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ABSTRACT

To mitigate the impact of wind power volatility on power system scheduling, this paper adopts the wind-storage
combined unit to improve the dispatchability of wind energy. And a three-level optimal scheduling and power
allocation strategy is proposed for the system containing the wind-storage combined unit. The strategy takes
smoothing power output as the main objectives. The first level is the wind-storage joint scheduling, and the second
and third levels carry out the unit combination optimization of thermal power and the power allocation of wind
power cluster (WPC), respectively, according to the scheduling power of WPC and ESS obtained from the first
level. This can ensure the stability, economy and environmental friendliness of the whole power system. Based on
the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system (ESS), this paper
decides the charging and discharging intervals of ESS, so that the energy storage and wind power output can be
further coordinated. Considering the prediction error and the output uncertainty of wind power, the planned
scheduling output of wind farms (WFs) is first optimized on a long timescale, and then the rolling correction
optimization of the scheduling output of WFs is carried out on a short timescale. Finally, the effectiveness of the
proposed optimal scheduling and power allocation strategy is verified through case analysis.
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Nomenclature

t, i, w Indices of time period, thermal power unit, and wind farm

T Total scheduling periods
NG, Nw Total number of thermal power units and wind farms

PC
t , PW

t Amount of curtailed wind and output of WPC at time period t

PWS
t The wind-storage joint output at time period t

PSd
t , PSc

t The charging and discharging power at time period t

PW
min, PW

max Minimum and maximum output of WPC

PWpre
t , PWavi

t Predicted power and available power of WPC at time period t
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ISd
t , ISc

t The discharging and charging state at time period t

PSc
min, PSc

max The minimum and maximum limits of ESS’s charging power

PSd
min, PSd

max The minimum and maximum limits of ESS’s discharging power

SOCt The SOC at time period t

SOCmin, SOCmax The minimum and maximum values of SOC

SN The rated capacity of ESS

ηc, ηd The charging/discharging efficiency of ESS

PG
i,t The planned output of thermal power unit i at time period t

Pi
Gmin, Pi

Gmax The minimum and maximum output of thermal power unit i

Ri
Gmax The maximum value of creep rate of thermal power unit i

Popt
w,t+Δt, Ppre

w,t+Δt The planned and predicted output of wind farm w

Pact
w,t The actual output of wind farm w

1 Introduction

As a prominent renewable energy source, wind power is progressively integrating significantly into
the grid, addressing both the energy crisis and environmental pollution [1,2]. Conventional scheduling
models are ineffective for the power system integrating large-scale wind generation due to the inherent
instability and restricted dispatchability of wind power [3]. Consequently, the effective mitigation of
wind power’s fluctuation impact on the power grid has emerged as a central focus of global research
efforts [4].

Due to its flexibility, energy storage technology has been widely used in peak shifting [5]
and frequency modulation [6]. In addition, energy storage devices have the function of smoothing
fluctuations, which can help to suppress power volatility [7,8]. The wind-storage hybrid system is an
invaluable instrument for improving wind power’s dispatchability. However, one issue that needs to
be taken into account in the optimal power system scheduling is how to synergistically enhance the
output of both wind power and the energy storage system (ESS).

Optimal scheduling of the wind-storage combined systems has attracted much attention. The
technique of using energy storage to support wind power scheduling is studied in the literature [9–
11], which comprehensively considers the operation and optimization cycle cost of energy storage.
Meanwhile, literature [12,13] optimize the allocation of energy storage capacity to enhance the wind-
storage bundling scheduling capability. Considering large-scale wind power access’s high uncertainty
and volatility, dual timescale coordination is used in the literature to adjust the energy storage output in
response to actual wind power generation [14]. Similarly, literature [15] proposes a day-ahead optimal
scheduling scheme of energy storage to mitigate wind energy instability. Although most of the literature
has focused on wind-storage joint optimization, decisions on the charging and discharging intervals of
energy storage have not yet been made from the perspective of fully exploiting the function of energy
storage.

