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ABSTRACT

Induction motors (IMs) typically fail due to the rate of stator short-circuits. Because of the similarity of the thermal
images produced by various instances of short-circuit and the minor interclass distinctions between categories,
non-destructive fault detection is universally perceived as a difficult issue. This paper adopts the deep learning
model combined with feature fusion methods based on the image’s low-level features with higher resolution and
more position and details and high-level features with more semantic information to develop a high-accuracy
classification-detection approach for the fault diagnosis of IMs. Based on the publicly available thermal images
(IRT) dataset related to condition monitoring of electrical equipment-IMs, the proposed approach outperforms
the highest training accuracy, validation accuracy, and testing accuracy, i.e., 99%, 100%, and 94%, respectively,
compared with 8 benchmark approaches based on deep learning models and 3 existing approaches in the literature
for 11-class IMs faults. Even the training loss, validation loss, and testing loss of the eleven deployed deep learning
models meet industry standards.
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Nomenclature
∂εloss

∂xl

The gradient

R̂ (xi, ωi) The residual function
ppredict(label) The probability distributions

1 Introduction

Various types of short-circuit failures can significantly cause motor failure in an induction motor.
Because the rotor of an industrial motor generates extremely high levels of heat during operation,
the conventional fault detection method necessitates invasive detection, resulting in the inability to
intervene in the repair of the fault in a timely manner. Thermal imaging cameras are capable of not only
measuring the temperature of thousands of points but also of converting temperature readings into
thermal images. The generated thermal image can fully reflect the overall condition of the equipment
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to be inspected, and the operator can easily discover that the spot pyrometer is difficult to find fine
hot spots and that the infrared penetration ability is strong, can penetrate thick smoke and dense
fog, and is not limited by ambient light or illumination light. Infrared thermal imaging does not use
lighting or ambient light to produce scene images; instead, it relies on the radiation of the target and the
background, so the infrared thermal imaging system can work 24 h a day and will not be interfered with
by visible light like other night vision equipment. Low-light cameras cannot image without ambient
light. However, because the pixel distribution of structured images obtained after acquisition is very
similar to that of industrial motor faults, detecting faults in multiple categories is extremely difficult.
For industrial rotary machinery, the development of an intelligent fault detection system that can
automatically and reliably identify micro-faults that are damaging motors remains an issue that must
be solved [1–3]. Although the deep learning model can extract the image’s high-discrimination features,
because the image is a structured description and the infrared images of different industrial motors are
very similar except for a slight change in color, their shape and texture features have hardly changed.
The image’s low-level features have higher resolution and more position and details, and the image’s
high-level features have more semantic information. It is frequently overlooked and does not fully
exploit the difference in color of the image on the channel.

This paper proposes a high-accuracy fault diagnosis for Industrial Motors (IMs) based on deep
learning-related approaches combined with feature fusion methods; image low-level features with
higher resolution and more position and details are effectively fused with high-level features with
more semantic information extracted by a Gaussian filter. The remainder of this paper is organized as
follows: Section 3 presents the proposed deep learning-related approach for IM fault diagnosis, such
as the processing framework for classification-detection. The experiments explored based on 11 deep
learning-related approaches and the performance comparison are given in Section 4, and this paper is
concluded in Section 5.

