s,t − Pch

BT ,s,t + Pbuy
s,t

− Psell
s,t

+ PG
s,t + Pv

s,t + Pw
s,t = PL

t + PDR
s,t + PEB

s,t

PDR
s,t = PIL

s,t + PSL
s,t

PEB
s,t ≥ 0

(21)

Pdis
BT ,s,t − Pch

BT ,s,t + λPG
s,t + ξPEB

t = PHL
t − PHCL

t (22)

where Eq. (21) represents the electric power balance constraint. Eq. (22) indicates the thermal power
balance constraint. The PEB

s,t represents the electric power consumed by the electric boiler in period t
under scenarios s, the PDR

s,t represents the demand response power in period t under scenarios s. The PL
t

represents the electric power and conventional electric load value consumed by the electric boiler in
period t. The λ, ξ represent the thermal conversion efficiency of micro gas turbine and electric boiler,
the PHL

t indicates the conventional heat load.
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4.3.6 Demand Response Load Constraints⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αPL
t ≤ PSL

t ≤ αPL
t

0 ≤ PIL
t ≤ αPL

t

0 ≤ PHCL
t ≤ βPHL

t

T∑
t=1

Pdz
t = 0

(23)

where the α and β are the load adjustment range of interruptible electric load and reducing heat load,
respectively, which are both taken as 0.1.

4.3.7 Scenario Constraints
Ns∑
s=1

ps = 1 (24)

where Eq. (24) represents the sum of the probabilities in all scenarios s is 100%.

4.3.8 Wind and Solar Power Output Constraints{
0 ≤ Pw

s,t ≤ Pw
max

0 ≤ Pv
s,t ≤ Pv

max

(25)

where Eq. (25) represents the wind and photovoltaic power output constraints. The Pw
s,t and Pv

s,t are
the actual output of wind and solar power at time t under scenario s, respectively. The Pw

max and Pv
max

indicate the maximum output of wind power and photovoltaic, taken as 1000 and 200 kW, respectively.

5 Distributional Robust Optimization Model
5.1 Model Building

The deterministic model in multiple scenarios constituted by Eqs. (8)–(25) can be represented in
the matrix form as:

min
y,zs∈Zs

(
aTy +

Ns∑
s=1

psbTzs

)
(26)

⎧⎪⎨
⎪⎩

Ay ≤ f

Bzs ≤ x

Xy + Hzs = q

(27)

where the y is the first stage variable, including various investment schemes in the MG; the a is the
corresponding cost coefficient of y and b is the quadratic and primary cost coefficient in the objective
function. The ps is the probability of occurrence of scenario s. The zs is the second stage variable under
scenario s, the zs is the set of second stage variables under scenario s as: zs ∈ {Pbuy

s,t , Psell
s,t , PG

s,t, Pch
BT ,s,t, Pdis

BT ,s,t,
PEB

t , Pw
s,t, Pv

s,t}. A, B, X, H, f , x, q, represent the matrix or vector corresponding to the variable in the
model constraints. Eq. (27) respectively represents all constraints related to variables in the first stage;
all constraints associated with the second stage variables; and all constraints on the association of the
first stage variables with the second stage variables.

The uncertainty and correlation of wind and solar power output, as well as the limitations of
historical data, and the scene probability distribution obtained by scene clustering have certain errors.
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To solve this problem, this paper uses stochastic programming to get the scene set, then uses a robust
optimization method to limit the probability distribution of the scene.

By using the method of 3.2, we can first get a series of wind and solar power output scenarios
considering their correlation, then the K-means reduction method can be used to obtain the original
distribution probability ps0 of the reduced N original scenes and scene s. Finally, based on the 1-norm
and ∞-norm confidence intervals to restrain the fluctuation range of the probability distribution,
a DRO is constructed. The constraints of DRO can be the same as the deterministic model, i.e.,
Eqs. (14)–(25), and the objective function is:

min
y

max
{ps}∈Ωp

min
zs∈Zs

(
aTy +

Ns∑
s=1

psbTzs

)
(28)

where the Ωp is the set interval of the probability distribution of the scenarios, representing the
confidence set [26] set by the 1-norm and ∞-norm constraints.

