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ABSTRACT

Accurately estimating the State of Health (SOH) of batteries is of great significance for the stable operation and
safety of lithium batteries. This article proposes a method based on the combination of Capacity Incremental Curve
Analysis (ICA) and Whale Optimization Algorithm-Radial Basis Function (WOA-RBF) neural network algorithm
to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries. Firstly,
preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage (Q-V) curve, convert the
Q-V curve into an IC curve and denoise it, analyze the parameters in the IC curve that may serve as health features;
Then, extract the constant current charging time of the battery and the horizontal and vertical coordinates of the
two IC peaks as health features, and perform correlation analysis using Pearson correlation coefficient method;
Finally, the WOA-RBF algorithm was used to estimate the battery SOH, and the training results of LSTM, RBF, and
PSO-RBF algorithms were compared. The conclusion was drawn that the WOA-RBF algorithm has high accuracy,
fast convergence speed, and the best linearity in estimating SOH. The absolute error of its SOH estimation can be
controlled within 1%, and the relative error can be controlled within 2%.
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Nomenclature

IC Incremental Capacity
LSTM Long Short Term Memory
RBF Radial Basis Function
PSO-RBF Particle Swarm Optimization-Radial Basis Function

1 Introduction

With the increasingly serious energy crisis and environmental issues [1], electric vehicles have
developed rapidly, and their safe operation has received increasing attention. Lithium ion batteries
have high energy and power densities [2], and their health status is an important factor for the stable
operation of electric vehicles. SOH, also known as battery health status, is commonly used to describe
the degree of battery aging. As the number of cycles of the battery increases, the degree of battery aging
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also intensifies, and the SOH value of the battery decreases, which may become difficult to meet the
application requirements of on-board electrical equipment. Therefore, accurate estimation of battery
SOH plays an important role in estimating the State of Charge (SOC) and balancing the battery.

Battery SOH is a measure that reflects the current state of a battery, including its capacity and
power output capability, as well as its ratio to its initial state, and its use is monitored using battery
management systems (BMSs) [3]. There are currently two commonly used standards for defining
battery SOH, one is based on the remaining capacity of the battery, and the other is based on the
internal resistance of the battery. This article uses the definition of remaining battery capacity because
capacity is easier to measure compared to internal resistance. The SOH defined based on remaining
capacity is as follows: SOH = Cap(i)

Cap(0)
× 100%, where Cap(i) represents the i remaining capacity of the

second cycle and Cap(0) represents the rated capacity. The estimation of battery SOH can be divided
into two categories. One is based on battery model methods, which require calibration of battery
model parameters to achieve battery SOH estimation, usually combined with SOC estimation. The
other is experimental analysis methods, which convert the collected voltage and current parameters
into features that can indicate battery performance degradation and use these features to estimate
battery SOH.

A large number of scholars have proposed specific estimation methods for the aforementioned
SOH estimation methods. Reference [4] proposed a battery SOH estimation method using a dual
adaptive extended particle filter. This method utilizes extended Kalman to linearize the particle
distribution function, reducing the impact of model parameter changes on estimating battery SOH.
However, this experiment only achieved good estimation results near local SOH values, and it cannot
be seen that the overall SOH decline process can still achieve good estimation results; Reference
[5] proposed a multi time scale model (dual Kalman) parameter identification method for the slow
changing characteristics of battery parameters and the fast changing characteristics of states, which
effectively improves the robustness of battery SOH estimation by estimating battery SOC and inferring
battery SOH. However, when using Kalman to estimate battery SOC, the value of SOH needs to be
known, so this method requires periodic calibration of SOH values to obtain accurate SOC values and
estimate battery SOH in real time; Reference [6] proposed a lithium battery SOH estimation method
based on the SR-UKF algorithm. By establishing an equivalent circuit model and estimating the
internal resistance of the battery in real time, the battery SOH was estimated. However, only a relatively
simple operating condition was selected for verification, which is not universal; Reference [7] designed
a data preprocessing method for the optimal variational mode, introduced a weighted vector method,
and fused it with support vector machines to establish a new estimation model, effectively solving the
problem of inaccurate battery SOH estimation caused by capacity regeneration. However, after the
optimal variational mode decomposition, the data changed from one group to three groups, requiring
simultaneous training of these three types of data and increasing computational complexity; Reference
[8] developed an online estimation model that can simultaneously estimate SOC and SOH in real-time,
using discharge voltage and ground voltage drop per unit time as model parameters, achieving stability
in battery parameter estimation. However, in terms of SOH accuracy testing, only fixed points are
tested, and the accuracy at other points is unknown. Reference [9] designed a stacked LSTM neural
network to train and test the constant current measurement values during fast charging, which has
good estimation performance for SOH estimation in fast charging. However, stacking multiple LSTM
neural networks makes the network structure complex.
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The difference and similarity between this method and the above methods are that (1) traditional
equivalent circuits are not used as the model for battery SOH estimation, which is greatly affected
by battery SOC. Instead, machine learning model method based on ICA curve method is adopted,
which is supported by a large amount of charge and discharge data and does not need to consider the
influence of battery SOC; (2) In the same estimation strategy based on machine learning, this article
proposes the WOA-RBF algorithm. Compared with other machine learning algorithms, the RBF
algorithm has the advantages of a simple network structure and better local response. In addition, the
WOA algorithm has strong global search ability and fast convergence speed, which can accurately and
quickly find the optimal parameters of the RBF model, achieving the accurate estimation of battery
SOH by the WOA-RBF algorithm.

