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ABSTRACT

In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,
multi-resource penetration in active distribution networks has been advancing fiercely. In particular, distributed
generation (DG) based on renewable energy is critical for active distribution network operation enhancement.
To comprehensively analyze the accessing impact of DG in distribution networks from various parts, this paper
establishes an optimal DG location and sizing planning model based on active power losses, voltage profile,
pollution emissions, and the economics of DG costs as well as meteorological conditions. Subsequently, multi-
objective particle swarm optimization (MOPSO) is applied to obtain the optimal Pareto front. Besides, for the sake
of avoiding the influence of the subjective setting of the weight coefficient, the decision method based on a modified
ideal point is applied to execute a Pareto front decision. Finally, simulation tests based on IEEE33 and IEEE69
nodes are designed. The experimental results show that MOPSO can achieve wider and more uniform Pareto front
distribution. In the IEEE33 node test system, power loss, and voltage deviation decreased by 52.23%, and 38.89%,
respectively, while taking the economy into account. In the IEEE69 test system, the three indexes decreased by
19.67%, and 58.96%, respectively.
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1 Introduction

With the development of modern society, the speed of economic growth is fast, but energy
shortages and environmental pollution becoming increasingly serious, which will create a negative
impact on traditional energy generation more and more obvious. Nowadays, with the efforts to
build a low-carbon and environment-friendly society all over the world countries [1,2], the position
of distributed generation (DG) has grown unprecedentedly indispensable at home and abroad [3,4].
Active distribution network is widely used in future grid planning because of their higher level of
automation. At the same time, with the development of the power market and the demand for reducing
carbon emissions, the permeability of DR In the active distribution network is getting higher [5–8].
With reasonable access to DG, it will reduce power loss as well as environmental pollution, and
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improve power supply stability. However, although DG can provide enough power supply to the grid
and improve the reliability of the system, the active distribution network structure is different and the
number of nodes is huge making the location and capacity of DG difficult. In addition, a large number
and various types of DG are usually selected to be connected to the active distribution network, to
give full play to the advantages of DG and make the system run more reliably, safely, and stably [9].
At present, photovoltaic system, and wind turbine technology is the most mature, become the first
choice of installation. However, its output power is affected by illumination and wind speed to a large
extent, showing strong randomness, intermittence, and uncertainty. When extreme weather occurs, DG
even needs to stop generating electricity to ensure the safety of active distribution network operation
[10,11]. Access to the active distribution network brings many uncertain factors [12]. The improper
capacity of DG and unreasonable access to any node of the active distribution network will further
worsen the network loss, voltage distribution, and harmonics of the system [13]. The output power of
DG is extremely random which creates the voltage level to decrease and the stability of the system to
reduce. In addition, active distribution networks are distribution networks with internally distributed
or decentralized energy sources with control and operational capabilities.

With a large number of random power loads and DG access, the difficulty of management
construction, and scheduling of active distribution networks become intricate, and the disturbance
caused by any fault point will have a negative impact on the power system. In special, in case of serious
disturbance, it may cause a large-scale power outage with serious and catastrophic consequences
[14,15]. The reasonably connected DG to the active distribution network and have numerous prepon-
derances for practical engineering, i.e., they can play a critical role in reducing power losses, improving
voltage distribution, and reducing environmental deterioration in the active distribution network
[16,17]. However, the unreasonable connection of DG not only causes a waste of investment funds
but also seriously endangers the normal operation of the power system [18,19]. How to reasonably
allocate the capacity and access nodes of different types of DG, so as to most effectively reduce the
construction cost, maintenance cost and the system network loss, improve the voltage distribution,
correctly use the direct value of the power supply provided by DG, and scientifically and reasonably
connect DG to the active distribution network have become urgent problems to be solved. Hence, it is
crucial to adopt a scientific approach to research the location and capacity of DGs for the economic,
stability, and social benefits of the active distribution network operation.