Many scholars view the wind farm as a whole as a wind power cluster (WPC) to fully utilize the
complementarity and correlation of power output between wind farms (WFs) to smooth the overall
production [16–18]. The optimal scheduling of WPC can be divided into two levels, including the
scheduling of the system integrating WPC and the power allocation within the WPC. Since the active
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scheduling of wind-containing systems is a high-dimensional and complex problem, some studies have
adopted different approaches to cope with the issue of dimensionality disaster. For example, literature
[19] uses the Alternating Direction Method of Multipliers (ADMM) method to develop an active
power optimal scheduling model within a wind farm (WF), and literature [20] proposes a distributed
economic scheduling method for wind-containing systems. However, little literature has combined
system-level optimal scheduling with wind-level power allocation to reduce wind power volatility and
abandonment. This can coordinate the WPC and other units within the system, as well as the wind
farm output within the WPC. In addition, some studies have used model predictive control strategies
to track scheduling instructions in real-time due to the unavoidable errors in wind power forecasting
[21,22]. On the other hand, literature [23,24] establish scheduling models using different timescales.
Coordinating the allocation of wind energy on long and short timescales is an issue that deserves
consideration.

Consequently, this paper proposes a multi-level optimization strategy for power scheduling and
allocation in a power system containing the wind-storage combined unit. The specific contributions
include: 1) Starting from the function of energy storage in smoothing power fluctuation and peak
shaving-valley filling, the charging/discharging intervals of energy storage are set based on the day-
ahead prediction data of the load and WPC. 2) It coordinates wind-storage output and the power
allocation within WPC at both the system and wind power levels, with the primary goal of minimizing
output variability. 3) The power allocation of WPC adopts a coordinated strategy containing both
long- and short-term time scales. After obtaining the planned output of WFs on the long timescale,
correct the output on the short timescale. It can maintain the tracking accuracy of the scheduling
instruction while increasing wind power consumption and decreasing wind power volatility.

The other sections are arranged as follows: Section 2 describes the implementation process of
the three-level optimal scheduling and power allocation strategy. Section 3 constructs the scheduling
model of each level, including the objective function and constraints. Section 4 introduces the solution
algorithms of the optimization model of each level and the corresponding algorithmic simplification.
Section 5 verifies the effectiveness of the proposed strategy by analyzing the arithmetic examples. The
last section gives the conclusions.

2 Framework for Three-Level Optimization Scheduling Strategy

The framework for the three-level optimization scheduling strategy, as depicted in Fig. 1, is driven
by specific motivations. On the one hand, based on the scheduling sequence of the wind-containing
system, we progressively optimize the power allocation from the system level to the WPC level. On
the other hand, following energy conservation and environmental protection principles, we prioritize
using clean and renewable energy sources, setting scheduling priorities in the order of wind-storage
followed by thermal power.

The first level is the wind-storage joint scheduling. It is developed from the perspective of wind
power accommodation level and joint operation stability while considering the joint output of WPC
and ESS as a stable schedulable power source. Then, the optimal production of the wind-storage joint
scheduling is transmitted to the following levels. The second level is the combination of thermal power
units. To balance the system’s operational efficiency with ecological sustainability, the optimization
objective at this level is defined as minimizing the overall cost and reducing pollution emissions, thereby
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reasonably allocating the output of each unit. The third level performs the power allocation of WPC
according to the wind power scheduling power at the first level, intending to maximize the wind energy
utilization and minimize the output fluctuation. The specific scheduling process is as follows:

Figure 1: Framework for three-level collaborative optimization scheduling strategy

(1) According to the net load data, where the net load means the value of load minus the output of
WPC, the states of ESS are decided. The wind-storage combined unit adopts the mixed integer linear
programming (MILP) method to obtain the scheduling power of WPC and the planned output of ESS
on the following day, where the time scale is 1 h.

(2) Calculate the net load again at each scheduling period, where the net load means the value of
load minus the combined output of WPC and ESS. This value is subsequently applied to the system
balance constraint. The next-day generation plan for the thermal power units is optimized using the
MILP algorithm, with the same time scale as the first level.