The confidence degree of the probability distribution p can be expressed as:

pr (‖p − p0‖1 ≤ θ1) ≥ 1 − 2Ns exp
(−2Nθ∞

Ns

)
(29)

pr
(‖p − p0‖∞ ≤ θ∞

) ≥ 1 − 2Ns exp (−2Nθ∞) (30)

where the pr(•) is the probability solver function; the p0 is the predicted value of the probability
distribution; the θ 1 and θ∞ are the allowable deviation values of the probability distribution. For the
right side of the above 2 inequalities: the 1 − 2Ns exp(−2Nθ1/Ns) and 1 − 2Ns exp(−2Nθ∞), set them to
α1 and α∞, respectively, N is number of original scenes, taken as 1000. Then the α1 and α∞ denote the
confidence levels satisfied by the probability distribution p based on 1-norm and ∞-norm confidence,
respectively. The θ 1 and θ∞ can be expressed as:

θ1 = Ns

2N
ln

2Ns

1 − α1

(31)

θ∞ = 1
2N

ln
2Ns

1 − α∞
(32)

Based on this, the confidence set of the probability distribution can be deduced as:

Ωp

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ps}

∣∣∣∣∣∣∣∣∣∣∣∣∣

ps ≥ 0, s = 1, . . . , Ns

Ns∑
s=1

ps = 1

Ns∑
s=1

|ps − ps0| ≤ θ1

max1≤s≤Ns |ps − ps0| ≤ θ∞

(33)

5.2 Model Solution
The model constructed in this paper is a multi-stage optimization problem that cannot be solved

directly by commercial solvers. Using the column constraint generation algorithm (C&CG) [27] to
solve. Similar to the Benders decomposition algorithm, the C&CG algorithm also obtains the optimal
solution of the original problem by decomposing the original problem into a master problem and
a sub problem for alternate solutions. The difference between the two is that the C&CG algorithm
continuously introduces variables and constraints related to the sub problem in the process of solving
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the master problem, which can obtain a more compact lower bound on the value of the original
objective function and thus effectively reduce the number of iterations.

5.2.1 Master Problem

The objective of the master problem is to solve for the optimal solution that satisfies the economy
of the system given the known probability distribution p of the scenario, which can be expressed as:

LM = min
y,γ ,zs∈Zs

(
aTy + γ

)
(34)

γ ≥
Ns∑
s=1

p(n)∗
s

(
bTzs

(n)
)

n = 1, 2, . . . N
(35)

where the superscript “∗” denotes the optimal solution for the corresponding variable; the γ is the
given threshold, and the N is the total number of model iterations. The variables y∗ and the lower
bound LM of the model can be obtained by solving the master problem.

5.2.2 Sub Problem

The sub problem is a two-layer structure of max-min form, which can be expressed as:

fsp (y∗) = max
{ps}∈Ωp

min
zs∈Zs

Ns∑
s=1

ps

(
bTzs

)
(36)

where Eq. (36) is to assume that the variable zs can be flexibly adjusted according to the scene change
adjustment. When the result of solving the master problem is known to be y∗. The lower bound value
of the model Eq. (28) is solved by finding the worst-case scenario probability distribution within the
confidence interval.

1 hown:

hs = min
zs∈Zs

(
bTzs

)
(37)

U = max
{ps}∈Ωp

Ns∑
s=1

pshs (38)

where the hs represents the solution to the inner layer problem and can be obtained from the result of
solving the master problem. The U represents the solution to the inner layer problem after the value of
hs is known. Since the absolute value constraint in Eq. (33) is a nonlinear constraint, a linear equivalent
decomposition is required.

The equivalent transformation of the absolute value constraint is obtained as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ns∑
s=1

(
p+

s + p−
s

) ≤ θ1

p+
s + p−

s ≤ θ∞

μ+
s + μ−

s ≤ 1

p+
s ≤ μ+

s θ1

p−
s ≤ μ−

s θ1

ps = ps0 + p+
s + p−

s

∀s (39)
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where p+
s and p−

s are the positive and negative offsets of the probability distribution ps of the scenario s
with respect to ps0, respectively; the μ+

s and μ−
s are the 0–1 variables that produce positive and negative

offset to the ps, respectively.

