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ABSTRACT

A current identification method based on optimized variational mode decomposition (VMD) and sample entropy
(SampEn) is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder
cannot distinguish between train charging current and remote short circuit current. This method uses the principle
of energy difference to optimize the optimal mode decomposition number k of VMD; the optimal VMD for DC
feeder current is decomposed into the intrinsic modal function (IMF) of different frequency bands. The sample
entropy algorithm is used to perform feature extraction of each IMF, and then the eigenvalues of the intrinsic
modal function of each frequency band of the current signal can be obtained. The recognition feature vector is
input into the support vector machine model based on Bayesian hyperparameter optimization for training. After a
large number of experimental data are verified, it is found that the optimal VMD_SampEn algorithm to identify the
train charging current and remote short circuit current is more accurate than other algorithms. Thus, the algorithm
based on optimized VMD_SampEn has certain engineering application value in the fault current identification of
the DC traction feeder.
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VMD Variational mode decomposition
IMF Intrinsic modal function
ILMD Improved local mean decomposition
SampEn Sample entropy
EMD Empirical mode decomposition
EWT Empirical wavelet transform
ILMD Improved local mean decomposition
SVM Support vector machine
PMSM Permanent magnet synchronous motor
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ρ Person correlation coefficient
η Energy difference

1 Introduction

The reliability of the urban rail transit power supply system is very important under complex
driving conditions. Currently, the traction substation feeders of the urban rail transit in China are
responsible for protecting the power supply security of traction network lines in power supply regions
mainly by using the current rising rate and current increment protection (DDL protection). However,
the misoperation of relay protection in the urban rail transit is one of the large hidden dangers that can
threaten the safe operation of the electrical power system [1,2]. During rush hour, the feeders generate
a large peak current when the train passes the insulating sections. In this moment, the current signal on
the feeder is most consistent with current variation when the remote short circuit fault occurs. Thus,
DDL protection cannot distinguish frequent misoperations of safety restraints caused by two kinds of
current [3,4]. Researchers [5–7] created an accurate model of the AC/DC power supply system of the
urban rail transit and offered rationales for the identification of fault current. In order to identify two
kinds of current accurately, Yu et al. [8] used the method of Mexh wavelet transform to perform feature
extraction involving the difference between two kinds of current in the time constant to accomplish
current identification. Yang et al. [9] identified the oscillation current and fault current by using
the method of improved local mean decomposition (ILMD) and multi-scale time-frequency entropy.
Liu et al. [10] distinguished faults between short circuit fault current and train over section current in a
time-frequency domain by using a method based on empirical wavelet transform (EWT) and an energy
entropy method when the energy distribution was different. Researchers [11] identified the short circuit
of the traction power supply system by using a method based on EMD and singular value entropy
when the train charging current and remote short circuit current were different. However, among these
methods, the Mexh wavelet transform method lacks adaptability. When there are fewer signal poles, the
EMD-based method becomes inapplicable, leading to the occurrence of modal aliasing phenomenon.
Additionally, the partitioning approach utilized by the EWT-based method in the frequency region
lacks rationality, and the decomposition capacity is relatively weak as well.

In recent years, machine learning has gained widespread usage in the field of state evaluation
and pattern recognition. In the literature [12,13], a modified feedforward long-short term memory
modeling method was employed, considering the variations in current, voltage, and temperature. This
approach successfully achieved accurate prediction of the battery’s charging state throughout its entire
life cycle. In another study [14], an enhanced VMD energy entropy technique was utilized to extract
vibration characteristics of circuit breakers, coupled with support vector machine (SVM) for fault
state determination. The experiment demonstrated effective extraction of circuit breaker operating
states and fault classification even with a limited number of samples. Similarly, literature [15] applied an
optimized parameter VMD-based feature extraction method combined with sample entropy and SVM
for motor bearing fault diagnosis, leading to significantly improved accuracy in rolling bearing fault
diagnosis. Additionally, in literature [16], a hybrid algorithm of VMD and multidimensional entropy
effectively identified short circuit current and atypical load current. However, the parameter selection
of VMD in this approach did not reach the optimal level, as the decomposition effect of VMD was
influenced by the number of decomposed signal components, resulting in inaccurate analysis outcomes
due to excessive or insufficient decomposition. Therefore, selecting an appropriate value for parameter
k before decomposition is crucial for the wide applicability of VMD. To address these issues, this paper
proposes a fault current identification algorithm for DC traction feeders based on optimized VMD
and sample entropy. Firstly, VMD pre-decomposition is performed on the DC traction feeder current
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signal, followed by calculating the energy sum of each IMF component signal under different k values.
Secondly, the optimal number of modal decompositions is determined based on the selection criterion
of the largest energy difference for VMD decomposition of the current signal. The optimal IMF
components obtained after decomposing the two currents are extracted using SampEn and then fed
into an SVM model based on Bayesian hyperparameter optimization for training. Finally, the trained
model is used for current identification. Simulation and measurement signal analysis, compared
with EMD_SampEn and VMD_SampEn, confirm that the proposed current identification method
effectively identifies DC traction feeder fault currents with higher accuracy than the aforementioned
methods.