(3) According to the scheduling power of WPC obtained from the optimization of the wind-
storage combined unit, power allocation is carried out for WPC. To ensure the overall stability of the
WFs in the coming day, carry out the power allocation firstly on a long timescale, i.e., 24/1 h. Then,
refine the time scale and perform a rolling optimization of 1 h/15 min based on the value obtained
from optimization on the long-time scale.
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3 Scheduling Model for Power System Containing Wind-Storage Combined Unit
3.1 The First Level: Scheduling Model of Wind-Storage Combine Unit
3.1.1 Objective Function

The goal of this level is to reduce wind power abandonment, as well as the fluctuation of wind-
storage combined output. The objective function is:

Fws = min

[
T∑

t=1

PC
t + 1

T

T∑
t=1

(
PWS

t − PWS
ave

)2

]
(1)

⎧⎪⎨
⎪⎩

PWS
t = PW

t + PSd
t − PSc

t

PWS
ave = 1

T

T∑
t=1

PWS
t

(2)

where PC
t , PW

t are the amount of curtailed wind and output of WPC at time period t, respectively. PWS
t

denotes the wind-storage joint output, PSd
t , PSc

t are the discharging and charging power at time period
t, respectively, T is the number of scheduling time periods.

3.1.2 Constraint Conditions

(1) WPC output constraint

PW
min ≤ PW

t ≤ PWpre
t = PWavi

t = PW
max (3)

(2) Power balance equation constraint

PWavi
t = PW

t + PSd
t − PSc

t + PC
t (4)

where PC
t ≥ 0. In order to avoid too much power generation from energy storage, which leads to

unnecessary energy waste, wind power abandonment is set to be higher than 0 here.

(3) Charging/discharging state constraints

ISd
t + ISc

t ≤ 1 (5)

where ISd
t is the discharging state, taking 1 for discharging and 0 for charging, ISc

t is the discharging
state, taking 1 for charging and 0 for discharging.

(4) Charging/discharging power constraints

ISd
t PSd

min ≤ PSd
t ≤ ISd

t PSd
max (6)

ISc
t PSc

min ≤ PSc
t ≤ ISc

t PSc
max (7)

(5) State of charge constraints

SOCt = SOCt−1 + (
PSc

t ηc − PSd
t /ηd

)
ΔT/SN (8)
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SOCmin ≤ SOC ≤ SOCmax (9)

SOCT = SOC0 (10)

where SOCt is the state of charge (SOC) of the ESS, SN is the rated capacity of the ESS, and �T is the
scheduling interval.

3.2 The Second Level: Unit Combination Model for Thermal Power
3.2.1 Objective Function

This level is based on the first level’s optimization results, aiming to reduce operating and
environmental costs and optimize unit combinations. The specific objective functions are as follows:

FEC =
T∑

t=1

NG∑
i=1

[(
ai

(
PG

i,t

)2 + bi

(
PG

i,t

) + ci + CU
i,t

(
1 − ui,t−1

))
ui,t

]
(11)

FEV =
T∑

t=1

NG∑
i=1

(
αi + βi

(
PG

i,t

) + γi

(
PG

i,t

)2
)

ui,t (12)

where ai, bi, and ci are the coefficients of the consumption function, ui,t indicates the operating status,
CU

i,t is the start-up cost for the thermal power unit, αi, β i, and γ i are pollutant emission coefficients.

3.2.2 Constraint Conditions

(1) Power balance equation constraint
NG∑
i=1

PG
i,t + PWopt

t + PSdopt
t − PScopt

t = PL
t (13)

where PWopt
t , PSdopt

t , PScopt
t are the optimal solutions obtained from the wind-storage co-optimization; PL

t

denotes the load demand.