5.2.3 Model Solving Steps

After the above steps, the model is transformed into a mixed linear planning problem, which can
be solved directly by the commercial solver to get the p∗

s . By substituting the master problem for the
next iteration optimization, the upper limit UM of the model can be obtained. The specific solution
process is as follows:

Step1: set the lower bound LM = ∞ and the upper bound UM = ∞, set the iteration time n = 1;

Step2: solve master problem, obtain the optimal solution (y∗, γ ∗), update the lower bound value
to LM = min(aTy∗ + γ ∗);

Step3: fix the first stage variable y∗ constant, solve the sub problem to obtain the worst-case
probability value p∗

s and the objective function value f sp(y∗), update the upper bound to UM = min{UM ,
aTy∗ + f sp(y∗)};

Step4: stop the iteration and return the optimal solution y∗ if UM − LM < ε, otherwise, update the
worst-case probability distribution of the master problem pn+1

s = p∗
s , then add new constraints related

to the new variable zn+1
s to the master problem;

Step5: update the number of iterations, n = n + 1, and return to Step2.

6 Example Analysis

This paper follows the MG as shown in Fig. 1 tos verify the effectiveness of the two-stage DRO
model and the solution algorithm proposed there. See Fig. 2 for the purchase and sale of electricity
prices interacting with the power grid. Based on a 2017 study of a microgrid system in a location in
Jiangsu Province, China, data related to wind turbines, photovoltaic power stations, micro gas turbines,
electric boilers, energy storage, and thermal storage were obtained. The details are shown in Table 2.
The model in this paper is based on the Matlab R2020b platform and has been optimally solved using
the YALMIP/CPLEX solver.

The C&CG algorithm was solved iteratively in stages using the algorithm presented in Section 5,
with a computational time of 6.436516 s. The power price for buying and selling between microgrid
system and power grid are shown in Fig. 3. The iteration results are shown in Fig. 4, showing that the
optimal value can be obtained after the second iteration, and the operation rate is very fast.

Table 2: The economic and technical parameters of the device

Equipment Parameter Numerical value

Micro gas turbine PG
max/kW 600

rd, ru/kW 50
cmp($)/kWh 0.25
cG($)/kWh 1.7
λ 1.2

(Continued)
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Table 2 (continued)

Equipment Parameter Numerical value

Storage battery Pe
max/kW 80

η 0.95
SOCmax(SOCmin)/kWh 360(40)
E(0)(Ebat.max)/kWh 200(400)
cBT($)/kWh 0.021

Thermal energy storage Ph
max/kW 50

μch(μdis) 0.85(0.90)
sh/kWh 300

Distribution network interactive power Pgrid
max/kW 200

Demand response load cIL, cSL, cHCL($)/kWh 0.5
, β 0.1

Wind and solar curtailment cqw, cqv($)/kWh 0.62

Electric boiler ξ 0.9
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Figure 3: Power price for buying and selling between microgrid system and power grid
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Figure 4: C&CG algorithm iteration results

6.1 Scenarios Generation Analysis
Based on 3.2, we can obtain some scenarios based on the Frank-Copula function to consider the

wind and solar power correlation output. The sampling scale F is taken as 1000 and the results are
shown in Appendix B1. Then the K-means clustering is used to reduce the scenarios, and obtain 4
sets of typical wind power and photovoltaic output curves, as shown in Fig. 4. The probability of each
scenario was 0.26, 0.29, 0.15, and 0.30.

As can be seen from Fig. 5, the changes in wind and solar power output are consistent or opposite
in certain time periods, showing some correlation in the following scenarios. It shows that the scenario
reduction results reflect the uncertainty and correlation between wind and solar power output. The
wind and solar power characteristics of the region can be simulated well, which is conducive to the
overall optimization and operation of the system.

6.2 Scenarios Generation Analysis
6.2.1 Interpretation of Result

This section mainly analyzes the impact of adding demand response to a microgrid system
containing the energy storage, the heat storage, and the micro gas turbines on system optimization.
The scheduling results in other scenarios are shown in Appendix B2 Figs. B2–B4.
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Figure 5: The scenario reduction results of WT and PV output

According to Figs. 6 and 7, comparing the electrical/heat load curve before and after IDR, we can
find: the peak-valley difference of electric load decreased from 382.215 to 268.314 kW and thermal
load from 291.652 to 262.487 kW. It can be seen that the participation of IDR in the system operation
can effectively reduce the peak power/heat load, which makes the various load curves milder, and help
to smooth the system operation.