Location and capacity determination of DG is a complex multi-objective optimization problem,
mainly because it is nonlinear and contains discrete optimization variables, etc. When investigating
the DG location and sizing planning problem, several scholars prefer the mathematical model to
optimize the power loss of the active distribution network or to optimize a series of costs arising
from DG location and sizing. Multi-optimization objectives are simply transformed into a single
optimization objective by methods such as linear weighting, which causes the optimization results
to be mainly determined by weighting coefficients that are defined by experts and scholars according
to their expertise, such mathematical models constructed in a single optimization direction cannot
guarantee [20–22]. In comparison, the multi-objective intelligence approach based on Pareto can
address sophisticated nonlinear multi-objective optimization problems more appropriately. Liter-
ature [23] proposed a DG multi-objective programming model based on the chance-constrained
programming theory to solve the programming model by using the distribution network probabilistic
power flow embedded non-dominated sorting genetic algorithm-II (NSGA-II) considering corre-
lation, to obtain the Pareto optimal solution set for decision-makers to choose. In literature [24],
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a multi-objective optimization both taking power losses and voltage stability into consideration was
proposed to establish a simulation model, upon which a multi-island genetic algorithm was exploited
as a solver. Besides, a multi-objective DG optimization model was designed and optimized via a
hybrid ant colony-artificial bee colony algorithm in literature [25], which included power losses, voltage
distribution, DG costs, and environmental pollution. Literature [26] established a numerical method
based on continuous currents for the optimization of 85 bus distribution systems, which effectively
improved the load capacity of the system, but does not consider the specific DG types in the planning
process, which did not have engineering practicality. Literature [27] studied the optimal allocation of
multiple types of DG, which proposed an artificial neural network (ANN) based on the optimality
criterion for load uncertainty, different DG permeability, and different DG reactive power output
characteristics. The simulation results illustrated that this method can be applied to power systems
under various operating conditions, while it can effectively reduce the power loss of the system.

On the other hand, wind turbines and photovoltaic systems are more technically mature, which
are preferred for DG installations [28,29]. Nevertheless, the output power of DG based on renewable
energy is affected by light and wind speed to a greater extent that exhibits strong randomness,
intermittency, and uncertainty, which creates plenty of uncertainty factors for DG access to the
distribution network [30]. The inappropriate capacity and unreasonable connection of DG will cause
further deterioration of the stability of the system. The above kinds of literature ignore the impact
of meteorological conditions. When installing wind turbines and photovoltaic systems [31], the local
wind speed and light conditions are not considered simultaneously in the optimization objectives,
so it is laborious to install wind turbines and photovoltaic systems with abundant wind and light
resources. Additionally, the above literature did not consider the economy, stability, and environment
simultaneously, which lacked planning DG in multiple dimensions.

Therefore, a multi-objective optimization model based on active distribution network loss, voltage
distribution, DG allocation cost, pollutant emission and meteorological conditions is established in
this paper. In addition, the original MOPSO algorithm is improved based on the particle distance
vector, so that the improved MOPSO algorithm can update the Pareto solution set in multiple iterative
directions, so as to obtain better global and uniform Pareto solution set. In this paper, improved
ideal point decision method is used to find the best compromise solution from Pareto solution set.
In order to verify the effectiveness of the proposed method, simulation experiments based on IEEE33
and IEEE69 nodes are designed.

The main contributions of this paper are as follows:

(1) In this paper, the influence of various indexes has been fully considered in the configuration
of DG, such as power loss of active distribution network, voltage distribution, cost of DG,
pollutant emission, and meteorological conditions.

(2) This paper adopts the improved multi-objective particle swarm optimization (MOPSO) algo-
rithm to solve the multi-objective optimization model, and the improved MOPSO algorithm
can obtain better global and diverse Pareto solution sets in the multi-iteration direction. In
addition, the optimal compromise solution is obtained by using the improved ideal point
decision method, which can effectively avoid the subjective influence of decision-makers.

(3) Simulation tests based on IEEE33 and IEEE69 nodes are designed in this paper, and the
simulation tests show that the improved MOPSO can obtain a more evenly distributed and
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wider Pareto frontier. The simulation result shows that the power loss and voltage profile can
be decreased by 52.23% and 38.89% in IEEE 33 node system and 19.67% and 58.96% in IEEE
69 node system by accessing the DG, respectively.

2 Multi-Objective Mathematical Optimization Model for DG Location and Sizing
2.1 Objective Function

It is essential to conduct research into the technical, economic, and environmental aspects of DGs
to ensure that it is reasonably connected to the distribution network to maximize their effectiveness,
with full consideration of the technical and economic characteristics of DGs together with their impact
on the distribution network, thus making reasonable decisions on access capacity and access nodes.