2 Train Charging Current and Remote Short Circuit Current

To investigate the causes of DDL protection misoperation, a comprehensive model of the tractive
power supply system for urban rail transit and trains is developed in order to capture the remote
short circuit current and train charging current on the DC traction feeders. Drawing on the AC/DC
power supply system modeling theory presented in literature [5,6], this study constructs a simulation
model encompassing the main transformer station, medium voltage ring, traction substation, and
traction network. The schematic diagram of the urban rail transit traction power supply system
simulation is depicted in Fig. 1. Analyzing the transient behavior of the feeder current signal requires
a detailed examination of the train charging current and remote short circuit current due to the
limitations of the equivalent train as a power source. Consequently, a more sophisticated model
is needed. In literature [17], the author employed a three-phase induction motor to represent the
urban rail transit train. However, in recent years, the utilization of permanent magnet synchronous
motors (PMSMs) in traction drive systems has been growing steadily, owing to advancements in
permanent magnet materials and power electronics. PMSMs offer higher power density compared to
asynchronous motors and exhibit superior efficiency when considering equal volume. Therefore, this
article establishes DC train models based on the vector control of PMSMs [18] to represent the new
generation of urban rail transit trains employing PMSMs as their power source. The simulation model
comprises an LC filter module, a traction inverter module, and a permanent magnet synchronous
motor (PMSM). The simulation model of the PMSM train is illustrated in Fig. 2.

Figure 1: Simulation diagram of traction power supply system for urban rail transit
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Figure 2: Train simulation model of PMSM train

The PMSM train model is employed as a load in the simulation of the traction power supply
system for urban rail transit, enabling the analysis of the remote short circuit current and train
charging current. Fig. 3 illustrates the simulation waveforms of these two currents, demonstrating
the consistency between the simulated train charging current waveform and the field measured data
waveform mentioned in literature [17]. This confirms the accuracy of the simulation model. The field
measured train charging current waveform is presented in Fig. 4.

Figure 3: Train charging current and remote short circuit current

As depicted in Fig. 3, it is evident that the rate of current rise for both the remote short circuit
current and train charging current exhibits similarity during the interval of 0 to 40 ms. Additionally,
the amplitude of the train charging current surpasses that of the remote short circuit current.
Consequently, the train charging current is highly prone to causing DDL protection misoperation.
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Subsequent to the train passing through the insulation section of the traction substation, the pan-
tograph reconnects with the positive pole of the traction network, resulting in the charging of the
supporting capacitance of the LC filter circuit in the train. During the charging process, given the
relatively short distance from the traction substation, the size of the traction network circuit is
sufficiently small to neglect the skin effect of the rail [19]. However, when a short circuit occurs between
the positive pole of the traction network and the rail, the size of the traction network circuit increases,
necessitating consideration of the skin effect on the rail. Under the influence of the skin effect, the
resistance of the rail circuit rises, while the inductance of the rail circuit decreases. As a result, a broad
spectrum of remote short circuit current emerges, whereas the spectrum of the train charging current
becomes narrower.

Figure 4: Train charging current is actually measured on site

3 Feature Extraction Based on Optimized VMD and Sample Entropy
3.1 The Principle of VMD

The process of VMD decomposition involves utilizing the alternate multipliers iterative method
for constant iteration, enabling the acquisition of the optimal solution for this model. This approach
aims to determine the central frequency and bandwidth of each intrinsic mode function by construct-
ing a variational mode model. Subsequently, the effective separation of IMF is accomplished. The
step-by-step procedure is outlined below.