2 Data Preprocessing
2.1 Dataset Introduction

The dataset used in this article is a prismatic battery with a nominal capacity of 1100 mAh,
designated as CS2-36, publicly available at the University of Maryland. Due to the fact that a small
rate of charging and discharging current can better extract features that characterize the changes in
battery SOH, and batteries with a capacity lower than 80% of the initial capacity are considered failed
batteries. Therefore, a small magnification charging dataset with a remaining capacity of 100%–80%
of the initial capacity was selected. Battery was tested using the Arbin Battery Tester. The specific
operation process is as follows. (1) Charge the battery to 4.2 V using a constant current charging
method of 0.5 C, (2) Charge the battery current to below 0.05 A using a constant voltage charging
method of 4.2 V, (3) Discharge at a rate of 1 C to the battery cut-off voltage of 2.7 V, (4) Cycle steps
(1), (2) and (3) until the battery capacity drops to around 80%. Fig. 1 shows the remaining capacity
variation curve of the battery after 463 cycles.

Figure 1: The variation of battery capacity with the number of battery discharge cycles

2.2 Abnormal Data Elimination
From the capacity change chart, it can be seen that after many cycles, the capacity increases

compared to the previous one, which is a phenomenon of capacity increase. That is, if the battery
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is left idle for a period of time after several cycles, the next discharge capacity will increase, which
is a normal phenomenon. Some cycles show a significant drop in capacity after completion, and the
capacity returns to normal values in the next cycle, which is obviously abnormal. The solution is to
set a capacity decrease threshold. If it exceeds this threshold, it is considered abnormal data and needs
to be removed. Fig. 2 shows the capacity decline curve after removing abnormal data. To obtain the
capacity change curve, it is necessary to convert it into battery SOH. Take the discharge capacity of
the first cycle as the initial capacity, and calculate the ratio of each discharge capacity to the initial
battery capacity to obtain the battery SOH for the current cycle. Fig. 3 shows the variation curve of
battery SOH with the number of battery discharge cycles.

Figure 2: Changes in battery capacity with number of discharge cycles after removing abnormal data

Figure 3: The variation curve of battery SOH with the number of battery discharge cycles

3 IC Curve Acquisition

This article uses ICA as the method for feature extraction because it is a non-destructive tool that
can explain the subtle changes during the aging process of power batteries. Capacity increment refers
to the capacity of a battery to charge and discharge within a unit voltage range at a certain current [10].
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Compared to the original curve, the most obvious feature of the IC curve is the IC peak, and each IC
peak represents the electrochemical process that occurs inside the power battery, with a unique shape,
height, and position. Therefore, any change in the position and shape of the IC peak is a manifestation
of the aging of the power battery.

3.1 Q-V Curve for Constant Current Charging
Before obtaining the IC curve, it is necessary to obtain the Q-V curve of constant current charging,

that is, during the offline training stage, extract the charging process from the battery degradation
dataset and analyze the features of battery capacity degradation [11]. Fig. 4 shows the relationship
between capacity and voltage changes during a certain cycle. It can be seen from the graph that the
Q-V curve does not increase linearly. In the initial stage of charging, the voltage rises rapidly. As the
charging current flows in, the voltage and capacity also increase rapidly, but the rate of increase is
different and constantly changing. Therefore, it is necessary to convert this subtle rate change into
intuitive rate data.