During the 24:00 to 8:00 period, the photovoltaic does not work and the wind power output is
relatively small. Considering the start-up and shut-down costs of the gas turbine, the heat preparation
is not started. At this time, the power shortage of the electric load is obtained by purchasing power
from the external power grid, and the heat load is met by the heating of the electric boiler, due to low
electricity prices, the battery storage system starts charging.
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Figure 6: The demand response load transfer situation in scenario 1
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The electrical balance situation in scenario1
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Figure 7: The electrical and heat balance situation in scenario 1

During the 8:00–14:00 periods, the photovoltaic starts to supply power, the battery storage system
discharges; and sells electricity to the grid during the rich periods to make profits, and the micro gas
turbine starts to meet the power supply pressure during peak electric load. At the same time, the energy
storage and the heat storage system are discharged.

During the 14:00–18:00 period, as the load pressure decreases, photovoltaic and wind power can
be used to meet the power supply demand, the micro gas turbine is shut down, and the MG sells
electricity to the power grid, and the excess power is sold to the grid as much as possible, and then
stored by energy storage, and the heat of the electric boiler is stored by the heat storage system.

From 18:00 to 20:00, with the peak of the electric heat load coming again, the micro gas turbine
starts again, and the energy storage and heat storage system respectively discharge the heat. Then from
20:00 to 24:00, the photovoltaic stops working; due to the low electric thermal load supply pressure
at this time, the micro gas turbine is stopped by the wind power and electric boiler, charges the energy
storage system, and sells electricity to the grid when the power is rich.

To sum up, after the introduction of IDR and the configuration of the energy storage system, the
electric thermal load is reduced, and the operation mode of the energy storage device is in line with
the strategy of “low charge and high discharge”, which is more conducive to reducing the cost of
microgrid energy purchase.

6.2.2 Cost Analysis with Different Confidence Intervals and Norms

Different confidence intervals were set to calculate the total cost of the model separately, and the
results are shown in Table 3. It can be seen that when the values of α1 and α∞ are larger, the confidence
interval is larger and the range of the corresponding uncertainty probability distribution is larger,
which leads to a higher total cost for the system. However, when the value of α1 is small, the total
system cost does not increase as α1 increases, indicating that the optimization results at this time are
mainly affected by the ∞-norm.
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Table 3: Comparison of total costs at different confidence levels ($)

α∞ α1

0.2 0.5 0.8 0.99

0.5 1274.54 1274.72 1274.72 1274.72
0.8 1274.60 1274.82 1275.18 1275.18
0.99 1274.75 1274.97 1275.40 1276.68

The cost of each scenario obtained from the scenarios analysis method is taken as the known
condition. The DRO model is operated under the conditions of the comprehensive norm, only 1-
norm, and only ∞-norm respectively, and the corresponding costs are shown in Tables 4 and 5. When
considering only 1-norm, let α1 = 0.5, 0.5 ≤ α∞ ≤ 0.99, and when considering only ∞-norm, let α∞ =
0.99, 0.2 ≤ α1 ≤ 0.99. As shown in Tables 4 and 5, the system is more conservative and the total cost
is higher when only the 1-norm or only the ∞-norm is considered. It indicates that the selected and
considered integrated norm scenario constraints has better economy.

Table 4: Cost comparison of comprehensive norm and 1-norm ($)

α1 Comprehensive norm 1-norm

0.2 1274.75 1279.38
0.5 1274.97 1279.38
0.8 1275.40 1279.38
0.99 1276.68 1279.38

Table 5: Cost comparison of the comprehensive norm and ∞-norm ($)

α∞ Comprehensive norm ∞-norm

0.5 1274.54 1278.64
0.8 1274.60 1278.64
0.99 1274.75 1278.64

6.2.3 Comparison of Results with Other Traditional Methods

The decision results of the DRO model are analyzed in comparison with those of the traditional
stochastic optimization and robust models. The optimization results obtained by the two methods are
compared by generating 1000 scenes in random simulation. where the values of α1 and α∞ are both
taken as 0.99 in the DRO method. A stochastic programming approach for optimal scheduling with
a probability of 0.25 for each scenario. The robust optimization methods are performed according to
the [12]. Each of the above methods is performed under the same equipment configuration conditions.
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The results are shown in Table 6.