1. By performing Hilbert transformation on each modality uk (t) and mixing the estimated center
frequency e−jωkt of each modality analytic signal, the spectrum of each modality can be shifted to the
baseband as illustrated in Eq. (1).[(

δ (t) + j
πt

)
× uk (t)

]
e−jωkt (1)
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Here, uk, ωk refer to the kth modal component and center frequency following decomposition,
respectively, while δ (t) represents the Dirac function.

2. This paper considers the constraint that the sum of each modality is equal to the original signal.
We present the corresponding variational model, which is depicted in Eq. (2).{

min{uk},{ωk}
{∑k

k=1

∥∥∂t

[(
δ (t) + j

πt

) × uk (t)
]

e−jωkt
∥∥2

2

}
s.t

∑
k uk (t) = f (t)

(2)

Here, k is the number of decomposed modalities, δ (t) is a Dirac function, f (t) represents the
original input signal and δ (t) represents the partial derivation of the function time t.

3. The Lagrange formulation of the non-binding variational problem is presented by introducing
the quadratic penalty factor α and the augmented Lagrange function. The constructed formulation is
depicted in Eq. (3).

L ({uk} , {ωk} , λ) = α

K∑
k=1

∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ uk (t)

]
e−jωkt

∥∥∥∥
2

2

+
∥∥∥∥∥f (t) −

K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+
〈
λ (t) , f (t) −

K∑
k=1

uk (t)

〉
(3)

Here, λ (t) is the Lagrange penalty operator.

The saddle point of the augmented Lagrange function can be obtained by utilizing the alternate
direction multiplier algorithm (ADMM), resulting in the optimal solution for the constraint varia-
tional model. The calculation formula for all modal components uk is presented in Eq. (4).

ûn+1
k (ω) = argmin

ûk∈f (t)

{
α

∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ uk (t)

]
e−jωkt

∥∥∥∥
2

2

+
∥∥∥∥∥f (t) −

K∑
k=1

uk (t)
(

t + λ (t)
2

)∥∥∥∥∥
2

2

⎫⎬
⎭ (4)

With the help of Plancherel Fourier isometric transformation, the frequency domain expression
can be obtained as is shown in Eq. (5).

ûn+1
k (ω) = argmin

ûk , uk∈f (t)

{
α

∥∥j (ω − ωk)
[
(1 + sgn (ω)) ûk (ω)

]∥∥2

2

+
∥∥∥∥∥f̂ (ω) −

K∑
k=1

ûk (ω) + λ̂ (ω)

2

∥∥∥∥∥
2

2

⎫⎬
⎭ (5)

The Eq. (5) is converted to the form of non-negative frequency interval integral, which is shown
in Eq. (6).
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ûn+1
k (ω) == argmin

ûk , uk∈f (t)

{∫ ∞

0

4α (ω − ωk)
2
∣∣ûk (ω)

∣∣2

+ 2

∣∣∣∣∣f̂ (ω) −
K∑

k=1

ûk (ω) + λ̂ (ω)

2

∣∣∣∣∣
2

dω

⎫⎬
⎭ (6)

By solving the Eq. (6), the optimal solution of the non-constrained variational problem can be
obtained. The optimal solution is shown in Eq. (7).

ûn+1
k (ω) =

f̂ (ω) −
k∑

i=1,i �=k

ûi (ω) + λ̂ (ω)

2

1 + 2α (ω − ωk)
2 (7)

Here, the iterative formulas of Lagrange penalty operator λn+1 and center frequency ωk are shown
in Eqs. (8) and (9).

ωn+1
k =

∫ ∞
0

ω
∣∣ûn+1

k (ω)
∣∣ dω∫ ∞

0
ω

∣∣ûn+1
k (ω)

∣∣ dω
(8)

λn+1 = λn + τ

(
f (t) −

∑
k

un+1
k

)
(9)

During the solutions, un+1
k , ωn+1

k , λn+1 are updated alternately, until the convergence condition
Eq. (10) is satisfied.∑

k

∥∥un+1
k − un

k

∥∥2

2
/
∥∥un

k

∥∥2

2
< ε (10)

Here, ε is the error margin (ε > 0).

