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ABSTRACT

This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling
(LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational
accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend
calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly
boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and
IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic
Important Sampling (LHIS), which integrates significant sampling with the Monte Carlo method. The comparison
results indicate that the PSO-enhanced method significantly improves the uniformity and representativeness of
the sampling. This enhancement leads to a reduction in data errors and an improvement in both computational
accuracy and convergence speed.
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1 Introduction

With the significant promotion of wind power generation in China, wind turbines in grid-
connected operations have introduced challenges such as voltage fluctuations and substantial har-
monic pollution [1], which adversely impact the stability of grid operations. The reliable operation of
power systems is susceptible to several uncertainties, which can complicate both the planning and
operational phases. To assess these impacts comprehensively, Borkows introduced the concept of
Probabilistic Load Flow (PLF) in 1974 [2].

In the four decades following the introduction of PLF, both domestic and international scholars
have proposed various calculation methods. Currently, there are three primary categories of methods
for calculating probabilistic load flow: simulation [3], approximation [4], and analytical [5]. Simulation
methods mainly include Monte Carlo Simulation (MCS) [6], LHS [7] and Quasi-Monte Carlo
Simulation (QMCS) method [8]. MCS is the most straightforward and commonly used simulation
method. However, it requires a large number of random samples, leading to increased computational
costs; Compared to MCS, QMCS enhances convergence speed and achieves the desired accuracy more
quickly. Nonetheless, there is still room for improvement in computational efficiency. Approximation
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methods primarily involve point estimation methods [9], which are typically easy to understand and
implement. These are computationally efficient, especially for straightforward parameter estimation
problems. However, they tend to overlook the uncertainties in parameter estimation, potentially
resulting in inaccurate outcomes. The chief analytical method involves the semi-invariant method.
This approach replaces complex convolution operations with more straightforward algebraic opera-
tions, significantly enhancing computational efficiency. Recently, the focus of probabilistic load flow
computation has shifted toward probabilistic wind power prediction. Literature [10] discusses the
combination of deep neural networks with convolutional neural networks and multi-head attention
mechanisms to model the output profile of wind turbines in a wind farm. Literature [11] explores
the use of these technologies for probabilistic predictions, addressing wind speed fluctuations and
variability effectively. Integrating these methods into power system planning and operation models can
potentially mitigate the uncertainties and enhance the stability and reliability of power grid operations
in the wake of increasing wind power generation.

LHS is a stratified sampling method that provides a more accurate representation of parameter
variations compared to simple random sampling, thereby producing more reliable estimation results.
Several improvements have been made to LHS, including LHS with random ordering, as well as
with various improved orderings such as Cholesky decomposition [12], single-switch-optimization
algorithm [13], rank Gram-Schmidt algorithm [14], columnwise-pairwise algorithm [15], simulated
annealing algorithm [16], and genetic algorithm [17]. Literature [18] proposes an improved probabilis-
tic tidal current calculation method for LHS that considers non-positive correlation, this method con-
siders non-positive correlation to enhance the homogeneity of LHS samples, effectively handling non-
positive correlation between random variables due to high penetration of distributed power supply.
Literature [19] proposes an improved LHS method, Latin Hypercube Importance Sampling Method
(LHISM), which uses significant sampling before performing LHS and Cholesky decomposition in
correlation calculations to improve efficiency and accuracy. In the literature [20], a modified Latin
hypercube sampling algorithm has been proposed, this algorithm allocates appropriate weights to
the tails of the data, improving data fit and preserving sample data relationships. Literature [21]
proposes an improved LHS based on discrete data and cubic spline interpolation, this improvement
offers high sampling accuracy, addressing some of the shortcomings of traditional LHS. Literature [22]
proposes a CM probabilistic trending algorithm based on Improved LHS (ILHS-CM) by combining
the Q-MCS theory of LHS in response to the traditional PLF using the cumulative method which
requires each input variable to be independent of each other as well as the limitation of Cholesky
decomposition used by the traditional LHS, which is only applicable to positive definite matrices.
These advancements highlight various approaches to refine LHS methodologies, addressing specific
challenges and improving sampling accuracy across different applications.