2 Related Works

The classification-detection approach of the feature extraction of thermal images, BCAoID
(Binarized Common Areas of Image Differences), to fault diagnosis based on thermal images can find
application for protecting rotating machinery and engines, and the recognition results of the performed
analysis were greater than 97.91% in the approach proposed by Glowacz [4]. For the purpose of defect
identification in a three-phase induction motor, thermal image segmentation-related approaches were
performed [4–9]. These approaches were based on edge detection algorithms and machine learning-
related methodologies. Glowacz et al. [8] created an acoustic-based fault diagnostic technique for
detecting power tool bearing and ventilation defects. According to the studies, acoustic-based analysis
is useful for analyzing electrical and other mechanical faults in machines. Chen et al. [9] studied three
angle grinders (AG): a healthy AG, an AG with one blocked air inlet, and an AG with two blocked
air inlets. The classifier used was SMOFS-NFC (Shortened Method of Frequencies Selection Nearest
Frequency Components) based on the extracted features, and the detection accuracy ranged from
89.33% to 97.33% for the three electric impact drills. Li et al. [10] introduced a fault diagnosis approach
for the fault diagnosis of rotating equipment that was based on the Convolutional Neural Network
(CNN) in combination with Softmax methods. This strategy was created to aid in the diagnosis of
rotating machinery faults. The trials have shown that a variety of flaws in the rotor and bearings can
be located. Karabacak et al. [11] presented the feature selection and classification for fault diagnosis
of worm gearboxes (WG) under varying loading and speed conditions for the purpose of condition
monitoring. The detection accuracy of the two classifications was 99.2%. He et al. [12] used infrared
thermal images to collect the characteristics of the different health states of the motor. The experiments
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demonstrated that even small, labeled infrared thermal images can provide an accurate diagnosis. The
non-invasive method connected to infrared thermography was utilized by Choudhary et al. [13], and
the identification of bearing failure at an early stage under a variety of bearing situations was carried
out. Shao et al. [14,15] performed an analysis of thermal images of a rotor-bearing system under a
variety of various working circumstances using a modified CNN that included transfer learning. The
findings indicate that the method described was effective for the purpose of defect identification in
the rotor-bearing system. Gangsar et al. [16] presented artificially intelligent (AI) methods for the
detection of induction motors (IMs) in order to guarantee the continuous and problem-free operation
of IMs. These approaches were developed to identify IMs. A discussion of the research gaps and future
scopes in the fault monitoring and diagnosis of IMs has also been provided. This was done as an
additional addition. Nath et al. [17] utilized the artificial intelligence (AI)-based rotor fault diagnosis
(RFD) method to solve the issues in the health management (PHM) of the Industry 4.0 revolution.
The current research and analysis in accordance with different phases of an AI-based RFD framework
were also discussed. Gundewar et al. [18] provided a comprehensive review of recent developments
in the condition monitoring and fault diagnosis of IMs. They also conducted an analysis of the
most common faults in induction motors using time-domain, frequency-domain, and time-frequency-
domain methods, as well as the application of artificial intelligence techniques for fault detection. The
development of the deep learning methodologies [19–22], such as CNN-based fault diagnosis (CNFD)
approaches, was thoroughly reviewed, and the further investigation by researchers into the detection
of IMs was also taken into consideration.

3 Proposed Deep Learning-Related Approach for Fault Diagnosis of Industrial Motors

The main purpose of this paper is to explore the AI approach, such as the state-of-the-art
approaches based on deep learning, to solve the fault diagnosis of IMs. In particular, the detection
of categorization in this work is exceedingly difficult due to the high feature similarity across each
image category. The processing diagram of the proposed approach is shown in Fig. 1. The processing
framework and the experimental evaluation are the two main parts of the classification-detection
process, as provided in Fig. 1.

3.1 Classification-Detection Approach Based on Deep Learning
If the number of hidden layer nodes is large sufficiently, neural networks can theoretically

approximate nonlinear functions and use a large amount of data; as the amount of data increases,
so does their generalization ability. This is the primary advantage of neural networks; it distinguishes
them from almost all other machine learning algorithms. Deep neural networks with more than two
hidden layers are not uncommon, and the number of hidden layers can be customized using a method
known as hyper parameter selection. The output features of the hidden-layers in the neural network
are defined by Eq. (1),

hi (x)Rαi−1→Rαi = f
(
wT

i x + bi

)
(1)

where wi ∈ Rα×αi−1, b ∈ Rαi∈N∗
(1,+∞) , fR→R ∈ [0, 1]sigmoid are usually a non-linear activation function. Since,

the networks are prone to many types of attacks, the classification model should distinguish multi-
class. Therefore, neural network with softmax function-based activation function could be utilized to
get more accurate results. The loss function denoted as εloss is calculated by Eq. (2) based on the chain
rule of gradient propagation,