(2) Thermal power unit operating constraints

1) Power and its ramping constraints

ui,tPG min
i ≤ PG

i,t ≤ ui,tPG max
i (14)

2) Minimum start-stop time constraints∑
t′∈[t,t+Tu

i ]
ui,t′ ≥ Tu

i · vi,t (15)

∑
t′∈[t,t+Td

i −1]

(
1 − ui,t′

) ≥ Td
i · wi,t (16)

ui,t − ui,t−1 = vi,t − wi,t (17)

vi,t + wi,t ≤ 1 (18)

where Tu
i , Td

i refer to the minimum continuous operation and shutdown time of the thermal power
unit i, the two Boolean variables vi,t and wi,t represent the start-up and shutdown actions.
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3.3 The Third Level: Power Allocation for WPC
3.3.1 Objective Function

This level allocates power to each WF according to the WPC’s scheduling instructions issued
by the wind-storage combined system. The scheduling power of WPC is optimized at the day-ahead
time scale, aiming primarily to minimize wind power fluctuation while ensuring sufficient wind power
accommodation. The objective function is established as follows:

FGO
w = min

[
α1

NW∑
w=1

(
Popt

w,t+�t − Ppre
w,t+�t

)2 + α2

NW∑
w=1

(
Popt

w,t+�t − Pact
w,t

)2

]
(19)

where Popt
w,t+�t, Ppre

w,t+Δt are the planned and predicted power of WF w at time period t + �t, respectively,
Pact

w,t is the actual output of WF w at the sampling moment t, �t is 1 h, NW is the number of WFs, α1,
α2 are the weighting factors for the performance indicator, and set α1 = 0.2, α2 = 0.8.

Considering the roughness of the wind farms’ allocated output in the day-ahead scheduling
timescale, the actual output is likely much smaller than the scheduling output at a certain moment,
and the tracking effect is poor. Therefore, this level will refine the time scale and formulate the output
of WFs within the short scheduling time scale on a rolling basis. The objective function is established
as follows:

FRO
w = min

R∑
r=1

⎡
⎣ NW∑

w=1

(
Popt

w,t+�t − Popt
w,t+r�t1

)2

+
NW∑
w=1

(
Popt

w,t+r�t1
− Ppre

w,t+r�t1

)2

+
(

NW∑
w=1

Popt
w,t+r�t1

− PWopt
t+�t

)2
⎤
⎦ (20)

where Popt
w,t+rΔt1

, Ppre
w,t+rΔt1

are the planned and predicted output of WF w at time period t + r�t1,
respectively, PWopt

t+Δt is the scheduling instruction issued to WPC by the system, i.e., the scheduling power
of WPC obtained from the optimization of the wind-storage combined system, �t1 is 15 min, r is the
number of rolls.

3.3.2 Constraint Conditions

The constraints corresponding to the WPC power allocation problem on the long timescale for
the first day are as follows:

(1) System scheduling plan constraints
NW∑
w=1

Popt
w,t+�t = PWopt

t+�t (21)

(2) Wind farm output constraints

Pmin
w,t+Δt ≤ Popt

w,t+Δt ≤ Pmax
w,t+Δt = Ppre

w,t+Δt (22)

where Pmax
w,t+Δt, Pmin

w,t+Δt denote the upper and lower output of WF w.

(3) Wind farm ramping constraints

Popt
w,t+Δt − Pact

w,t ≤ CwPN
w (23)

where Cw denotes the ramping rate limit for WF w, PN
w denotes the rated capacity of WF w.

Only wind power output and ramping constraints are included for the constraints on the WPC
power allocation problem in the intraday time scale.
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(1) Wind farm output constraints

Pmin
w,t+rΔt1

≤ Popt
w,t+rΔt1

≤ Pmax
w,t+rΔt1

= Ppre
w,t+rΔt1

(24)

(2) Wind farm ramping constraints

Popt
w,t+rΔt1

− Pact
w,t+(r−1)Δt1

≤ CwPN
w (25)

where Pact
w,t+(r−1)Δt1

denotes the actual value of WF w at moment t + (r−1)�t1.

4 Model Solving
4.1 Linearization of Objective Function and Constraint Conditions

This paper linearizes the model containing nonlinear expressions such as 0–1 variables and square
terms to convert it into a MILP model.