2.1.1 Power Loss Indicator

The high permeability of DGs into the distribution network may result in the magnitude and
direction of the power tide changing, which may have a benign or malignant effect on the active power
loss magnitude. The power loss index is employed to measure the size of active power loss in the
distribution network. Active power loss indicators are established as follows [32]:

min ·f1 (x) =
n∑

i=1

n∑
j=1

Aij ·
(
PiPj + QiQj

) + Bij ·
(
QiPj − PiQj

)
(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aij = Rij · cos
(
δi − δj

)
ViVj

Bij = Rij · sin
(
δi − δj

)
ViVj

(2)

where Pi and Qi represent the active and reactive power injected into the ith node, individually; Rij

denotes the resistance of the transmission line between the ith node and the jth node; n stands for the
total number of nodes; δi and Vi represent the power angle and voltage of the ith node, respectively.

2.1.2 Voltage Distribution Indicator

The acceptable connections of DGs to the distribution network perform a critical task in refining
the voltage distribution. DG can be well connected to the distribution network to optimize voltage
distribution, yet as DG penetration in the distribution network progressively expands, nodal voltages
can exceed the rated power. Therefore, this paper employs the voltage distribution index to give a
quantitative analysis of the optimization effect, as follows [32]:

min ·f2 (x) =
n∑

i=1

(
VDG,i − Vrated

)2
(3)

where VDG,i denotes the ith nodal voltage of the distribution network after the configuration of DG
and Vrated means the nominal voltage, whose value is 1 p.u.
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2.1.3 Pollution Emission Target

For the sake of decreasing the emission of polluting/harmful gases, carbon dioxide, nitrogen
compounds, and sulfur dioxide are considered in this paper, as follows [32]:

min ·f3 (x) =
k∑

i=1

PDG,i · t · (
ewCO2

· AEpi,CO2
+ ewSO2

· AEpi,SO2
+ ewNOx · AEpi,NO

)
(4)

where PDG,i stands for the active output power of the ith DG; k determines DG number; t is the working
time of the DGs; AEpi,CO2

, AEpi,SO2
and AEpi,NO are regarded as the masses of carbon dioxide, sulfur

dioxide, and nitride gas released by the unit power output of the ith DG, respectively; ewCO2
, ewSO2

,
and ewNOx denote the weighting coefficients between the different gases, which take the values of 0.5,
0.25, and 0.25, respectively.

2.1.4 Economic Indicator

The economic cost of DG location and sizing is mainly composed of the total cost Ccapital, operation
and maintenance cost Cmaintenance which is calculated as follows [32]:

min ·f4 (x) = 1.3Ccapital · PDG,i + Cmaintenance · PDG,i · t (5)

It is noteworthy that this paper considers that each unit operates for 20 years and 300 days per
year, that is t = 144000 h. In addition, Table 1 gives statistics on the cost and pollution emissions of
DG [32].

Table 1: Economic cost and pollution emission statistics of DGs

DG types Investment cost
($/kW)

Operation and
maintenance
cost ($/kW·h)

CO2 (kg/kW·h) SO2 (kg/kW·h) NOx

(kg/kW·h)

Fuel cells 3500–10000 0.5–1.0 0.502 3.629 × 10−6 0.5216
Micro-
combustion
turbines

700–1100 0.5–1.6 3.445 3.629 × 10−6 0.1996×10−3

Photovoltaic
systems

4500–6000 1% – – –

Wind turbines 800–3500 1.5% to 2% – – –

2.1.5 Meteorological Indicator

This paper proposes an objective function considering the annual average wind speed V wind and
the annual average radiation intensity Qsolar, which can be expressed as follows:

min ·f5 (x) = 1
n∑
i

w1 · V wind,i + w2 · Qsolar,i

(6)

{
w1,i = 0, 1

w2,i = 0, 1
(7)
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where w1,i and w2,i are the weight coefficients of wind and solar energy at the ith node with the value of
0 or 1. When the value is 1, it means that the ith node is the site selection point of DG. It is noteworthy
that if w1,i and w2,i are both 1, it means that the ith node is configured with a wind-solar complementary
power generation system.

2.2 Binding Conditions
Notably, DGs access to the distribution network operation may generate changes in the voltage

distribution and tidal current distribution of the nodes in the power system, which directly affects line
heating and indirectly diminishes the technical and economic capabilities of the distribution network in
terms of security, dependability, and economy, etc. The following limitations are expected to guarantee
the reliability and smooth operation of the system [32].