∂εloss

∂xl

= ∂εloss

∂xL≥l,L∈N∗

∂xL≥l,L∈N∗

∂xl
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xL≥l,L∈N∗ = x0 +
∑

i=1,...,L−1
R (xi, ωi) (3)

where
∂εloss

∂xl

is the gradient that propagates over the hidden layers of deep learning model, ωi is the

model weight of the deep learning model. R is the residual function, and variables vector xl defined
in Eq. (3) is the input feature to the lth residual unit. L ≥ l, L ∈ N ∗ is a positive integer indicating the
subscript of the deeper residual unit in hidden layer. As shown in Fig. 1, the skip connections related to
the pre-activation module are added in the classical Residual Network (ResNet), with the recursively
calculation for the xl+1 with the identity shortcut, Eq. (2) could be defined by Eq. (4),
∂εloss

∂xl

= ∂εloss

∂xL

(∏
i=1,...,L−1

λi + ∂

∂xl

∑
i=1,...,L−1

R̂ (xi, ωi)

)
(4)

where R̂ (xi, ωi) is the residual function with scalars. The feature information flow of the hidden layers
will be changed exponentially when modulating scalar λi > 1 (or λi > 1), which is corresponding to the
exponentially large (or the small even vanish). This is particularly beneficial for the backpropagated
signal that passed through the weight layers. Multi-class classification uses the negative log probability
as the target class and ppredict(label) as the probability distributions as denoted by Eq. (5),

d
(
ttarget, ppredict (label)

) = − log ppredict (label)target (5)

Trainin−out,ξ � Lout,i,ξ = α−1
i

∑
λ=1,...,αi∈N∗

(1,+∞)

dist
(
oλ, fξ (iλ)

)
(6)

where ttarget and ppredict (label) respectively denote the target and predicted label. The decrease of loss
function denoted by Eq. (6) is utilized to investigate the well-trained model based on the ideal values.

for ξ =
(
ω1, b1, . . . , ωαi , bαi∈N∗

(1,+∞)

)
.

3.2 Proposed Classification-Detection Approach for Fault Diagnosis of IMs
In terms of accuracy and convergence, the deep residual network outperforms ResNet as an

extremely deep network framework. When skip connections and additional activations use identity
mappings, the forward and backward signals can be directly passed from a block to any other
block based on the calculation propagation method behind the residual building blocks. The network
model facilitates training while also improving the network’s generalization ability. The most popular
optimization technique, such as gradient descent, is utilized to fine-tune these parameters. The
advantage of a Gaussian filter is that its Fourier transform is also a Gaussian distribution centered on
zero frequency (with positive and negative frequencies on both sides). The width of the filter can then
be adjusted to control the effectiveness of its low-pass nature. The new features of the IMs dataset are
then defined by Eq. (7),

finput (x) = {{
G

(
x, σi=1,...,n

) ∗ fi (x)
} ∈ Rfil,Mat, fi (x) ∈ Rori,Mat,Llabel,i

}
i=1,...,n,i∈N∗ (7)

where G
(
x, σi=1,...,n

)
, fi (x) and Llabel,i are the Gaussian function, original IMs image and the correspond-

ing class labels set, respectively. Rfil,Mat is the float matrix after filter corresponding to the original
matrix spaceRori,Mat. The image’s low-level features have higher resolution and more position and detail
information, but because they go through less convolution, they are less semantic and noisier. High-
level features have more semantic information, but the resolution is low and detail perception is poor.

The main innovation of this paper is that in order to enhance the image’s color, texture, and
form characteristics while precisely highlighting the location, detail, and high-level features, the
filtered low-level features are fused with the original features in a process referred to as fusion; the
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image low-level features with higher resolution and more position and details with high-level features
with more semantic information extracted by Gaussian filter are effectively fused, deep residual
network is then used to extract the image’s high-discrimination features, to construct the high-accuracy
classification-detection approach for non-invasive fault diagnosis of IMs.