(1) Coal consumption and pollution emissions from the thermal power units

The consumption function of the thermal power units is generally expressed as the quadratic
function of generation power, which is approximately transformed into a linear function by piecewise
linearization, as shown in Fig. 2. Therefore, the linearized coal cost is expressed as:

F
(
PG

i,t

) · ui,t =
[

F
(
PG min

i

) +
M∑

pl=1

Ki,gl · δi,t (pl)

]
· ui,t∀i, ∀t (26)

where F
(
PG min

i

)
is the consumption function corresponding to the unit i operating at the minimum

output, i.e., F
(
PG min

i

) = ai

(
PG min

i

)2 + bi

(
PG min

i

) + ci, M is the number of linearized segments of the
consumption characteristic curve; Ki,gl denotes the slope of unit i in the plth segment; and δi,t (pl) refers
to the output power of unit i in the plth segment at time period t which is an added control variable
that satisfies the following constraints:

0 ≤ δi,t (pl) ≤ Di,gl − Di,gl−1∀i, ∀t, ∀gl (27)

where Di,gl refers to the glth segmentation point, and Di,0 = PG min
i , Di,M = PG max

i .

Figure 2: Piecewise linearization of coal consumption characteristics of thermal power units

Similarly, the pollution emission function is also linearized by segments, which will not be
repeated here.
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(2) Thermal power unit start-stop cost

The thermal power start-stop cost contains a nonlinear product term ui,tui,t−1, so an integer variable
Ai,t is introduced instead. Let Ai,t = ui,tui,t−1, then the linearized start-stop cost expression is shown in
Eq. (28), with Eq. (29) being the added linear constraint.

CUD
i,t

(
ui,t − Ai,t

)
(28)

⎧⎨
⎩

0 ≤ Ai,t ≤ ui,t

Ai,t ≤ ui,t−1

Ai,t ≥ ui,t + ui,t−1 − 1
(29)

4.2 Charging and Discharging Decisions for Energy Storage
The average value μNL, the standard deviation σNL, the deviation �Pt

NL of the net load Pt
NL, and

the deviation threshold δ are calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PNL
t = PL

t − PW
t

μNL = 1
T

T∑
t=1

PNL
t

σNL =
√

1
T

T∑
t=1

(
PNL

t − μNL

)2

�PNL
t = PNL

t − μNL

δ = min
{
PESS

max , λσNL

}

(30)

where PESS
max is the rated power of ESS, 0 < λ < 1.

To enhance the regulation performance of energy storage and maintain its continuous effective-
ness during the scheduling period, determine the states of ESS based on its operating mode. The
specific process, as shown in Fig. 3, involves two steps: smoothing power fluctuation, peak shaving
and valley filling.

4.3 Rolling Optimization Correction for Wind Cluster Power Allocation
A rolling finite time domain optimization strategy is used for wind power allocation correction on

a short time scale. According to the current performance index, the optimal control sequence within the
finite time domain is determined. The real-time state of the system is re-sampled at the next moment,
and the optimal control sequence continues to be solved. At each moment, the actual active power
value of the WF is used as the initial value for a new round of rolling optimization scheduling to
continue with rolling optimization at the next moment. The correction amount of the WF is selected
as the control variable, i.e., ΔPopt

w,t+rΔt1
, the optimized WF’s scheduling value is:

Popt
w,t+rΔt1

= Pact
w,t + ΔPopt

w,t+rΔt1
(31)

where Pact
w,t = Popt

w,t+Δt.
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Figure 3: Flowchart of decision-making for the operating state of ESS

The steps for implementing the rolling optimization correction for wind cluster power allocation
on a short time scale are specified below:

Step 1: At the current moment t + r�t1, the actual values of each WF are initialized based on the
planned values on a long-time scale scheduling;

Step 2: Update power predictions for WFs in a finite time domain based on the prediction model;

Step 3: The correction value in the control time domain of each WF is calculated according to
Eq. (20), and the first column of control quantities is sent to each WF;

Step 4: Update the actual value of the WF at this moment;

Step 5: Return to Step 2 and solve for the power allocation value of the WF at the next moment,
i.e., t + (r + 1)�t1, until the optimization solution is completed for the whole optimization cycle.
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5 Example Analysis
5.1 Basic Data and Parameters

In this paper, a natural wind-storage-thermal combined system in China is used as an example
for optimal scheduling and power allocation at the system level and cluster level, respectively. The
example contains four thermal power units, three WFs, and one energy storage system, in which the
rated capacities of WF1 and WF3 are both 400 MW, and that of WF2 is 300 MW. The day-ahead
predicted outputs of WPC and load are shown in Fig. 4. The relevant parameters of the energy storage
system and the thermal power units are shown in Tables 1–3.