Figure 4: Relationship between voltage and capacity changes during a single charging process

3.2 IC Curve
The ICA curve method organizes the initial charging data to obtain the dQ/dV data during

the charging or discharging process, and then obtains the capacity change rate-terminal voltage
(dQ/dV -V ) curve, as shown in the figure. The principle of IC curve is to calculate the first derivative
of the Q-V curve of the battery under constant current charging or discharging conditions to obtain
the dQ/dV -Vcurve. To solve the first-order derivative of the IC curve, it is necessary to first perform
function fitting on the Q-V curve, which inevitably introduces fitting errors. Therefore, this article
adopts a simple and practical method to draw the IC curve, ΔV replacing it with a fixed voltage interval
ΔQ to represent the ΔV capacity change in the corresponding interval. When it ΔV approaches 0, it

is approximately
dQ
dV

≈ ΔQ
ΔV

. Fig. 5 shows the IC curve derived from the Q-V curve variation.

3.3 Wavelet Threshold Denoising
Wavelet transform can perform finer processing on signals and better express certain features of

the signal [12]. From the perspective of the capacity increment curve, the curve has high noise and
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is not smooth enough, which is not conducive to collecting the required sample points. Therefore, it
is necessary to denoise the IC curve. There are many methods that can be used to handle the noise
of capacity increment curves, such as sliding average filtering, first-order low-pass filtering, wavelet
packet transform, Fourier transform, etc. In this article, considering the simplicity of operation and
good filtering effect, wavelet threshold filtering is chosen. By selecting appropriate decomposition
levels, threshold rules, and processing methods, noise in the signal can be effectively removed while
retaining useful information, achieving wavelet denoising function. The specific parameter settings are
as follows: the threshold rule is heursure, the denoising method is soft thresholding, the reconstruction
mode is one stage reconstruction, the decomposition level is 5, and the wavelet type is db4. Fig. 6 shows
the noise reduction results of the IC curve.

Figure 5: IC curve

Figure 6: IC curve after noise reduction
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4 Feature Parameters and Correlation Analysis of the Health Status of Batteries
4.1 Extraction of Charging Time Features

The charging process of lithium batteries consists of a constant current section (CC) and a
constant voltage section (CV). The battery is first charged at a constant current to the charging cut-off
voltage, and then charged at a constant cut-off voltage to the cut-off current. The time required to
complete the constant current and constant voltage sections varies in different battery health states.
However, due to the large proportion of time spent in the constant current section of a typical battery
to the entire charging time, the constant current section charging time is chosen as a parameter for
battery SOH estimation. In the MATLAB environment, record the charging time t1 at the starting
point of the constant current section, and then record the charging time t2 at the ending point of the
constant current section. t2 − t1 is the charging time of the constant current section. Fig. 7 shows the
charging curve of the constant current section as a function of the battery discharge cycle. Fig. 8 shows
the relationship between the extracted charging time and the number of battery cycles. Take the battery
charging time as the battery health feature 1, denoted as H1.

Figure 7: Constant current charging curves under different cycle times

Figure 8: Relationship between H1 and the number of cycles
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4.2 Feature Extraction of Capacity Increment Curve
With the intensification of battery aging, the charging and discharging performance of batteries

is also deteriorating. In order to accurately reflect the degree of battery aging and estimate the battery
SOH, it is necessary to select accurate battery health features. To draw an IC curve, it is necessary to
convert it. In this article, an IC curve is drawn every 50 charge and discharge cycles until the battery
SOH value is discharged to around 80%, in order to identify the health features that can describe
battery aging, as shown in Fig. 9. From the graph, it can be seen that as the number of battery cycles
increases, the overall IC curve moves towards the lower right corner of the coordinate axis, with the
two IC peaks particularly prominent moving towards the lower right corner of the coordinate axis.
Therefore, this article selects the horizontal axis (H2) of the first IC peak, the vertical axis (H3) of the
first IC peak, the horizontal axis (H4) of the second IC peak, and the vertical axis (H5) of the second
IC peak as the second, third, fourth, and fifth health features of the battery, respectively.