Figure 1: The processing diagram of the proposed approach
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3.3 Performance Measurement Metrics of Classification-Detection Approach
In the fields of machine learning and statistical classification problems, the confusion matrix is

a very useful visualization tool, particularly for the evaluation of supervised learning models. This is
because the confusion matrix allows users to examine how well supervised learning models perform.
The confusion matrix is a statistical metric for solving classification problems. It can be used for both
binary classification and multiclass classification problems. The following Eq. (8) calculates a model’s
accuracy (via a confusion matrix).

Accuracy = TN + TP
TN + FP + FN + TP

(8)

where FP, FN, TP and TN represent the false positive, false negative, true positive and true negative,
respectively. In other words, the matrix is a two-dimensional contingency table that can graphically
display the number of false positives (FP), false negatives (FN), true positives (TP), and true negatives
(TN). Instances of the actual class are represented by the matrix’s columns, while certain instance
predictions are represented by the matrix’s rows (TN). Exceptionally useful in carrying out precise
research on classification (accuracy). Since the dataset that was utilized for this study was not an
imbalanced set (that is, the number of observations in the various categories varied greatly from one
another), the confusion matrix was able to be used to accurately evaluate the performance of the
classifier.

Additionally, because the dataset used in this paper is very comparable across the different
categories, traditional machine learning techniques can yield positive results. The outcomes where the
model correctly predicted the positive class, correctly predicted the negative class, incorrectly predicted
the positive class, and incorrectly predicted the negative class, respectively, are denoted by the letters
TP, TN, FP and FN.

4 Experiments
4.1 Thermal Images Dataset

The publicly available thermal image (IRT) dataset related to condition monitoring of electrical
equipment-IMs, used for classification-detection is provided by Najafi et al. [23] (Babol Noshirvani
University of Technology, Iran). This dataset contains 11 various kinds of IMs failures as well as
8 different short circuit failures, all of which are depicted by thermographic images. It is crucial to
remember that all intentionally created issues are caused by internal flaws and are independent of any
failures in the initial setup components or failures in any external components. In the stator windings,
we take into consideration faults such as stopped rotors and cooling fan failures. The acquisition of
thermal images takes place at a workbench in an Electrical Machines Laboratory using a Dali-tech
T4/T8 infrared thermal imaging camera. The temperature of the surrounding environment is set at 23
degrees. The Electrical Equipment specifications is shown in Table 1.

Table 1: Electrical equipment specifications

Transformer Induction motor

Phase 1 Phase Y-3
Power 1 KW Power 1.11 KW
Voltage 220 V Voltage 220/380 V
Input current 1.5 A Input current 5 A

(Continued)
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Table 1 (continued)

Transformer Induction motor

Operating voltage 220–660 Speed 2800 RPM
Frequency 50–60 Hz Frequency 50 Hz

Thermal camera properties [23]: Dali-tech T8 TIC, Detector resolution 384 ∗ 288, Measurement
accuracy [2%, �2%], Imaging NETD � 0.04◦@30◦, Measuring range [−20◦, +650◦], Imaging Frame
Rate 50/60 Hz.

4.2 Classification-Detection Approach Based on Deep Learning
The classification problem that will be discussed in this paper belongs to a typical class of

multi-class classification-detection problems. More specifically, it includes the following subproblems:
A&B50 (2-phase, 50%-stator rate of short-circuit), A&C&B30 (3-phase, 30%-stator rate of short-
circuit), A50, Rotor-0, Fan, A&C&30, Noload, A30, A&C&B10, A&C10 (10%, 3-phase).

Figure 2: Samples of the IMs dataset

The sample shown in Fig. 2 depicts various industrial motor failures that fall into 11 categories.
A color feature is a general feature that describes an image’s or a scene’s image area’s surface
characteristics. Usually, color features are dependent on the properties of individual pixels, with each
pixel in an image or image region corresponding to a specific place within the image. The texture and
shape characteristics of the 11 categories of IMs in this paper are visually compared because color
is not sensitive to the direction or size of the image or image area. In particular, the classification



1874 EE, 2023, vol.120, no.8

detection in this paper is extremely difficult because of the high similarity between IM images, i.e.,
the feature similarity of each category of images is extremely high. A comparison of the original
and preprocessed IMs images is shown in Fig. 3. Processed images and the corresponding differences
of channels (R, G, and B) are visualized in Fig. 4. If the local area and color characteristics of the
image can be highlighted, the feature expression ability of the image under different channels can be
effectively improved. By cascading with the original feature information, the image obtained after
Gaussian filtering can effectively combine low-level features with higher resolution and more position
and details with high-level features with more semantic information. It can also increase the brightness
of the region of interest and improve the texture features of the motor.