3.2 K-Value Optimization Based on Energy Difference
VMD effectively decomposes the original signal, enabling easy extraction of relevant features.

The model’s decomposition number (k) and penalty factor require manual selection as two key
parameters. Among these parameters, the size of k has a more noticeable impact on the decomposition
results of VMD [20]. To mitigate the influence of k choice on VMD decomposition, this research
introduces an energy-based k-value optimization method, which analyzes the energy differences in the
decomposition results of VMD to determine the optimal value for k.

The principle behind VMD involves decomposing the signal by seeking the optimal solution
of the constraint variational model. However, upon energy analysis, it is observed that the sum of
energy for each Intrinsic Mode Function (IMF) is nearly equal to the energy of the original signal
after VMD decomposition. Consequently, when an appropriate value is chosen for the optimal mode
decomposition number (k), the sum of energy for each IMF will hover around the energy value of the
original signal. In cases where k is larger, over-decomposition may occur, leading to the generation of
false IMF and resulting in a sum of energy greater than both the original signal’s energy and the sum
of energy under normal decomposition of IMFs. Thus, there is a need for optimizing the energy-based
parameter k in VMD.

The calculation formula for signal energy is depicted in Eq. (11).

E =
√∑n

i=1 x2 (i)
n

(11)
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Here, E is the energy of the signal, x (i) is the discrete signal and n is the number of signal sampling
points.

To accurately capture the variations in signal energy following decomposition with different k
values, this study employs a two-step approach. Firstly, the total energy sum of all IMF components is
calculated for each k value after VMD decomposition. Next, the energy sum between adjacent k values
is computed and the absolute difference is obtained. This absolute difference effectively represents the
trend of energy change.

The equation for calculating the energy difference is presented as Eq. (12).

η = |Ek+1 − Ek| (12)

Here, η is the signal energy difference, Ek is the sum of k IMF energies under the current modal
decomposition number and Ek+1 is the sum of k+1 IMF energies obtained from the next VMD
decomposition.

From Eq. (12), for any signal with fluctuations, if VMD decomposition is under decomposition
and normal decomposition, η of the adjacent k values will go up and down around a smaller value.
If there is a mutation that occurs in η, it indicates that VMD decomposition is in a state of over-
decomposition, the result of decomposition produces false components. At the same time, if η is bigger,
the condition of over-decomposition is more serious. The k values when η is the largest are taken as
the optimal mode decomposition number of VMD decomposition.

3.3 Feature Extraction Based on Sample Entropy
Sample entropy is a parameter used to quantify the complexity of a time domain signal and

assess the likelihood that the signal produces new patterns as the dimensionality changes. A higher
probability of generating new patterns indicates a higher complexity level and corresponds to larger
entropy values.

After VMD decomposition, the original current signal x (t) is divided into k IMF components
uk (t) (k = 1 , 2 , . . . , k). Revised: In general, the last IMF can be defined as the residual, representing
the difference between the IMF and the original signal. Due to the skin effect of the rail, the
remote short circuit current not only changes rapidly but also exhibits a wide frequency distribution.
Consequently, there is a high probability of generating new signal patterns. On the other hand, the
frequency distribution of the train charging current is narrow, resulting in a lower probability of
generating new signal patterns. Therefore, it is expected that there will be a noticeable difference in
SampEn between each frequency band’s IMF for the train charging current and the remote short
circuit current after performing VMD. The computation method for SampEn of the current signal on
the feeder is as follows:

1. Let the feeder current signal X = {x (1), x (2), . . . , x (N)} have a length of N. The current
signal X is transformed into m-dimensional vector. The calculation formula for reconstructed signal
is shown in Eq. (13).

X (i) = {x (i) , x (i + 1) , . . . , x (i + m − 1)} , (1 ≤ i ≤ N − m + 1) (13)

2. Figure out the distance between Xm (i) and Xm (j) and define the absolute value of the maximum
difference between the corresponding elements of Xm (i) and Xm (j) as D. The calculation formula of
D is shown in Eq. (14).