Figure 9: IC curves under different cycles

In the MATLAB environment, extract the horizontal and vertical coordinates of the two peaks
of each IC curve as health factors. The specific operation is to divide the IC curve into two parts,
left and right, with 3.86 V as the boundary, and determine the peak value of each part in bubble
sorting. The variation pattern of the four health features with the number of battery cycles is shown
in Figs. 10–13. From the four graphs, it can be seen that the health features H2, H3, and H5 show
a significant upward/downward trend with the number of cycles, while the fluctuation of H4 is
significant. Therefore, quantitative analysis of health features is necessary.
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Figure 10: Relationship between H2 and the number of cycles

Figure 11: Relationship between H3 and the number of cycles

Figure 12: Relationship between H4 and the number of cycles
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Figure 13: Relationship between H5 and the number of cycles

4.3 Correlation Analysis between Health Features and SOH
In order to quantitatively analyze the relationship between five health features and battery SOH,

this article uses the Pearson correlation coefficient method for correlation analysis. The principle is
the ratio of the covariance of variables X and Y to the standard deviation of X and Y . The formula is:

r =
N∑

i=1
(Xi−X)(Yi−Y)√√√√ N∑

i=1
(Xi−X)

2
√√√√ N∑

i=1
(Yi−Y)

2
, where N represents the number of samples, Xi represents the inth observation

value of the variable X , X represents the average value of the variable X , Yi represents the inth
observation value of the variable Y , and Y represents the average value of the variable Y .

The range of Pearson correlation coefficient is between [−1, 1]. The correlation coefficient shows
directionality: if the correlation coefficient is close to 1, it indicates a high positive correlation between
the two variables; If the correlation coefficient is close to −1, it indicates a high negative correlation
between the two variables; If the correlation coefficient is close to 0, it indicates that the two variables
are independent of each other and have no correlation. Specifically, if the absolute value of the Pearson
coefficient is between 0.8–1.0, it indicates extreme correlation between the two variables. If it is between
0.6–0.8, it indicates strong correlation between the two variables. If it is between 0.4–0.6, it indicates
moderate correlation. If it is between 0.2–0.4, it indicates weak correlation between the two variables.
If it is between 0–0.2, it indicates extremely weak or no correlation between the two variables. From
the table below, it can be seen that features 1, 2, 3, and 5 have a strong correlation with battery SOH,
while feature 4 has a strong correlation with battery SOH. Therefore, all five health features can be
used as indicators for battery SOH estimation. Table 1 shows the Pearson coefficients between health
factors and battery capacity.

Table 1: Pearson relationship between health features and battery capacity

H1 H2 H3 H4 H5

Pearson coefficient 0.9928 0.9039 0.8239 0.7575 0.9289
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5 WOA-RBF Algorithm for Estimating Battery SOH
5.1 Whale Algorithm WOA

WOA is an algorithm that simulates whales hunting prey, covering three types of predation
processes: encirclement, predation, and search [13]. The specific predation process is as follows:

(1) Surrounding

In the WOA algorithm, the position of prey is treated as the optimal solution, and whales can
find the position of prey and surround them [14]. The iterative process of the WOA algorithm is the
process of whales surrounding their prey. Each iteration calculates the fitness of the whale population
according to the objective function, and the whale position with the highest fitness value is used as the
optimal solution for this iteration, while other whales surround towards the direction of the optimal
solution. The specific process is as follows:
→
D =

∣∣∣→
C · →

X b (t) − →
X (t)

∣∣∣ (1)

→
X (t + 1) =

∣∣∣→
X b (t) − →

A · →
D

∣∣∣ (2)

In the formula, in the tnth iteration process,
→
X (t) represents the current whale position and

→
X b (t)

represents the current optimal position.
→
D represents the enclosing step size, where have the

→
A and

→
C

following specific meanings:
→
A = 2

→
a · →

r − →
a (3)

→
C = 2 · →

r (4)

In the formula,
→
a represents a gradual linear decrease from 2 to 0;

→
r is a random number within

the interval of [0, 1].

(2) Predation

After completing the encirclement behavior, whales will engage in contraction encirclement and

spiral approach to launch an attack. Control
→
A by linearly reducing

→
a in Eq. (3), this is the contraction

and enclosure behavior of whales; Whales use spiral swimming to shrink their encirclement and
gradually approach their prey, which is their spiral approach behavior. The expression of this spiral
approximation equation [15] is shown in Eq. (5).
→
X (t + 1) = →

D∗ · e(nl) · cos (2π l) + →
X b (t) (5)

In the formula, l is a random number within the interval [−1, 1], and n is the helix shape constant.
→

D∗ is the distance between the current prey and the current whale position. In the predation stage,
contraction and spiral approximation cannot occur simultaneously. Therefore, a probability function
is determined to distinguish between the two, and a probability threshold of 0.5 is set, which means
that the probability P is randomly taken within the interval [0, 1]. The expression is shown in Eq. (6).