Table 6: Result comparison between different models ($)

Optimization results Average value

DRO Stochastic programming Robust optimization

Electricity purchasing costs 2293.02 2293.02 2298.42
Energy storage costs 208.62 208.62 208.52
CHP power generation costs 838.82 842.32 834.32
Daily profit 1276.68 1284.45 1272.21
Photovoltaic curtailment ratio 12.61% 12.54% 13,73%
Wind curtailment rate 23.42% 23.42% 24.25%

According to the results, it can be seen that the robust optimization model corresponds to the
worst clean energy consumption rate and profit; and the stochastic programming corresponds to
the optimization results with the best economy and the best clean energy consumption rate, but
conservation is not guaranteed. Compared with robust optimization and stochastic programming, the
DRO method can achieve a better balance of economy and conservativeness, maximize the profitability
of the distribution network while improving the consumption rate of clean energy, and has more
advantages in dealing with uncertainty optimization.

7 Conclusion

Firstly, based on the stochastic optimization model, the output correlation between wind power
and photovoltaic is analyzed. Secondly, based on the nonparametric nuclear density estimation
and Frank-Copula function, a typical sample of 1000 sets of wind and solar power output with
correlation was generated, and the reduced scenario is obtained through K-means clustering. Finally,
we constructed the distributed robust optimization model that considers the confidence interval of a
probability distribution. After simulation verification and comparison, indicates that our model can
well balance system economy and robustness. The following conclusions can be drawn:

(1) The method of scenario generation has an important impact on the overall optimization results.
The Frank-Copula function is used for scenario generation, which can better reflect the wind power
and PV output correlation. Combined with the K-means scenario clustering algorithm for scenario
reduction, the final generated scenarios can be more representative.

(2) The simulation results show that the participation of demand response reduces the peak-to-
valley difference of the overall load. Rather than considering only 1-norm and ∞-norm, the combined
norm reduces costs.

(3) By considering the confidence interval of the probability distribution based on the stochastic
optimization model, the proposed DRO model in this paper can achieve a better balance of economy
and conservativeness. Compared to stochastic programming and robust optimization, this method has
more advantages in dealing with uncertainty optimization.

(4) C&CG algorithm can effectively and quickly solve the proposed distribution robust optimiza-
tion model.
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Appendix A1
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Figure A1: The annual wind power and photovoltaic output in 2017 for testing area

Appendix A2

The specific mathematical expressions of the 5 common types of Copula functions are shown
below:

(1) Normal-Copula:

C (u, v; ρ) = ∫ �−1(u)

−∞
∫ �−1(v)

−∞
1

2π

√
1−ρ2

exp
(

−s2 − 2ρst + t2

2 (1 − ρ2)

)
dsdt (A1)

where −1 ≤ ρ ≤ 1 is the dependence parameter, � and �−1 are the standard normal distribution and
its inverse function, respectively.

Multidimensional Normal-Copula:

C (u1, u2, . . . , un; ρ) = �ρ

(
�−1 (u1) , �−1 (u2) , . . . , �−1 (un)

)
(A2)

where ρ is the equivalent correlation matrix, � and �−1 are the standard normal distribution and it is
inverse function.
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(2) Frank-Copula:

CF (u, v; θ) = −θ−1 log
(

1 − (1 − e−θu) (1 − e−θv)

(1 − e−θ )

)
(A3)

where the dependence parameters θ �= 0. When θ > 0 indicates positive correlation, when θ → 0
indicates mutual independence, when θ < 0 indicates negative correlation.

(3) Clayton-Copula:

CCl (u, v; θ) = Max
((

u−θ + v−θ − 1
)−1

θ , 0
)

(A4)

where the dependence parameter θ ∈ [−1, +∞), and θ �= 0.

The expressions of the probability density functions of the 5 common types of Copula functions
are shown in Fig. A2.

(a) Normal-Copula                      (b) Clayton-Copula                  (c) Frank-Copula
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Figure A2: Distribution density of three Copula functions
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Figure B1: Sampling results after applying the Copula function
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Figure B2: Demand response load transfer and electric/heat power balance in scenario 2
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Figure B3: Demand response load transfer and electric/heat power balance in scenario 3
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Figure B4: Demand response load transfer and electric/heat power balance in scenario 4
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