Figure 3: Comparison of original and preprocessed IMs image

Figure 4: (Continued)
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Figure 4: Processed images and the corresponding differences of channels (R, G, B)

Figure 5: Confusion matrix on validation dataset

In classification detection and image accuracy evaluation, it is mainly used to compare classifica-
tion results with actual measured values, and the accuracy of classification results can be displayed in
a confusion matrix. The confusion matrix is calculated by comparing the position and classification
of each measured cell with the corresponding location and classification in the classified image. The
confusion matrix is used to observe the performance of the model in each category, and the accuracy
and recall of the model corresponding to each category can be calculated. Figs. 5 and 6 show the
confusion matrix for the validation and testing datasets. It is clear that the method proposed in this
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paper has the lowest values of true negative and false positive, such as the correct rate of the verification
set reaching 100%, while the effect on the test set is only four types (i.e., A&C&B10, A&C&B30, A10,
and A30) contain a small number of fewer than three label errors, indicating that the prediction method
in this paper is extremely accurate.

Figure 6: Confusion matrix on testing dataset

Figs. 7–9 show the statistics and boxplot (i.e., outliers and the corresponding values) of the loss
of the deep learning models on training, validation, and testing datasets for a more detailed visual
display. A box plot, also known as a box-and-whisker chart, box plot, or boxplot, is a statistical
graphic that displays a collection of data dispersion. It is primarily used to represent the features of the
original data, such as the distribution of the loss function, and may intuitively compare the distribution
characteristics of other sets of loss data. This is known as classification detection and fault diagnosis.
The boxplot species contains the highest, lowest, median, and two quartiles of the data. Connect
the upper and lower quartiles to form the box, which should have the median in the center. Then,
connect the box’s upper and lower edges. The loss function measures how far the model’s predicted
value deviates from the true value; the better the loss function, the more effective the model is. This
enables you to compare the extent of the loss caused by various categorization detection techniques
visually. It is obvious from a comparison that the proposed method’s loss function loss is lower and
the model’s classification detection performance is better.
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Figure 7: Loss of the deep learning models on training dataset

Figure 8: Loss of the deep learning models on validation dataset
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Figure 9: Loss of the deep learning models on testing dataset

The classification challenge posed by this dataset is more difficult than the classification challenge
posed by ordinary industrial motor classification detection due to factors such as subtle interclass
differences between different categories and intra-class differences with high feature duplication and
redundancy (high feature repeatability). Fig. 10 shows the training, validation, and testing accuracy of
the deep learning models over 30 evolution epochs. The loss and accuracy on the training, validation,
and testing datasets are shown in Fig. 11. The learning rate in the model configuration is 0.001 with
30 epochs, and the cross-entropy loss between input logits and target is computed and used in the
experiments, which is especially useful for unbalanced training sets. Adam combines the best properties
of the AdaGrad and RMSProp algorithms in the model architecture optimization, which is chosen as
the optimization based on stochastic gradient descent for training deep residual networks to handle
sparse gradients on noisy problems.