D = max
k=0,··· ,m−1

(|x (i + k) − x (j + k)|) (14)
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3. For the given Xm (i), this paper counts the number of j (1 ≤ j ≤ N − m, j �= i) when D is less
than or equal to the similar threshold r and the count is denoted as Bm

i . When 1 ≤ i ≤ N − m, Bm
i (r)

is defined as shown in Eq. (15).

Bm
i (r) = 1

N − m
Bi (15)

4. The mean value of Bi (r) is calculated from the Step (3). The calculation formula for the average
value of Bm

i (r) is shown in Eq. (16).

Bm (r) = 1
N − m + 1

N−m+1∑
i=1

Bm
i (r) (16)

5. Add 1 to reconstructed dimension m and repeat Step (1) to Step (4).

6. Bm
i (r) is the probability that two current signals match m points under a similar threshold r

and Bm+1
i (r) is the probability that two current signals match m + l points. Therefore, the calculation

formula of the sample entropy value of signal is shown in Eq. (17).

SampEn (m, r) = lim
N→∞

{
− ln

[
Bm+1 (r)
Bm (r)

]}
(17)

4 The Step of the Feeder Fault Current Identification Based on Optimized VMD and Sample Entropy

Considering the challenge of incomplete feature extraction in train charging current and remote
short circuit current, which can result in a low recognition rate for these two types of current, this
paper proposes a method to optimize the k value of VMD using the principle of energy difference. This
optimization process helps determine the optimal number of mode decompositions, denoted as k. By
applying the VMD algorithm with the optimized k value, the feeder current signal can be decomposed
into IMFs representing different frequency bands. Subsequently, a suitable sample entropy measure
is selected as the feature vector, which is then input into the SVM for current classification and
identification. The specific steps of this approach are outlined as follows:

1. The train charging current signals and remote short circuit current signals on the feeder of an
urban rail transit traction substation are collected.

2. The principle of energy difference is employed to determine the optimal value of k for VMD
for both types of feeder currents. The algorithm of k-value optimized VMD divides the two types of
feeder current signals into k IMF components based on this determined value of k.

3. The k sample entropies of each IMF are calculated, and a suitable sample entropy measure is
selected to construct feature vectors.

4. This paper utilizes the fitcsvm function in Matlab to perform training based on low and
medium-dimensional forecast yield datasets or cross-validation binary classification SVM models. The
SVM model incorporates the Bayesian hyperparameter optimization function provided by the fitcsvm
function. This optimization function aims to minimize the cross-validation binary classification error
by adjusting parameters, thus improving the accuracy of SVM classification and prediction. The
parameters that can be set for the fitcsvm function are the box constraint BC and the kernel function
g. The BC represents the penalty relaxation variable, where a higher BC value imposes a greater
penalty for misclassification. This results in high accuracy on training sets but weaker generalization
ability. Conversely, a smaller BC value allows more training errors and enhances the generalization
ability. The fitcsvm function offers three types of kernel functions: linear kernel, Gaussian kernel, and
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polynomial kernel. For the Gaussian kernel, the kernel scale parameter s needs to be determined. For
the polynomial kernel, the order of the polynomial kernel function q needs to be specified. In this paper,
the cross-validation binary classification error of the fitcsvm function is considered as the objective
function, and Bayesian hyperparameter optimization is employed to optimize multiple parameters of
the fitcsvm function.

5. Put the constructed feature vectors into the SVM model for training and get the SVM
classification and prediction model.

6. Feeder current signals are collected for testing purposes. The test signals are then used to
construct feature vectors following Step 2 and Step 3. These feature vectors are input into the trained
SVM classification and prediction model. By doing so, the signal recognition results can be obtained.5
Instance Analysis.

4.1 Simulation Analysis
Generally, in urban rail transit power supply systems, the delay of the Directional Distance Relay

(DDL) protection is around 20–50 ms. To analyze the distinct signal characteristics between train
charging current influenced by the LC filter circuit and remote short circuit current influenced by
the skin effect, this paper selects two simulated current waveforms as shown in Fig. 3. The simulation
analysis is conducted after the DDL protection has been active for 40 ms. The resulting waveforms for
the two types of current are illustrated in Fig. 5.

Figure 5: Protection of train charging current and remote short circuit current of 40 ms after start-up

Observations from Fig. 5 include:

1. The train charging current exhibits an initial rate of increase of 94 A/ms, resulting in a total
increment of 2834 A.

2. The remote short circuit current demonstrates an initial rate of increase of 80 A/ms, with a total
increment of 2425 A.