→
X (t + 1) =

{→
X b (t) − →

A · →
D, P ≤ 0.5

→
D∗ · e(nl) · cos (2π l) + →

X b (t) , P ≥ 0.5
(6)
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(3) Search

The WOA model updates positions through random whale individuals [16]. During this process,
whales can either surround themselves towards the optimal whale position or randomly move towards
a certain whale position, making the algorithm more capable of global search. Its mathematical model
is represented by Eqs. (7) and (8).
→
D =

∣∣∣→
C · →

X xrand (t) − →
X (t)

∣∣∣ (7)

→
X (t + 1) = →

X rand (t) − →
A · →

D (8)

In the formula:
→
X rand (t) is the randomly selected whale position. This article chooses to optimize

the radial basis function extension velocity parameters in radial basis function neural networks using
the whale algorithm, and compares it with traditional particle swarm optimization algorithms.

5.2 Radial Basis Function Neural Network RBF
RBF neural network is a single hidden layer feedforward neural network that can effectively

process nonlinear data [17]. Radial basis function neural networks, like traditional neural networks,
are generally divided into three layers: input layer, hidden layer, and output layer, as shown in Fig. 14.

Figure 14: Plot of RBF neural network structure

The input layer is the first step in RBF prediction [18] and is generally selected as the parameter
that the neural network needs to train. The hidden layer is the second step of RBF, and a radial basis
function is required from the input layer to the hidden layer. The radial basis function is a function of
the Euclidean distance from a point in space to a center, which can be a Gaussian kernel function, a
quadratic function, or an abnormal S-type function. Due to the better adaptability of Gaussian kernel
function to different types of datasets, this article chooses Gaussian kernel function as the radial basis
function. Its expression is:

Zi (x) = exp
(

− 1
2σi

2
||x − Ci||2

)
, i = 1, 2, . . . , p (9)
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In the formula: x is the input matrix; Ci is the center of the inth basis function; σi is the variance
of the ith Gaussian function; x − Ci is the Euclidean distance between x and Ci, which is a nonlinear
transformation. The output layer is the third step of RBF prediction, which assigns different weights
to the output values of the hidden layer. Therefore, this process is a linear transformation. The output
result of the RBF neural network is obtained through the non-linear transformation from the input
layer to the hidden layer and the linear transformation from the hidden layer to the output layer.

5.3 WOA-RBF Algorithm
This article combines the advantages of good optimization performance of WOA algorithm and

fewer adjustable parameters of RBF algorithm as an estimation method for battery SOH. Specifically,
the extracted five health features and the actual capacity will be used as inputs and outputs for
the algorithm, and the dataset will be divided. Using the RBF algorithm as the estimation subject,
optimize the extension speed of the radial basis function in the RBF algorithm using the WOA
algorithm, and use the root mean square error as the fitness function of the WOA algorithm. The
parameters of the WOA algorithm are set to a population of 10, a maximum number of iterations of
20, and a dimension of 1. The radial basis function expansion speed in RBF is optimized by the WOA
algorithm. Fig. 15 shows the flowchart of the WOA-RBF algorithm. Table 2 shows the parameter
settings for the WOA-RBF algorithm.

Start

Initialize parameters

Initialize whale 

population position

Calculate the fitness of 

whale populations

Update the position of individual 

whales in the whale population

Update the fitness of

whale populations

Output the position 

of individual whales

Whether fitness function 

error is met

Train and save the network 

through RBF neural network

Optimize RBF 

neural networks

End

Constant current charging time,

peak horizontal and vertical 

coordinates

Calculate and obtain IC 

curve for noise reduction

Voltage and current for 

constant current charging

No Yes

Figure 15: Flow plot of WOA-RBF algorithm

Table 2: Table of the parameter settings for the WOA-RBF algorithm

Training set partition ratio Dimensions Number of search agents Maximum number of iterations

0.7 1 10 20



3234 EE, 2024, vol.121, no.11

6 Result Analysis

To verify the superiority of the WOA-RBF algorithm proposed in this article, LSTM, RBF, and
PSO-RBF algorithms will be used to compare the predicted SOH results with them. Take the five
features extracted in the previous text as inputs for these four models, and the actual SOH value of
the battery as output. Select 70% of the data as training samples and 30% of the data as test samples
to construct four neural network models to compare their predictive performance.