(1) Transmission line power constraints

|Sl| ≤ ∣∣Smax
l

∣∣ (8)

where Sl and Smax
l stand for the current and the maximum apparent power flowing through the lth line,

respectively.

(2) Voltage constraints

V min
DG,i ≤ VDG,i ≤ V max

DG,i (9)

where V max
DG,i and V min

DG,i represent the upper and lower voltage limits of the ith node, which take the values
of 1.07 and 0.93 p.u. [33], respectively.

(3) Distributed power capacity constraints

Pmin
DG ≤ PDG ≤ Pmax

DG (10)

Pmin
DG = 0.1

n∑
i=1

Pload,i (11)

Pmax
DG = 0.8

n∑
i=1

Pload,i (12)

where PDG is the total active power output from DG; Pmax
DG and Pmin

DG stand for its upper and lower limits,
respectively.

2.3 Uncertainties of DG
In this paper, the types of DG considered are photovoltaic systems, wind power systems, fuel cells,

and micro-gas turbines. Among them, the output of fuel cells and micro-gas turbines is affected by the
input fuel flow rate, the faster the flow rate, the greater the output power. Therefore, the output of fuel
cells and micro-gas turbines can be considered constant and adjustable. In addition, the output data of
photovoltaic system and wind power generation system in this paper are obtained by fitting the average
irradiance and wind speed of typical days in four seasons. Therefore, the output model of photovoltaic
system and wind power system can be established as a distributed power supply whose output varies
with time scale. The output curve of photovoltaic system and wind power system is shown as Figs. 1
and 2.
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Figure 1: Annual output curve of wind power system
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Figure 2: Annual output curve of photovoltaic system

3 Particle Swarm Optimization Algorithm
3.1 Traditional Particle Swarm Optimization Algorithm

Inspired by previous scholars’ research on the foraging behavior of birds, after setting some rules
for the foraging behavior of birds, through modeling and data processing, American social psychol-
ogist James Kennedy and electrical engineer Eberhart experimented and completed the research on
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particle swarm optimization (PSO) through accuracy analysis [34]. The fundamental concept of the
method is to learn from the intelligence of a bird community, which rapidly and completely searches
for food by emulating the collaboration and information sharing between elements of the community
[35], to achieve a global optimum solution in a real-world optimization problem. The algorithm
abstracts the object of the demand solution as an individual with no mass or volume [36], which can
be generalized to D-dimensional space. In the basic PSO algorithm, each bird in the population can
be called a particle. The location of the particle is the initial solution to the problem. In the process of
foraging [37], each particle evaluates the distance from the food according to the fitness value of the
function of the problem. Each particle will fly to search near the current optimal particle, while the
flight direction and distance of the particle are controlled by the speed. Among them, each particle is
represented by two physical quantities [38], i.e., position Xi = (Xi1, Xi2, . . . , XiD) together with velocity
Vi = (Vi1, Vi2, . . . , ViD). Besides, the optimal position experienced by the particle is recorded as Pbest,
while the optimum position undergone by any particles in the population is indicated as Gbest.

For each generation of individuals, the velocity and position of the particles are updated in the
process of searching for the optimum value according to the following equation [39]:

Vi (t + 1) = ω · Vi (t) + c1 · r1 · (Pbest − Xi (t)) + c2 · r2 · (Gbest − Xi (t)) (13)

Xi (t + 1) = Xi (t) + Vi (t + 1) (14)

where ω is defined as the inertia weight, which is the inertia that keeps the particles moving and enables
them to explore new areas, with a value range of 0 to 1; c1and c2 stand for the acceleration coefficients,
which cause each particle to Pbest and Gbest; r1 and r2 are defined as random numbers between [0, 1];
Xi (t) is the position of the ith particle at the tth iteration. It is known that through constant acquisition
and updating, the particles eventually fly to the location of the optimum solution in the solver space,
thus ultimately outputting the global optimum solution Gbest.

3.2 Multi-Objective Particle Swarm Optimization Algorithm
The major differences between the MOPSO [40] and PSO algorithms can be summarized in two

points, namely the determination and preservation of non-inferior solutions as well as the selection of
Gbest. For a solution vector u = (u1, u2, . . . , um) in the optimization problem with m objectives, if there
is no other solution vector y = (y1, y2, . . . , ym) [41] in the solution space, the following conditions are
satisfied:

∀i ∈ {1, . . . , m} , yi ≤ ui � iE {1, . . . , m} , yi < ui (15)

where u is defined as a non-inferior solution. The set of all non-inferior solutions is called the set
of Pareto optimal solutions, that is the Pareto frontier in the target value space. n each iteration of
MOPSO, the set of Pareto optimum solutions is renewed [42].