Figure 4: Day-ahead forecast data of load and WPC

Table 1: Technical parameters of energy storage power station

Technical parameters Value

Rated capacity (MWh) 500
Rated power (MW) 300
Efficiency (%) 90
Initial SOC (%) 20
The upper limit of SOC (%) 90
The lower limit of SOC (%) 10

Table 2: Operating parameters of thermal power units

Unit Gi PGmin
i (MW) PGmax

i (MW) Rmax
i (MW/h) Tu

i (h) Td
i (h)

G1 150 455 180 8 8
G2 25 162 110 6 6
G3 20 130 60 5 5
G4 20 130 60 5 5
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Table 3: Economic and environmental parameters of thermal power units

Unit
Gi

Economic parameters Environmental parameters

ai ($/MW2·h) bi ($/MW·h) ci ($/h) Ccold
i ($) Chot

i ($) αi (kg) β i (kg/MW·h) γ i (kg/MW2·h)

G1 0.00031 17.26 970 10000 5000 132 −2.72 0.02
G2 0.00398 19.70 450 1800 900 125 −2.36 0.065
G3 0.002 16.60 700 1100 550 137.7 −2.94 0.044
G4 0.0079 27.74 480 520 260 135 −2.36 0.075

5.2 Analysis of Scheduling Results with ESS Operating in Different Charging/Discharging Modes
To verify the effectiveness of the proposed energy storage charging/discharging decisions in this

paper, set up two cases as follows:

Case 1: The charging/discharging states of ESS, together with the charging/discharging power of
ESS and the scheduling power of WPC, are used as decision variables to optimize the solution.

Case 2: According to the net load forecast curve, with the purpose of peak shaving-valley filling
and smoothing the wind power fluctuation, the charging/discharging states of ESS are decided. Only
the scheduling power of ESS and WPC are optimally solved as decision variables.

Figs. 5–7 show the optimized scheduling results under the two cases, where (a) shows the optimized
results for Case 1 and (b) shows the optimized results for Case 2. A comparative analysis of the
scheduling results in Case 1 and Case 2 is presented in the following section.

Figure 5: Scheduling power of WPC and ESS in (a) Case 1 and (b) Case 2

Fig. 5 compares the day-ahead scheduling power of WPC for the two cases. In both cases, the
optimized wind-storage combined power fluctuations are similar. However, it should be noted that
the volatility of the scheduling power of WPC is lower in Case 2. Specifically, in Case 1, the scheduling
power of WPC drops suddenly and sharply at time period 10, followed by a sharp increase at time
period 11. In addition, the overall frequency of fluctuations in the scheduling curve of WPC is higher
in Case 1. The sudden change in the reference power increases the complexity of power allocation at
the WPC level. Therefore, the increased degree of scheduling power fluctuations of WPC may pose
a threat to security and stability at both the system and the wind farm levels. In contrast, Case 2
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effectively reduces the volatility of WPC’s scheduling power, thereby mitigating the negative impact of
large-scale wind power access on the power system.

Figure 6: Operating state and optimal output of energy storage in (a) Case 1 and (b) Case 2