2 Latin Hypercube Sampling
2.1 Standard Latin Hypercube Sampling

The LHS method is based on the inverse function transformation technique. To implement
the method, follow these steps: It is a stratified sampling method that ensures the sampling
values cover the entire distribution interval of the input random variables, thereby improving
sampling efficiency. Assuming N samples and K input random variables X1, X2, . . . , XK , the
cumulative distribution function (CDF) of variable XK is YK = FK (XK). Divide the distribu-
tion function into N subintervals in the range [0, 1], and in each subspace draw a random
number YK according to the mean distribution. Then, XK is obtained from the inverse function
F−1

K (YK) of the CDF. Each sub-space is extracted only once to avoid repetition. The current method
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used for LHS is mainly Median Latin Hypercube Sampling (MLHS). This involves extracting the
midpoint of the interval as YK each time, and then obtaining the nth (1 < n < N) sampling value of
XK from the inverse function Xk, n to form a K-dimensional sequence:

Xk, n = F−1
K

(
n − 0.5

N

)
(1)

where N is the number of samples and K is the number of input variables.

2.2 LHIS
The principle of Latin Hypercube Importance Sampling (LHIS) is to identify the sample point

with the highest probability density value. This method involves stratifying input random variables and
selecting random sample points within each hypercube according to their importance in the original
probability density function (PDF).

Specifically, LHIS ranks the random sampling points in each hypercube based on their importance
and selects the point with the highest probability density value. This procedure ensures that the chosen
sample point is the one closest to the expected value. The nth sampling value of XK is then determined,
where N is an even number:

Xk, n =
{

F−1
k (n/N) n/N ≤ 0.5

F−1
k ((n − 1)/N) n/N > 0.5

(2)

3 Improved Latin Hypercube Sampling

The Particle Swarm Optimization (PSO) algorithm is a powerful optimization technique inspired
by the collective behavior observed in nature, particularly in flocks of birds and schools of fish as they
search for food. Proposed by Kennedy and Eberhart in 1995 [23], PSO uses a swarm of particles where
each particle represents a potential solution within the solution space. Each particle has a position and
velocity, which dynamically evolve based on both its individual experience and the collective experience
of the swarm.

PSO can be effectively utilized to enhance the LHS method, ensuring a more uniform distribution
of samples across the design space. This is particularly vital in high-dimensional spaces where it is
challenging to cover all regions adequately. By integrating PSO with LHS, it becomes possible to
achieve higher representativeness and accuracy with a reduced number of samples.

3.1 Inertia Weights and Learning Factors
Decreasing the inertia weight is a common strategy in particle swarm optimization algorithms

to balance global exploration and local exploitation during the particle search process. Various
methods exist for reducing the inertia weight, with linear reduction being one of the most widely-used
approaches:

ω(t) = ωmax − t
T

· (ωmax − ωmin) (3)

In the equation, T represents the maximum number of iterations, ωmax denotes the maximum value
of inertia weights, and ωmin signifies the minimum value of inertia weights.

In particle swarm algorithms, it is typically necessary to achieve a balance between individual and
social learning in order to achieve an optimal balance between local and global search. Consequently,
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the selection of appropriate learning factors c1 and c2 represents a pivotal aspect in optimising the
performance of the algorithm. A common approach is to set the values of c1 and c2 equal to each
other and both to be constants.

3.2 Steps for PSO to Improve LHS
Sure, here’s a clear and concise breakdown of the PSO-LHS (Particle Swarm Optimization-Latin

Hypercube Sampling) algorithm’s steps:

1) Generate initial Latin Hypercube samples: An initial LHS sample matrix is generated based on
the required sample size and dimension. The sample capacity is N and the dimension is D. The size of
the sample matrix S is N × D.

2) To initialize the particle swarm: Using the LHS samples as the initial position of each particle.
Each particle should represent an LHS sample. The position and velocity of each particle in the swarm
should be initialized.

3) Define the fitness function: In this case, the fitness function is the minimum distance and can
be expressed as:

f (d) = mini �=j

√∑D

k=1

(
sik − sjk

)2
(4)

In the equation, D represents the dimension, d represents the distance between the samples, i and
j represent the number of sample points.

4) Updating each particle’s location and velocity: Updating each particle’s location and velocity
according to PSO algorithm rules, influenced by individual best location and global historical best
location.

5) Fitness evaluation: At its new position, determine the fitness of each particle.

6) To update the individual and global best locations, check whether the new location is better
than the current individual or global best location, and update the corresponding best location.

7) Termination condition judgement: To see whether the algorithm has converged, check that
the maximum number of iterations has been reached, if it meets, the algorithm ends and outputs the
current best LHS sample; if it does not meet, return to the third step to continue iteration.