For Gbest, the entire target value space is gridded according to the information obtained from the
exploration, while a roulette wheel strategy is employed to select the Pareto optimum solution [43]
based on the density of each grid, to ensure that the lower-density grid has a higher probability of
being selected, and then any non-inferior solution is selected as Gbest with equal probability in that grid.

The crowding distance selection strategy is widely used for updating the Pareto solution set.
However, the interaction information in the traditional crowding distance is limited to adjacent
particles, which simplifies the calculation process but results in poor globality and uniformity of the
Pareto solution set. To enhance the globality and uniformity of the Pareto solution set, this paper
proposes a dynamic updating strategy for the Pareto solution set using multiple iterative directions:



EE, 2023, vol.120, no.9 2141

if the Pareto solution set exceeds the scale, the two particles with the smallest values in the crowding
distance vector group are deleted until the Pareto solution set meets the scale; the two particles with
the maximum values in the crowding distance vector group and the two particles with the maximum
values in the opposite crowding distance vector group are selected as the optimal particles, and the
Pareto solution set is updated using multiple iterative directions.

Before updating the Pareto solution set, the fitness values of each particle need to be dimensionless,
to define and calculate the minimum distance vector group and maximum distance vector group.

fit′
ij = fitmax

j − fitij

fitmax
j − fitmin

j

, . . . i = 1, 2, . . . , n (16)

⎧⎪⎪⎨
⎪⎪⎩

Dmin
i = min

(√∑b

m=1

(
fit′

ij − fit′
pj

)2
)

, . . . i �= p

Dmax
i = max

(√∑b

m=1

(
fit′

ij − fit′
pj

)2
)

, . . . i �= p
(17)

where n represents the number of the Pareto solution set; fitij and fit′
ij are respectively the jth actual

objective function value of particle i and the normalized objective function value; fitmin
j and fitmax

j

represent the Absolute positive and negative ideal solution of the jth objective function, respectively;
Dmin

j and Dmax
j represent the minimum and maximum distance vector sets of the ith particle, respectively.

3.3 Algorithm Application Design
The final solution of MOPSO is the Pareto frontier composed of non-dominated solutions. In

multi-objective optimization problems, in order to avoid the subjective influence of the decision
maker, a decision method is needed to avoid the subjective decision. Ideal point decision based on
Mahalanobis distance is a popular decision method, and this method is used in literature [44–47] as
a decision method. Hence, this paper uses the ideal point decision to obtain the best compromise
solution. For specific steps please refer to the literature [48].

4 Case Studies

To confirm the availability of the presented method, this paper performs a sizing and capacitance
study in the IEEE 33, 69 bus node system as illustrated in Figs. 3 and 4, which includes the photovoltaic
system (two node installation), wind turbine (two node installation), fuel cell (one node installation),
and micro gas turbine (one node installation). In addition, MOPSO [49] is exploited to compare with
nonoptimized results, while the population size is set to 200 and the maximum number of iterations is
set to 200, while the storage pool size is set to 100, upon which the method parameters are set according
to the default values.

The active power losses of the IEEE 33, 69 bus nods system can be seen in the literature [50,51].
Note that since the test system is difficult to find in the actual project, the meteorological data used
in this paper are the historical measured data of a grid-connected photovoltaic power station in 2020.
Besides, the measured data from each of its measurement points are averaged and randomly used as
the meteorological data for each node, as shown in Tables 2 and 3. What is more, the algorithm is
optimized in the environment of MATLAB 2018b with an Intel (R) core (TM) i5-8400 CPU with a
dominant frequency of 2.80 GHz and a computer with a memory of 8 GB.
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Figure 4: IEEE 69 bus distribution network

Table 2: IEEE 33 bus distribution network meteorological data

Node Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

Node Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

1 3.464 0.6179 18 4.437 0.6912
2 2.765 0.3120 19 4.616 0.3916

(Continued)
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Table 2 (continued)