Figure 7: Optimal output of each thermal power unit in (a) Case 1 and (b) Case 2

Fig. 6 shows the charging/discharging states and the charging/discharging power of ESS. In Case
1, to accommodate excess wind power, the ESS continues to charge at a high-power level during time
periods 2–5 (i.e., the pre-load trough period). This results in subsequent periods being constrained
by SOC and storage capacity, preventing the continuation of charging, which in turn leads to an
increase in wind power volatility. In contrast, in Case 2, the ESS can maintain charging essentially
throughout the load trough period, with storage capacity optimally allocated at time periods 1–7.
Similarly, the ESS discharges to supply the load during the pre-peak load periods (e.g., time period 10
and time period 24) for peak shaving purposes in Case 1. However, only charging can be performed in
subsequent periods due to excessive discharges in a short time. Furthermore, a comparison of the
SOC in Cases 1 and 2 reveals that the SOC in Case 2 exhibits a more gradual change, while the
SOC in Case 1 displays three distinct peaks and troughs. The frequency of charging/discharging of
Case 1 in one scheduling cycle is also more significant than that of Case 2. This situation can harm
the energy storage components and is not conducive to the long-term operation of ESS. Therefore,
the charging/discharging decision of energy storage in Case 2 fully uses the peak shaving and power
fluctuation smoothing effects of energy storage. This significantly reduces the degree of wind power
fluctuation and slows down the ageing of the energy storage equipment while maintaining load
balance.
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Fig. 7 compares the thermal unit output in the two cases. It can be observed that in Case 2, the
number of time periods when all thermal units are started at the same time is less than that in Case 1.
The overall power output of thermal units is also lower in Case 2. Consequently, a reasonable energy
storage charging/discharging strategy helps reduce the proportion of thermal power generation and
the generation burden of thermal power units.

To compare the optimization results of Case 1 and Case 2 more comprehensively, we compared
their average wind curtailment rate, wind power fluctuation rate, economic cost, and amount of
pollution, as shown in Table 4. Although the wind curtailment rate is the same in both cases, the wind
power fluctuation rate, unit generation cost, and pollution amount are significantly lower in Case 2.
It can be seen that the proposed strategy, under the premise of ensuring safe and stable operation of
the system, can take into account the economy and environmental protection of the joint system.

Table 4: Comparison results with ESS operating in different charging/discharging modes

Methods Wind curtailment rate (%) Fluctuation rate (%) Cost ($) Pollution (kg)

Case 1 4.66% 1.1788 149814.89 17696.25
Case 2 4.66% 0.2085 144408.79 16717.75

5.3 Analysis of Scheduling Results for WPC in Different Power Allocation Methods
The superiority of Case 2 has been verified in the previous subsection so that WPC will perform

power allocation according to the scheduling power in Case 2. To verify the effectiveness of the
proposed power allocation strategy, compare the global optimization allocation (GOA) strategy with
the traditional fixed proportional allocation (FPA) strategy and variable proportional allocation
(VPA) strategy first. The scheduling power of each WF under the three power allocation strategies
is shown in Fig. 8, where the dotted line indicates the day-ahead predicted power of each WF.

This paper quantifies the amount of wind curtailment and the degree of fluctuation of each WF
in the WPC power allocation phase. Table 5 shows each WF’s fluctuation and curtailment rates under
different strategies.

The two indicators are weighted in this paper to measure them integrated, and the specific
mathematical expression is shown in Eq. (32).

Φ = α1v + α2Ṗ (32)

By calculating the above equation, we can get the values of comprehensive performance indexes
under FPA, VPA, and GOA strategies, which are 2.7490, 2.4937, and 2.1706, respectively.

As seen from Fig. 8 and Table 5, the FPA strategy allocates power according to the proportion of
unit capacity, and its overall active distribution effect is inferior to the other two strategies. It does not
consider the forecast information, which may lead to larger wind power output and smaller scheduled
power at some time periods, thus leading to an increase in wind curtailment in WFs. WF1 has a high
output state at time periods 14–16. However, it has the largest wind curtailment amount when adopting
the FPA strategy. The VPA strategy considers the forecast information, and its wind curtailment is
reduced to some extent. Nevertheless, the power allocation does not consider the reduction of the
volatility of wind power, which may result in a more significant change rate of wind power than
the other two strategies. Overall, it can be seen that the scheduling power curves under the GOA
strategy are basically between the scheduling power curves under the FPA and VPA strategies. This
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can avoid the shortcomings of the FPA and VPA strategies and take into account the two objectives
of maximizing the utilization rate and minimizing the volatility rate of wind power. While some WFs
using the GOA strategy may exhibit a higher wind curtailment rate or a greater power variation than
those employing the other two strategies, the GOA strategy still demonstrates the smallest combined
performance indicators among the three strategies.