The flowchart of PSO-LHS is shown in Fig. 1.

4 Probabilistic Tidal Current Calculation Based on PSO-LHS
4.1 Input Random Variable Model
4.1.1 Probabilistic Modeling of Wind Power Generation

The Weibull distribution can adapt to various shapes of wind speed distribution curves and
accurately fit actual wind speed data, offering a precise depiction of wind speed patterns. Consequently,
this paper employs the two-parameter Weibull distribution to model wind speed distribution. Its
probability density function is:

f (v) = k
c

(v
c

)k−1

exp
[
−

(v
c

)k
]

(5)
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Figure 1: Flowchart of probabilistic tidal current calculation for PSO improved LHS

In this example, the wind speed is represented by v, the shape parameter by k, and the scale
parameter by c, where k = 11.8003 and c = 4.1416.

The relationship between wind power output active power and wind speed can be described by
the following equation:

Pwg =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, v < vI

0, v > vO

Pr

v − vin

vr − vin

, vI < v ≤ vR

Pr, vR < v ≤ vO

(6)

where Pr is rated power of the wind farm, vI is cut-in wind speed, vR is rated wind speed and vO is
cut-out wind speed; Pr = 200 MW, vI = 4 m/s, vR = 15 m/s, vO = 25 m/s. Power factor of 0.95.
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4.1.2 Load Probability Model

Loads usually exhibit uncertain characteristics and can generally be represented by a normal
distribution:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (P) = 1√
2πσP

exp
[
−(P − μP)

2

2σ 2
P

]

f (Q) = 1√
2πσQ

exp

[
−

(
P − μQ

)2

2σ 2
Q

] (7)

where μP and μQ are the average values of active power and reactive power, respectively, σP and σQ are
the standard deviations of active power and reactive power, respectively. The normal distribution has
a mean of 10% of the expectation and a standard deviation of 10% of the expectation.

4.2 Criteria for Evaluating the Results of Tidal Current Calculations
The validation of the PSO-LHS algorithm is performed by comparing its Probabilistic Load Flow

(PLF) results with those obtained from the Latin Hypercube Importance Sampling (LHIS) and Monte
Carlo Simulation (MCS) methods. Assuming the accuracy of the PLF results from 10,000 MCS runs,
the expected value and standard deviation of the output random variable serve as evaluation criteria.
The effectiveness of the PSO-LHS algorithm is then assessed through the relative error in both the
expected value and standard deviation.

εμ = |μ − μs|
|μs| × 100% (8)

εσ = |σ − σs|
|σs| × 100% (9)

where μ and σ represent the expected value and standard deviation of the output variables obtained by
the method proposed in this paper, while μS and σS represent the baseline expected value and standard
deviation of the output random variables. The overall error is evaluated by averaging the relative error
of the expected value (εμ) and the relative error of the standard deviation (εσ ) averaged over the output
random variables at a given node and on a given branch. The overall error is evaluated by averaging the
relative error of the expected value (εμ) and the relative error of the standard deviation (εσ ) averaged
over the output random variables at a given node and on a given branch.

4.3 Setting and Testing of Initial Parameters of PSO-LHS Algorithm
To evaluate the impact of inertia weight and learning factors on the PSO-LHS (Particle Swarm

Optimization-Latin Hypercube Sampling) algorithm, this study utilized a two-case experimental
design. The first case involved a constant inertia weight with varying learning factors, and the second
case involved varying inertia weights with a constant learning factor. The experiments were conducted
in a two-dimensional space with a sample size of 30 particles and a maximum of 50 iterations.

1) Firstly, the inertia weight is set to 0.5, and the learning factor is changed to perform sampling,
and the sampling results are shown in Fig. 2.

Fig. 2 shows that when the inertia weights remain constant while the learning factors are gradually
reduced, the distribution graph of the sampling results exhibits minimal variation. This indicates that
altering the learning factors has a negligible impact on the PSO-LHS algorithm.
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Figure 2: The distribution of the results of the sampling for the four learning factors

2) Next, the learning factor is set to a constant and the inertia weights are varied to perform the
sampling, and the sampling results are shown in Fig. 3.
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Figure 3: The distribution of the sampling results for the four inertia weights

Fig. 3 shows that when the learning factor is held constant, the sampling distribution graph
gradually disperses from concentration as the inertia weight decreases. It can be observed that the
inertia weights exert a greater influence on the PSO-LHS algorithm.