Node Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

Node Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

3 2.315 0.1270 20 4.675 0.5796
4 3.037 0.6776 21 4.893 0.5712
5 4.670 0.6893 22 1.487 0.5941
6 4.016 0.6949 23 4.712 0.6056
7 4.452 0.6991 24 3.967 0.6087
8 2.792 0.6963 25 4.595 0.6195
9 3.359 0.6984 26 3.808 0.6862
10 4.513 0.6752 27 4.156 0.6329
11 2.304 0.6981 28 2.654 0.6812
12 2.882 0.4695 29 2.679 0.6020
13 3.694 0.6262 30 4.458 0.6108
14 2.108 0.6695 31 2.779 0.2820
15 4.566 0.6983 32 3.1125 0.6993
16 3.683 0.7054 33 4.383 0.5712
17 1.333 0.6741

Table 3: IEEE 69 bus distribution network meteorological data

Nodes Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

Nodes Annual average
wind speed
(m/s)

Annual average
radiation (MJ/m2)

1 2.575 0.8029 36 2.891 0.4583
2 3.270 0.5895 37 3.157 0.5970
3 4.504 0.8487 38 4.112 0.9929
4 2.833 0.2275 39 3.957 0.8437
5 2.241 0.4133 40 2.279 0.4362
6 1.754 0.6670 41 1.404 0.25791
7 3.791 0.7575 42 3.387 0.7879
8 5.066 0.7679 43 5.762 0.9933
9 4.979 0.7717 44 4.437 0.9004
10 5.15 0.7279 45 4.416 0.9204
11 4.154 0.6508 46 2.151 0.5995
12 3.754 0.6141 47 3.191 0.7420
13 3.079 0.5775 48 3.612 0.7454
14 2.658 0.9079 49 2.041 0.6408
15 1.529 0.8395 50 1.670 0.4720

(Continued)
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Table 3 (continued)

Nodes Annual average
wind speed
(m/s)

Annual average
radiation
(MJ/m2)

Nodes Annual average
wind speed
(m/s)

Annual average
radiation (MJ/m2)

16 1.312 0.4912 51 1.191 0.5133
17 2.312 0.4862 52 3.133 0.5358
18 4.779 0.9379 53 4.804 0.8354
19 4.233 0.6991 54 2.387 0.5945
20 4.070 0.8316 55 1.879 0.2441
21 4.320 0.9141 56 2.766 0.4808
22 2.875 0.8666 57 1.033 0.4033
23 3.225 0.8379 58 0.908 0.1520
24 2.904 0.7133 59 0.883 0.3716
25 2.116 0.5120 60 2.162 0.8954
26 3.066 0.6204 61 2.216 0.5895
27 2.141 0.7229 62 1.066 0.3920
28 1.875 0.33291 63 1.612 0.42166
29 2.608 0.62791 64 1.125 0.66751
30 1.883 0.38254 65 1.358 1.01625
31 0.416 0.19208 66 1.595 0.65666
32 1.937 0.58833 67 2.058 0.64833
33 3.037 0.57666 68 2.225 0.29875
34 4.037 0.68125 69 1.425 0.49208
35 4.287 0.95416

4.1 IEEE 33 Bus System Optimization Results
Table 4 shows seven indices, including inverse generation distance (IGD), generation distance

(DG), pure diversity (PD), hypervolume (HV), diversity measure (DM), universality, and spatial
distribution (SP) [52] after the MOPSO algorithm has been run 10 times. In addition, Fig. 5 is plotted
to provide a better representation of the values of the seven evaluation indexes.

Table 4: Performance results of MOPSO algorithm in IEEE 33 bus distribution network

Algorithm IGD GD PD HV DM Universality SP

MOPSO Ave. 4.1171 0.0202 1.0793e+6 0.0437 0.2244 0.9697 0.2532
Std. 5.9965 0.0965 6.2851e+6 0.022 0.2354 0.1797 1.5606
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Figure 5: Comparison of average values of indexes under IEEE 33 bus distribution network