3. To quantitatively describe the similarity between the train charging current and the remote short
circuit current within the first 40 ms after the initiation of DDL protection, the Pearson correlation
coefficient ρ is introduced. The calculation formula for ρ is shown in Eq. (18).
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ρ =

n∑
i=1

(
Xi − X

) (
Yi − Y

)
√

n∑
i=1

(
Xi − X

)2 n∑
i=1

(
Xi − X

)2

(18)

Here, Xi and Yi correspond to the ith element of list X and list Y , respectively, X is the mean of
list X , and Y is the mean of list Y .

The Pearson correlation coefficient ρ of 0.9851 is calculated for the train charging current
and remote short circuit current shown in Fig. 5. According to the theory of Pearson correlation
coefficient, a strong correlation is observed between the train charging current and remote short circuit
current when ρ is between 0.8 and 1.0. Therefore, these currents exhibit high similarity in the time
domain and cannot be easily distinguished. To address this, the algorithm based on k-value optimized
VMD sample entropy is employed for feature extraction to achieve current identification.

In this paper, the penalty factor α of VMD is set to 3000, and the two current signals are
sequentially decomposed using VMD with k values ranging from 2 to 7. The calculation of Ek, which
represents the sum of energies of all IMFs after VMD decomposition under each k value, allows us to
obtain the energy difference η between adjacent k values. The energy and energy difference of the two
types of current after VMD decomposition under different k values are presented in Table 1. From
Table 1, it can be observed that the energy difference η for both types of current fluctuates around
a relatively small value when k is between 2 and 4. However, when k is 5, the energy difference for
the train charging current is 15.5421, and for the remote short circuit current is 13.7879, which are
the maximum values. Therefore, the optimal mode decomposition number for VMD of both types of
current is determined as k = 5 using the principle of energy difference. It should be noted that when
k is set to 6, the VMD decomposition of both types of current results in an over-decomposition state.
The time-frequency diagrams of the VMD decomposition for both types of current with k = 5 and k
= 6 can be found in Fig. A1 in Appendix A.

Table 1: VMD decomposition of two kinds of currents with different k values

Modal decomposition number
Train charging current Remote short circuit current

E η E η

k = 2 2135.7131 1.3776 2078.0304 0.5037
k = 3 2137.0907 0.9204 2078.5341 0.7141
k = 4 2138.0112 0.5061 2079.2483 0.2682
k = 5 2138.5173 15.5421 2079.5165 13.7879
k = 6 2154.0594 3.8939 2093.3044 0.0117
k = 7 2157.9533 2093.2927

It can be found in Fig. A1:

1. The charging current of the train is generated when the traction network charges the supporting
capacitor in the LC filter circuit. The LC filter module in the simulation model is supplied by Zhuzhou
CRRC Times Co., Ltd., China. The electric reactor in the LC filter circuit has an inductance value of
L = 5 mH, and the supporting capacitor has a capacitance of C = 5.4 mF. As a result, the natural
resonance frequency of the filter circuit can be determined using Eq. (1).
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f0 = 1

2π
√

LC
= 30.63 Hz (19)

When k = 5, the decomposition of the train charging current VMD reveals that the frequency
distribution of each IMF is within 100 Hz. This observation aligns with the narrow spectrum
distribution characteristic of the train charging current, which is attributed to the small circuit of the
traction network. Notably, IMF2 exhibits a center frequency of 31.7 Hz, which is approximately equal
to the natural resonance frequency f0 of the filter circuit. This correspondence validates the behavior
of the traction network charging the train’s supporting capacitor.

2. When k = 6, upon decomposing the train charging current using VMD, the center frequencies
of IMF2 and IMF3 exhibit rough consistency. This indicates that the VMD decomposition has entered
an over-decomposition state, causing modal aliasing between IMF2 and IMF3. Consequently, IMF2
represents a false component.

3. When k = 5, following the decomposition of the remote short circuit current using VMD, the
frequency distribution of each IMF remains within the range of 200 to 5000 Hz. This finding aligns
with the wide spectrum distribution characteristic of the remote short circuit current, which arises due
to the skin effect on the rails.