Additionally, it was determined that the sampling distribution is most uniform when the inertia
weights are reduced to 0.5, and in decreasing order, the distribution gradually transitions from
scattered to compact (the distribution plot for ω = 0.5 is provided in Section 5.1). In light of the
aforementioned sampling outcomes, the PSO algorithm presented in this paper employs a dynamic
decreasing strategy based on inertia weights (with an interval of [0.4, 1.5]), and the learning factor is
a constant value of 1.5.

5 Algorithm
5.1 IEEE34 Node Simulation Results

Fig. 4 illustrates the structure of the IEEE34 node system with wind power connected to node 33.
The base power value of the system is 100 MVA, the rated power of the wind power is 200 MW, the
frequency is 50 Hz.

W

1
2 3 4

5

6
7

8 9

10

11

12

13 14

15

16

17 18

19

20

21

22

23

24

25

26

27

28 29 30

31

32

33 34

Figure 4: IEEE34 node system structure diagram
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The specific parameters of load active power and load reactive power are shown in Table 1.

Table 1: Power distribution of loads

Node number Active standard value/MW Standard value of reactive power/mvar

2 0.191 0.0097
4 0.00529 0.00274
9 0.00013 0.00007
10 0.0113 0.00584
11 0.0149 0.00771
12 0.01184 0.02336
13 0.00206 0.00107
17 0.00124 0.00064
20 0.00437 0.00226
22 0.01 0.00517
23 0.027 0.02162
24 0.05 0.05
26 0.04657 0.02972
27 0.00304 0.00157
28 0.0131 0.00677

The following simulation results can be obtained through simulation:

1) In a two-dimensional space with a total of 30 samples, the PSO-LHS and LHIS algorithms
are employed for sampling purposes. The PSO-LHS algorithm utilises an inertia weight of 0.5 and a
learning factor of 1.5, resulting in a sampling outcome depicted in Fig. 5.
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Figure 5: Sample distribution for the two sampling methods

Fig. 5 shows that the samples generated by PSO-LHS exhibit a more uniform distribution,
which effectively reduces the aggregation of sample points and enhances the representativeness of the
generated samples.
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2) The expected value error and standard deviation of the comparison between the two methods
of PSO-LHS and LHIS are shown in Fig. 6.

Figure 6: Mean relative error of expected value and standard deviation of voltage amplitude

From Fig. 6, the expectation and standard errors of the output random variables of these two
methods are reduced with the increase of the sample size, and it can be seen from Fig. 3 that PSO-
LHS can better reduce the error and improve the accuracy for the same sample size.

3) Fig. 7 displays the probability density curves and accumulative distribution curves of the
magnitude of the node 33 voltage for sample sizes of 800.

Figure 7: Node 33 voltage probability density curve and cumulative distribution curve

Meanwhile, Figs. 8 and 9 illustrate the probability density curves and cumulative distribution
curves of the effective and effective magnitudes of branches 31–33 for sample sizes of 800. Fig. 7 shows
that the probabilistic tidal current calculation results of PSO-LHS are similar to the baseline values
obtained from 10,000 Monte Carlo calculations.
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Figure 8: Probability density and cumulative distribution curves for reactive power in branches 31–33

Figure 9: Probability density and cumulative distribution curves for active power on branches 31–33

4) Table 2 presents a comparative time analysis of three methods. Where the computation time of
the PSO-LHS algorithm is the average of 100 computation results.

Table 2: Comparison of the calculation time of the three methods

Methodologies Sample size Computation time/s

PSO-LHS 100 10.52
200 19.67
400 26.85
800 35.16
1000 43.94

LHIS 100 7.25

(Continued)
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Table 2 (continued)

Methodologies Sample size Computation time/s

200 15.61
400 21.64
800 32.58
1000 39.27

MCS 10,000 114

A comparison between the PSO-LHS and LHS algorithms indicates that both exhibit similar
execution times. However, the PSO-LHS algorithm converges more slowly due to the additional steps
involved in its PSO iterations and optimization search. Despite this slower convergence, the PSO-LHS
algorithm demonstrates higher accuracy than the LHS algorithm.

5.2 IEEE118 Node Simulation Results
The validation was conducted using the IEEE118-node system. Furthermore, the results of the

probabilistic trend calculations, derived from 10,000 iterations of the Monte Carlo method, were used
as a baseline to determine the expected values and standard deviations of the voltages at node 33, the
voltages in branches 31–33, and the branch powers. These results were evaluated using average relative
errors, as shown in Table 3.