The results of MOPSO and without optimization are demonstrated in Tables 5 and 6. It is worth
noting that without optimization (without access to DG), the pollution emission targets, economic
indicators and meteorological indicators of DG are all zero. Two Photovoltaic systems are installed at
nodes 27 and 16, fuel cells and micro gas turbines are installed at nodes 23 and 31, and two wind
turbines are installed at nodes 25 and 20, respectively. There is no doubt that the power loss and
voltage fluctuation decreased and the voltage profile improved markedly after configuring different
types of DGs through MOPSO optimization. With accessing DG, power loss and voltage deviation are
decreased by 52.23% (from 38.297 to 24.309 kW), and 38.89% (from 0.6899 to 0.4236 p.u.), respectively.
With the power loss decreased, the economy of electric transmission is improved, upon which the price
of electricity may reduce. Besides, the voltage distribution of the IEEE 33 bus distribution network
optimized by MOPSO are revealed in Fig. 6. It can be seen from Fig. 6 that the voltage level of all
nodes is improved after accessing DG under the voltage condition of stable voltage fluctuation. The
improved voltage level and stability of voltage fluctuation will improve the stability and reliability of
users’ electricity consumption. The change in the power loss of the DG access to the network is since
the line current and power loss from the power source to the DG access point varies depending on
where the distributed power source is connected. When the incoming power of DG is higher than
all the loads of A-nodes and downstream nodes, reverse power flow will occur in the distribution
line and power loss will increase, even endangering the operation of the power grid. However, when
the incoming power of DG is less than the load at the A-node, the increase in power will reduce the
network loss. The improved voltage quality is because the power flow distribution of the grid will be
affected when the new energy is connected to the grid. The voltage drop of the branch will be reduced
when the output of DG is optimized by MOPSO, thus raising the voltage of the node.

Table 5: IEEE 33 bus distribution network planning scheme

Algorithms MOPSO

Photovoltaic
system

#1 Capacity (kW) 188.88
#1 Installation node 27
#2 Capacity (kW) 60.01
#2 Installation node 16

Fuel cell Capacity (kW) 122
Installation nodes 23

Micro gas turbine Capacity (kW) 40.01
Installation notes 31

(Continued)
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Table 5 (continued)

Algorithms MOPSO

Wind turbine

#1 Capacity (kW) 32.49
#1 Installation node 25
#2 Capacity (kW) 36.41
#2 Installation node 20

ωf1
0.027

ωf2
0.024

ωf3
0.086

ωf4
0.032

ωf5
0.832

Table 6: Comparison of the objective function with and without optimization under IEEE33 bus
distribution network

Objective Optimized by MOPSO Without optimization

f1 (kW) 24.309 38.297
f2 (p.u.) 0.4236 0.6899
f3 (kg/h) 1.2032 × 106 0
f4 ($) 1.8513 × 107 0
f5 (p.u.) 0.0943 0

5 10 15 20 25 30
Node

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Without DG
With DG MOPSO

Figure 6: Voltage profile obtained under IEEE 33 bus distribution network

In addition, MOPSO can obtain good meteorological indicators. In order to verify the optimiza-
tion effect of MOPSO on meteorological indicators, the access positions of photovoltaic systems
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and wind turbines are exchanged, and the meteorological indicators obtained are 0.1114 p.u. After
optimization, it increased by 15.35% (from 0.1114 to 0.0943 p.u.), so that photovoltaic systems and
wind turbines can be installed in areas rich in scenery resources.

Generally speaking, as can be seen from Table 6 and Fig. 6, the power losses and voltage profile of
the distribution network are considerably enhanced by the optimization of the MOPSO with different
types of DGs, while the nonoptimized distribution network further aggravates the reactive power
deficit in the area and makes the voltage distribution at this node deteriorate noticeably.

Because this paper optimizes six different metrics (i.e., objective function), the Pareto solution set
cannot be plotted in the Cartesian coordinate system. Hence, the Pareto solution set running ten times
is mapped from the Cartesian coordinate system to the parallel coordinate system which is shown in
Fig. 7. In addition, the relations of the six objective functions are contradictory to each other, which
demonstrates the rationality of the multi-objective model has been established.
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Figure 7: Pareto search results obtained under IEEE 33 bus distribution network

4.2 IEEE 69 Bus Optimization Results
Table 7 shows the seven evaluation indexes of the Pareto frontier (i.e., IGD, DG, PD, HV, DM,

universality, and SP) obtained by the MOPSO algorithm under the IEEE 69 bus distribution network.
Furthermore, Fig. 8 is derived from the data in Table 7, thus representing the average value of each
index.