From the prediction results, it can be seen that the model trained by WOA-RBF has better
performance and higher prediction accuracy. Fig. 16 shows the prediction results of battery SOH.
From the prediction results, it can be seen that the WOA-RBF algorithm’s prediction curve is more
in line with the actual curve; Fig. 17 shows the linearity analysis graph. It can be seen from the graph
that the WOA-RBF algorithm is closer to the 45° line compared to the other three algorithms, and the
convergence speed of this curve is faster than the other three algorithms from the beginning.

Figure 16: Prediction plots of four algorithms

Figure 17: Linearity analysis plots of four algorithms
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Fig. 18 shows the absolute error chart. From the absolute error chart, the LSTM algorithm can
control the absolute error within 5%, the RBF algorithm can control the absolute error within 4%,
the PSO-RBF algorithm can control the absolute error within 2%, and the WOA-RBF algorithm
can control the absolute error within 1%; Fig. 19 shows the relative error chart. From the relative
error chart, the relative error of LSTM algorithm can be controlled within 6%, RBF algorithm can be
controlled within 5%, PSO-RBF algorithm can be controlled within 3%, and WOA-RBF algorithm
can be controlled within 2%. Therefore, the WOA-RBF algorithm can train a better model for the
extracted feature features, which has high accuracy in predicting battery SOH. Based on the analysis
results of the comprehensive algorithm prediction chart, linearity chart, absolute error chart, and
relative error chart, it can be concluded that the WOA-RBF algorithm has higher prediction accuracy
and convergence speed.

Figure 18: Absolute error plots of four algorithms

Figure 19: Relative error plots of four algorithms
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Table 3 shows the SOH estimation error tables of different neural network algorithms, quantita-
tively comparing the accuracy of the four algorithms from four aspects: average absolute error, average
relative error, mean square error, and root mean square error. From the table, it can be seen that the
four types of errors of the WOA-RBF algorithm are the smallest, so among the four neural network
algorithms, the WOA-RBF algorithm has the highest estimation accuracy. At the same time, Table 3
introduces a comparison with other literature’s SOH estimation results. The mean squared error of
SOH estimation in Reference [19] (abbreviated as r19 in the table) is greater than that in this paper,
further indicating that the algorithm proposed in this paper has good estimation performance.

Table 3: Table of SOH estimation errors for different neural network algorithms

LSTM RBF PSO-RBF WOA-RBF

Mean absolute error (MAE) 0.01891 0.01131 0.005904 0.003040

Mean relative error (MPP) 2.2489% 1.3461% 0.6999% 0.3581%

Mean squared error (MSE) 0.0004912 0.0001936 4.7576 ∗ 10−5 1.5619 ∗ 10−5

(WOA-RBF)
0.008973
(r19 LSTM)

/ / 0.004551
(r19
ICA-Bi-LSTM)

Root mean square error
(RMSE)

0.02216 0.01391 0.006898 0.003952

7 Extensive Research

This paper selects the CS2-36 dataset as the detailed research object for battery SOH estimation,
and also conducts preliminary exploration on the CS2-35, CS2-37, and CS2-38 datasets. The four
datasets were collected from batteries of the same model through the same experimental process. The
capacity decline curves of the four datasets are shown in Fig. 20. There are outlier points in each
dataset in the figure, and the data processing method described in this paper can be used to remove
outlier data and extract features. In addition, all four datasets have the same downward trend, which is
closely related to the accurate estimation of battery SOH. Therefore, based on the above viewpoints, it
can be predicted that using the estimation process and ICA-WOA-RBF algorithm in this paper, good
SOH estimation results can be achieved on the CS2-35, CS2-37, and CS2-38 datasets.
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Figure 20: Capacity decline curves of four datasets

8 Conclusion

This article extracts the capacity of battery data, obtains the IC curve and denoises it. Pearson
analysis method is used to analyze the correlation, and five features with high correlation with
battery SOH are extracted. Four algorithms are used to train the five feature data, and the following
conclusions are obtained:

(1) The features extracted by the battery constant current charging time and ICA curve method
can establish a good correlation with the battery SOH, which can be better applied to battery SOH
estimation;

(2) From a macro perspective, the estimation results of the four algorithms show that the WOA-
RBF algorithm is closer to the true curve compared to other algorithms, and its linearity curve is closer
to the 45° line;

(3) From a microscopic perspective, the estimation results of the four algorithms show that the
WOA-RBF algorithm has lower absolute error, relative error, and faster convergence speed compared
to other algorithms;

(4) By displaying the capacity decline curves of the four datasets, it is preliminarily concluded that
the method proposed in this paper can still achieve good results in estimating the other three datasets.
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