Figure 8: Scheduling output of wind farms under different allocation strategies. (a) WF1. (b) WF2. (c)
WF3
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Table 5: Comparison results of different power allocation methods

Wind
farm

Fluctuation rate v (%) Wind curtailment rate Ṗ (%)

FPA VPA GOA FPA VPA GOA

WF1 0.2085 0.2505 0.0913 6.9082 4.4736 3.5960
WF2 0.6926 0.9474 0.5042 3.7686 4.1548 6.6771
WF3 0.2085 0.1134 0.2867 6.8263 4.4070 3.4931

Since the wind power allocation on a long timescale is rough, this paper corrects the allocated
power of each WF on a short timescale. The corrected scheduling power of each WF is shown in
Fig. 9.

Figure 9: (Continued)
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Figure 9: Scheduling output of wind farms on long- and short-time scales. (a) WF1. (b) WF2. (c) WF3

To further evaluate the role of rolling correction in the power allocation of WPC, this paper
compares the average wind curtailment rate and power tracking accuracy after global optimization and
rolling correction of WPC. The corresponding values are given in Table 6. The average mean relative
error (AMRE) is taken as the tracking performance index to measure the power tracking accuracy,
and its index calculation formula is:

ηAMSE = 1
M

M∑
m=1

∣∣∣∣∣
Nw∑
w=1

Popt
w,m− PW

m

∣∣ (33)

where M is the total scheduling time period, Popt
w,m is the scheduling power of WF w at time period m,

and PW
m is the value of the scheduling power of WPC issued by the system.

Table 6: Comparison results between global optimization and rolling correction

Methods Wind curtailment rate (%) Power tracking accuracy (%)

Global optimization 6.8238 2.58
Rolling correction 4.8020 2.35

The power scheduling curves in Fig. 9 show that during the global optimal allocation of WPC,
there are occasional instances where the WF’s generatable capacity is less than the scheduling power.
This may result in the WF being unable to track the scheduling instructions issued by the system
accurately. This situation primarily results from the inaccurate forecasts of wind power and the
stochastic nature of wind power. Moreover, the scheduling power optimized globally can be corrected
in a rolling manner on a more detailed time scale by updating the data in real-time. In addition, this
can make the planned scheduling curve of the WF lie on top of the globally optimized scheduling
curve, further dissipating wind power and reducing the waste of resources. The comparison of values
in Table 6 further validates the necessity of short-time correction of power allocation. The wind
curtailment rate is significantly reduced at this stage, while wind power tracking accuracy is enhanced.

6 Conclusions

Wind power is gradually moving towards high penetration into the grid, posing a significant threat
to the power system due to its volatility. Therefore, this paper aims primarily at mitigating the volatility
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of wind power output by proposing a three-level coordinated optimal scheduling and power allocation
strategy. The effectiveness of the proposed strategy is validated through case analysis, leading to the
following conclusions:

(1) As a flexible resource, energy storage can be combined with wind power to improve its
dispatchability and stability. At the same time, the peak shaving-valley filling and fluctuation
smoothing characteristics of ESS can be brought into full play by optimizing its charging and
discharging intervals.

(2) The designed power allocation strategy of WPC can take into account wind power smoothing
and wind energy accommodation, thus avoiding the phenomenon of wind curtailment that
may occur under the FPA strategy and the phenomenon of significant power fluctuation that
may occur under the VPA strategy. Furthermore, the refinement of the scheduling time scale
can reduce the tracking deviation of scheduling instructions of WFs, thereby improving the
feasibility of issuing scheduling instructions.

(3) This paper employs a level-by-level optimization strategy, issuing optimization scheduling
instructions at each level. Wind-storage co-optimization is the first level of the optimization
process, coordinating the outputs of wind power and energy storage. The second optimization
level, namely the thermal power unit combination, considers the system’s overall economic and
environmental benefits. Furthermore, the power allocation stage of WPC continues to pursue
the objective of minimizing power fluctuation at the initial level. This approach considers the
system’s stability, economic efficiency, and environmental protection as an integrated whole.
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