4. When k = 6, after applying VMD decomposition to the remote short circuit current, the
center frequencies of IMF3 and IMF4 show approximate consistency. This indicates that the VMD
decomposition has reached an over-decomposition state, resulting in modal aliasing between IMF3
and IMF4. Therefore, IMF4 represents a false component.

5. The Res component obtained from the VMD decomposition of both types of currents is
significantly large. At this stage, the center frequency is nearly zero, and Res corresponds to the DC
component. This finding aligns with the high DC component characteristic of the tractive power
supply system in urban rail transit.

This paper employs an algorithm based on k-value optimization VMD to decompose the train
charging current and remote short circuit current, followed by feature extraction of all Intrinsic
Mode Functions (IMF) using the sample entropy algorithm. The parameters for the sample entropy
algorithm are chosen by referencing literature [15], with a reconstruction difficulty of m = 2 and
a threshold of r = 0.2. Fig. 6 illustrates the sample entropy diagram resulting from the VMD
decomposition of the two types of currents.

From Fig. 6, the following observations can be made:

1. Res component of both types of currents represents the DC component, characterized by low
complexity and a low probability of generating new patterns. Consequently, the SampEn of the residual
component for both currents is 0. As such, SampEn computed from IMF1 to IMF4 can be considered
as effective features for the identification of the two types of current. These features will be utilized to
construct the feature vector for current identification.

2. In the train charging current, IMF2 corresponds to the inherent resonance current generated by
the filter circuit. The SampEn of this component is relatively larger, while the SampEn of other IMFs
is smaller. This indicates that the complexity of the train charging current is low, with a low probability
of generating new patterns.

3. Due to the influence of the skin effect on rails, the remote short circuit current exhibits larger
SampEn values across IMF1 to IMF4 after VMD decomposition compared to the train charging
current. This demonstrates that the complexity of the remote short circuit current is high, and there is
a higher probability of generating new patterns.
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Figure 6: Sample entropy diagram of two kinds of current VMD decomposition

In conclusion, the algorithm based on k-value optimization VMD successfully decomposes the
train charging current and remote short circuit current into individual IMF components. Additionally,
the sample entropy algorithm effectively extracts distinctive features from both types of currents.
Therefore, the combination of optimized VMD and sample entropy for feature extraction provides
reliable and meaningful feature vectors for the identification of train charging current and remote
short circuit current.

4.2 Current Identification
This study utilizes performance test data from the pantograph and catenary of urban rail transit

trains, collected by the China Academy of Railway Sciences Locomotive and Vehicle Research
Institute, for current recognition analysis. A total of 120 sets of data are selected to form the sample
set, comprising 60 sets of train charging current and 60 sets of remote short circuit current. Among
these, 40 sets of data for each current are used as training samples, while 20 sets of data are reserved for
testing purposes. The optimal number of mode decompositions for both types of currents in the sample
set is determined using the principle of k-value optimization VMD based on energy difference. The
results of the optimization, indicating the respective optimal decomposition numbers, are presented in
Table 2.

Table 2: Optimal mode decomposition number

Method k

Train charging current 4
Remote short circuit current 5
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The optimal mode decomposition number for VMD, as determined by the energy difference
principle and presented in Table 2, is utilized to set the value of k in VMD as 3000. The training
samples are then subjected to decomposition using the algorithm based on k-value optimization VMD,
and the SampEn values are computed from IMF1 to IMF3. For each type of current, this process
yields 40 SampEn values, resulting in a set of feature vectors for each column. To train a support
vector machine (SVM) recognition model, the feature vectors of both types of current are fed into the
fitcsvm function. The objective function for optimization is the cross-validation binary classification
accuracy. The box constraint BC and kernel function g of the fitcsvm function are optimized using
Bayesian hyperparameter optimization. Eventually, the best SVM recognition model is obtained. The
iteration curve depicting the training and optimization process is illustrated in Fig. 7.