The thermographic images of 11 IMs fault defects caused by coil faults (1, 2 and 3-phase, 10%,
30%, and 50%-stator rate of short-circuit) are extremely similar as shown in Figs. 2 and 3, and the
differentiation of different textures, colors, and shapes is low, especially the attitude, implying that
high-precision fault detection models are difficult to establish. Although image segmentation can be
accomplished using an image cable connection with similar channel properties, the final segmentation
area can be obtained. However, because of the low interclass similarity of IMs thermographic images,
it is impossible to effectively improve feature distinguishability. As described in Eq. (7), we processed
the image using Gaussian filtering and cascade the original image features, thereby combining the
image’s low-level features with rich position and detailed information and high-level features with
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semantic information. Deep residual neural networks are coupled to create a high-precision fault
identification model. Preprocessed graphics, as seen in Fig. 3, feature colors that are more intense
and saturated, textures that are more distinct and detailed, and shapes that are more effective, all of
which suggest more intricate expression in color, texture, and shape. The performance comparison of
all the considered models is qualitatively given by Table 2. In comparison to Xception [24], Resnet
[25], Karvelis et al. [26], Googlenet [27], Preactresnet18 [28], Preactresnet34 [28], Preactresnet50 [28],
Preactresnet101 [28], Preactresnet152 [28], Najafi et al. [29], and Ahmed et al. [30], Preactresnet18 [28],
Preactresnet34 [28], IMs’ fault detection accuracy of the proposed approach is higher by 4%, 10%,
20.8%, 4%, 10%, 9%, 8%, 9%, 13%, 0.2%, and 2.33%, respectively. Based on the outlined discussion,
the filtered low-level features are fused with the original features in a process known as “fusion” to
enhance the image’s color, texture, and form characteristics while precisely highlighting the location,
detail, and high-level features. The performance of the proposed approach based on a deep residual
network combined with feature fusion outperformed the excellent classification-detection approach
to extract the image’s high-discrimination features and construct the high-accuracy classification-
detection approach for non-invasive fault diagnosis of IMs. Even the eleven deployed deep learning
models’ training, validation, and testing losses meet industry standards.

Figure 10: Training, validation, and testing accuracy of the nine deep learning models
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Figure 11: Performance of the proposed approach. (a) Loss of training, validation, and testing dataset;
(b) Accuracy of training, validation, and testing dataset

Table 2: Performance comparison

Models Train.loss Val.loss Test.loss Train.acc Val.acc Test.acc

Xception [24] 0.3780 0.3941 0.4603 99% 100% 90%
Resnet [25] 0.6066 0.5095 0.5476 88% 90% 84%
Karvelis et al. [26] N/A N/A N/A N/A N/A 73.2%
Googlenet [27] 0.6563 0.5787 0.6348 91% 93% 90%
Preactresnet18 [28] 0.7815 0.698 0.704 82% 86% 84%
Preactresnet34 [28] 0.8541 0.8076 0.7599 83% 86% 85%
Preactresnet50 [28] 0.5720 0.5780 0.6354 90% 93% 86%
Preactresnet101 [28] 0.7208 0.8792 0.6951 82% 86% 85%
Preactresnet152 [28] 0.7618 0.6437 0.6901 83% 86% 81%
Najafi et al. [29] N/A N/A N/A N/A N/A 93.8%
Ahmed et al. [30] N/A N/A N/A N/A N/A 91.67%
Proposed approach 0.3860 0.3348 0.4473 99% 100% 94%
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5 Conclusion

This paper proposes a deep-learning-based approach for IM fault diagnosis that blends high-
level features with more semantic information with low-level image features with higher resolution,
more location, and more details. First, the publicly available dataset is preprocessed with the Gaussian
filter, which is defined by thermal images produced by various short circuits and minor interclass
distinctions between categories. Second, feature cascade is used to achieve the fusion of different scale
features, which improves the distinguishability of features and characteristics in the dataset. Finally,
the proposed approach achieved 99%, 100%, and 94% on the training, validation, and testing datasets,
respectively, based on the publicly available IRT dataset used to demonstrate the condition monitoring
of electrical equipment (IMs). Even when compared to existing methods and benchmark approaches,
the method described in this paper can still achieve high prediction accuracy, and future work in this
paper will continue to focus on high-precision fault diagnosis methods for industrial motors. Because
the current dataset is provided through images, many variables related to operation conditions, such
as full mechanical loads on the induction motor axis, different broken bar defects, the rotor circuit’s
current flow, stator current, rotor bar currents, ring current, rotor speed, rotor position, and target
classes, cannot be effectively reflected and considered in deep learning models. Future research in this
paper will focus on the variables and factors in electrical and mechanical signals, including the working
conditions, in order to detect industrial motor faults more accurately and reasonably.
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