Table 3: Comparison of the mean relative error of the expected value and standard deviation of the
node 33 voltage and branch power of the two methods

Methodologies Sample size εμ/% εσ/% ε
P
μ
/% ε

P
σ
/%

PSO-LHS 100 0.065 0.012 0.071 0.023
200 0.056 0.008 0.058 0.012
400 0.032 0.004 0.029 0.011
800 0.016 0.006 0.021 0.013
1000 0.009 0.005 0.013 0.009

LHIS 100 0.072 0.024 0.071 0.023
200 0.064 0.019 0.058 0.012
400 0.042 0.020 0.029 0.011
800 0.021 0.017 0.021 0.013
1000 0.014 0.013 0.013 0.009

As can be seen in Table 3:

1) Mean Relative Error of Voltage Expectation: The error associated with PSO-LHS is consistently
lower than that of LHIS, with a significant reduction as the sample size increases. At a sample size of
1000, PSO-LHS achieves a minimum error of 0.009%, compared to LHIS’s error of 0.014%.
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2) Mean Relative Error of Voltage Standard Deviation: Similarly, the error for PSO-LHS is lower
than that for LHIS, especially at smaller sample sizes, where the difference is more pronounced. At
a sample size of 400, PSO-LHS records the smallest error at 0.004%, while LHIS reports an error of
0.020%.

These findings demonstrate that the PSO-LHS algorithm is consistently more accurate than LHIS,
highlighting its superior potential for applications in large-scale node systems.

6 Conclusion

In this paper, we address the issues of long computation time and low computational accuracy in
probabilistic trend calculation based on MCS and LHS. We propose an improved method using PSO to
enhance LHS, termed PSO-LHS. This method has the following characteristics: (1) PSO-LHS achieves
similar accuracy to that obtained by MCS with 10,000 iterations on a small scale, demonstrating
its efficiency in reducing the sampling size; (2) Within a sampling range of 100 to 800, PSO-LHS
outperforms LHS and MCS in terms of accuracy. Hence, this proposed method is highly suitable for
probabilistic tidal current calculations in wind power systems.

Acknowledgement: I would like to thank the editors and the anonymous reviewers for the helpful
comments and suggestions that improve the presentation of the manuscript.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm that their contributions to the paper are as follows:
research conception and design: Shilin Song, Xingsheng Wang; data collection: Xingsheng Wang;
analysis and interpretation of results: Shilin Song, Xingsheng Wang; draft manuscript preparation:
Shilin Song. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] F. Alasali, K. Nusair, H. Foudeh, W. Holderbaum, A. Vinayagam and A. Aziz, “Modern optimal

controllers for hybrid active power filter to minimize harmonic distortion,” Electronics, vol. 11, no. 9, Apr.
2022, Art. no. 1453. doi: 10.3390/electronics11091453.

[2] B. Borkowska, “Probabilistic load flow,” IEEE Trans. Power Appar. Syst., vol. 93, no. 3, pp. 752–759, May
1974. doi: 10.1109/TPAS.1974.293973.

[3] Y. H. Luo, X. Wang, and S. J. Yan, “Risk assessment of photovoltaic distribution network based on adaptive
kernel density estimation and cumulant method,” Energy Rep., vol. 8, no. 13, pp. 1152–1159, Nov. 2022.
doi: 10.1016/j.egyr.2022.08.156.

[4] L. A. Gallego, J. F. Franco, and L. G. Cordero, “A fast-specialized point estimate method for the
probabilistic optimal power flow in distribution systems with renewable distributed generation,” Int. J.
Electr. Power Energy Syst., vol. 131, Oct. 2021, Art. no. 107049. doi: 10.1016/j.ijepes.2021.107049.

https://doi.org/10.3390/electronics11091453
https://doi.org/10.1109/TPAS.1974.293973
https://doi.org/10.1016/j.egyr.2022.08.156
https://doi.org/10.1016/j.ijepes.2021.107049


3302 EE, 2024, vol.121, no.11

[5] Y. F. Sun et al., “Probabilistic load flow calculation of AC/DC hybrid system based on cumulant method,”
Int. J. Electr. Power Energy Syst., vol. 139, Jul. 2022, Art. no. 107998. doi: 10.1016/j.ijepes.2022.107998.
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