Figure 7: SVM optimized iterative graph

After the training process, the best box constraint (BC) is determined to be 13.98, and the optimal
kernel function for the SVM model is found to be the Gaussian kernel. The polynomial kernel function
order for the Gaussian kernel is s = 995.58. Using the trained SVM identification model, the test
samples of the two types of current are subjected to recognition. The results of the test sample
identification are presented in Fig. 8. In the training and testing stages, digital labels are assigned
to represent the different currents on the feeder. Specifically, values 1 to 20 correspond to the train
charging current (with labels set as 0), while values 21 to 40 represent the remote short circuit current
(with labels set as 1).

As depicted in Fig. 8, this paper achieves a recognition accuracy of 100% for both types of
current by employing feature extraction through the algorithm based on k-value optimization VMD
and sample entropy. Furthermore, this paper compares the performance of different decomposition
methods, including EMD and VMD (with k = 6 and λ = 3000, following traditional experience),
for decomposing the sample data. The feature vectors are constructed using the sample entropy
algorithm, and the fitcsvm function is employed for training the SVM recognition model using
Bayesian hyperparameter optimization. The recognition accuracy of the different decomposition
methods is summarized in Table 3.
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Figure 8: Test sample classification result diagram

Table 3: Recognition accuracy of different decomposition methods

Method Train charging current Remote short circuit current Average

EMD_SampEn 75% 80% 77.5%
VMD_SampEn 85% 90% 87.5%
Optimized
VMD_SampEn

100% 100% 100%

From Table 3, it is evident that the DC feeder current signal in the traction substation has a
relatively high DC component content, resulting in a smooth signal with fewer poles. To address the
issue of modal aliasing, EMD is used for decomposition. However, the average recognition accuracy
of the EMD_SampEn feature extraction method is only 77.5%. On the other hand, the parameters
of the VMD algorithm are typically determined using empirical values, which makes it challenging to
select the appropriate modal decomposition number based on the characteristics of different signals.
As a result, the signal may not reach the optimal decomposition state. Consequently, the average
recognition accuracy of the VMD_SampEn feature extraction method is only 87.5%. In contrast,
the VMD algorithm with optimized k values, determined based on the principle of energy difference,
overcomes the limitation of empirical parameter selection. This leads to the signal reaching the optimal
decomposition state. Therefore, the average recognition accuracy of the optimized VMD_SampEn
feature extraction method for both types of currents is 100%.

In summary, the feature extraction method based on optimized VMD and sample entropy in
this paper effectively captures the features of tiny signals with a high DC content. This enables
accurate identification of fault currents in urban rail transit traction substation feeders, surpassing
the recognition accuracy of the EMD_SampEn and VMD_SampEn methods.
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5 Conclusion

This paper presents a fault current identification method for DC traction feeders, utilizing
optimized variational mode decomposition and sample entropy. The effectiveness of the proposed
method was validated through the analysis of both simulated and measured signals. The study yielded
the following conclusions:

1. The current identification method proposed in this paper effectively identifies the train charging
current and remote short circuit current signals in the DC feeder of a traction substation. Experimental
comparisons demonstrate that this method outperforms the EMD_SampEn and VMD_SampEn
methods in terms of identification accuracy.

2. By utilizing the k-value optimized VMD method based on energy difference, the optimal modal
decomposition number is determined. This approach mitigates the issues of under-decomposition
or over-decomposition that may arise from the empirical selection of VMD algorithm parameters.
Consequently, it provides a practical strategy for applying the VMD method to power system fault
identification.

3. Considering the wide frequency distribution and high likelihood of generating new modes
in far-end short circuit current, as well as the narrow frequency distribution and low likelihood of
generating new modes in train charging current, the SampEn algorithm is employed to extract the IMF
components obtained after optimized VMD decomposition. Experimental verification confirms that
the SampEn algorithm effectively captures the specific characteristics of these two types of currents.

4. The proposed method inputs the extracted eigenvectors from optimized VMD_SampEn,
EMD_SampEn, and VMD_SampEn into an SVM model based on Bayesian hyperparameter opti-
mization for training. These three trained identification models are then utilized to identify fault
currents in the DC traction feeder. Extensive testing using various data sets demonstrates the
effectiveness of the current identification method proposed in this paper, surpassing the performance
of EMD_SampEn and VMD_SampEn methods. This research holds significant practical value and
implications for fault identification in the DC feeders of urban rail transit systems.
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Appendix A

Figure A1: (Continued)
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Figure A1: Time-frequency diagrams of two kinds of current VMD decomposition
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