Table 7: Performance results of MOPSO algorithm in IEEE 69 bus distribution network

Algorithm IGD GD PD HV DM Universality SP

MOPSO Ave. 8.1910 0.0859 3.8663e+6 0.0236 0.4232 0.9619 0.8324
Std. 5.9965 0.0965 6.2185e+6 0.0220 0.2354 0.1797 1.5606
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Figure 8: Comparison of average values of indexes under IEEE 69 bus distribution network

Tables 8, 9 and Fig. 9 show the optimization results obtained by MOPSO, the values of objective
function with and without optimization, and the optimized voltage distribution, respectively. Two
Photovoltaic systems are installed at nodes 22 and 14, fuel cells and micro gas turbines are installed
at nodes 53 and 42, and two wind turbines are installed at nodes 43 and 10, respectively. With the
access of DG, the voltage level increases steadily but does not exceed 1 p.u. It can be seen that the
capacity and location of DG configured by MOPSO are very reasonable after compared with the
without optimization results. As concluded from Table 9, the power loss and voltage deviation are
reduced by 19.67%, and 58.96%, respectively.

Table 8: IEEE 69 bus distribution network planning scheme

Algorithms MOPSO

Photovoltaic system

#1 Capacity (kW) 555.81
#1 Installation node 22
#2 Capacity (kW) 96.50
#2 Installation node 14

Fuel cell Capacity (kW) 118
Installation nodes 53

Micro gas turbine Capacity (kW) 134.92
Installation notes 42

Wind turbine

#1 Capacity (kW) 58.63
#1 Installation node 43
#2 Capacity (kW) 146.14
#2 Installation node 10

ωf1
0.052

ωf2
0.061

ωf3
0.029

ωf4
0.027

ωf5
0.831
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Table 9: Comparison of the objective function with and without optimization under IEEE69 bus
distribution network

Objective Optimized by MOPSO Without optimization

f 1 (kW) 20.089 25.007
f 2 (p.u.) 0.5736 1.3979
f 3 (kg/h) 1.6959 × 106 0
f 4 ($) 4.9247 × 107 0
f 5 (p.u.) 0.0791 0

Figure 9: Voltage distribution obtained under IEEE 69 bus distribution network

Fig. 10 shows the Pareto solution set obtained by MOPSO running independently. The unopti-
mized results show that the optimal comprehensive optimization effect is brought to the distribution
network without ensuring the economy, and the power loss and voltage distribution indexes are
exceeded. In addition, it can be observed that MOPSO still has strong search performance in systems
with large-scale nodes, and can effectively optimize the power loss and voltage distribution of the
distribution network when configuring photovoltaic systems and wind turbines to areas rich in wind
and solar resources.
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Figure 10: Pareto search results obtained under IEEE 69 bus distribution network

5 Conclusion

Based on the research of meteorological conditions involved in DG location and sizing, this paper
proposes a Pareto multi-objective optimization method based on MOPSO. The main contributions
are as follows:

(1) A DG location and sizing model considering active power loss, voltage distribution, pollution
emissions, economic costs, and meteorological conditions is established. The introduction of meteo-
rological conditions can effectively install photovoltaic systems and wind turbines in areas with rich
scenic resources.

(2) MOPSO algorithm based on Pareto multi-objective optimization is proposed, and the imple-
mentation and calculation process of MOPSO algorithm are described. In particular, through the
IEEE 33 and 69 bus distribution network test, it is proved that the MOPSO algorithm has good
convergence and global search ability, and can obtain a widely distributed and uniform Pareto front.

(3) Taking IEEE 33 and 69 bus distribution networks as examples, the simulation results show that
the MOPSO algorithm can effectively reduce the active power loss of the distribution network and
improve the voltage distribution in a better economic range. Under IEEE 33 bus distribution network,
power loss, and voltage deviation are decreased by 52.23%, and 38.89%, respectively. Meanwhile,
MOPSO can obtain good meteorological indicators, simulation result shows that the access positions
of photovoltaic systems and wind turbines are exchanged, and the meteorological indicators obtained
are increased by 15.35%. Under IEEE 69 bus distribution network, the power loss and voltage
deviation are reduced by 19.67%, and 58.96%, respectively. Hence, this strategy has been proven to
be effective in solving multi-objective programming problems.

For the purpose of operating DGs into the distribution network in a more appropriate manner,
the renewable energy sites installed with energy storage systems will be studied in the future. Besides,
dynamic load models will be deployed to simulate loads that are more relevant to the actual project, so
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that DGs can be utilized efficiently. Furthermore, load growth should be considered in the planning
of DG.
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