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ABSTRACT

In recent years, the large-scale grid connection of various distributed power sources has made the planning and
operation of distribution grids increasingly complex. Consequently, a large number of active distribution network
reconfiguration techniques have emerged to reduce system losses, improve system safety, and enhance power
quality via switching switches to change the system topology while ensuring the radial structure of the network.
While scholars have previously reviewed these methods, they all have obvious shortcomings, such as a lack of sys-
tematic integration of methods, vague classification, lack of constructive suggestions for future study, etc. Therefore,
this paper attempts to provide a comprehensive and profound review of 52 methods and applications of active
distribution network reconfiguration through systematic method classification and enumeration. Specifically,
these methods are classified into five categories, i.e., traditional methods, mathematical methods, meta-heuristic
algorithms, machine learning methods, and hybrid methods. A thorough comparison of the various methods is
also scored in terms of their practicality, complexity, number of switching actions, performance improvement,
advantages, and disadvantages. Finally, four summaries and four future research prospects are presented. In
summary, this paper aims to provide an up-to-date and well-rounded manual for subsequent researchers and
scholars engaged in related fields.
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Active distribution network

Bat algorithm

Branch exchange method

Cuckoo search algorithm

Discrete artificial bee colony

Distributed network

Distributed generation

Deep learning

Discrete monkey algorithm

Energy storage system

Equilibrium optimizer algorithm

Firework algorithm

Harmony search algorithm

Improve cuckoo search algorithm

Invasive weed optimization

Improved adaptive imperialist competitive algorithm
Improved shuffled frog leaping algorithm
Genetic algorithm

Loop cutting method

Lagrange relaxation approach

Multi-object artificial bee colony

Modified plant growth simulation algorithm
Modified whale optimization algorithm

No proposed

Optimal flow pattern

Passive distribution network

Reinforcement learning

Slime mold algorithm

Tabu search algorithm

Active power loss of the network, kW
Number of the branch

Total number of branches

Branch impedance, Q2

Opened and closed state of the branch
Average annual outage time of load node i, s
Number of users at load node i

Average load at load node i, kW

Actual values of distribution network node voltages, kV
Conductance between nodes i and j, S

Phase angle difference between nodes i and j, °
Flexible load, kW

Current velocity of the ith particle

Active power flowing through the branch /, kW
Reactive power flowing through the branch /, kVar
Voltage at the end node of the branch /, kV
Capacity of branch /, kW

Total number of nodes
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U, Average voltage of all nodes, kV

K Total number of line switches in the network

Vix Rated values of distribution network node voltages, kV
X Current position of the ith particle in search space

w Inertia weight

r, 1 Two random numbers

i Average failure rate of load node i

C, G, Acceleration coefficients

L, U, Upper and lower limits of the search space

1 Introduction

As the last link in the power supply system [1], the distribution network directly distributes electric
energy to end-users to ensure a reliable power supply [2]. For the safety of the grid, the structure
of distribution networks often is shifted from a mesh topology to a radial one [3]. Note that the
planning of closed-loop distribution grids and the characteristics of open-loop operation provide
the groundwork for such changes [4]. Furthermore, the maturation of power electronics [5], artificial
intelligence [6], communication engineering [7], and other technologies, coupled with the widespread
implementation of distributed power sources [8], energy storage [9], and demand-side response [10]
accelerate the development of active distribution networks (ADN) but introduce increasing complexity
to the network structure [11].

Active distribution network reconfiguration (ADNR), as a crucial technology for smart grid
development [12], offers several benefits such as reducing network losses [13], eliminating overloads
[14], improving power quality [15], and increasing the capacity for distributed generation (DG) grid
connection [16]. It can be viewed as a multi-objective and multi-constraint problem. Currently, various
methods for ADNR have been proposed. Merlin and Back first formulated the distributed system
reconfiguration (DSR) method as a mixed-integer nonlinear optimization problem to minimize energy
loss [17]. Based on the typical daily load and output prediction of DG, Reference [18] utilized an
improved optimal fuzzy C-mean clustering method to address the dynamic reconfiguration problem
for minimizing feeder losses. To enhance the security and cost-effectiveness of distribution network
operations, another study [19] employed the limit scenario method to robustly optimize ADN and
system reactive voltage, which resolved the volatility issues associated with integrating distributed
energy sources. Meanwhile, more studies focus on ADNR models. Literature [20] proposed a robust
model considering generation and load uncertainty, thus effectively incorporating uncertain load
demand, and fluctuating generation of DG into the reconstruction framework, and enhancing the
accuracy of the reconstruction model. The study [21] provided the radial constraints applicable to
different reconstruction methods from the perspective of reconstruction model solution accuracy and
solution speed.

In the past few decades, a large number of ADNR methods have been proposed. To provide a
comprehensive overview of the existing research methods for ADNR, this paper undertook an overall
statistic on relevant literatures published from 2013 to September 2023. Furthermore, Fig. | depicts the
statistics results, which reveal an increasing research interest in ADNR, thus indicating its emergence
as a prominent and popular research topic.
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Figure 1: Statistic results of ADNR methods from 2013 to September 2023

Thus far, several reviews on ADNR have been published. However, they did not provide a com-
prehensive and systematic summary of modeling technology, constraint condition, test system, and
evaluation criteria, especially the key indicators, discussion of the targeted application, and research
recommendations for ADNR. Therefore, this paper aims to provide a fully comprehensive and
integrated review of the various methods used in ADNR. Specifically, the paper seeks to systematically
analyze and compare different methods and develop a detailed evaluation of each method to give
a comprehensive reference guide for future in-depth research in related fields. Specifically, Table 1
demonstrates the highlights and limitations of existing reviews.

Table 1: Evaluation of several previous reviews

Literature/Year Highlights Limitations

Sultana et al. (2016) [22] e Consider an islanding model e No detailed description and
evaluation of the study
e Vague or incomplete

classification
Mishra et al. (2017) [23] e Detailed literature review is e Lack of systematic integration of
presented methods
e Various objective functions are e Lack of quantitative evaluation
reviewed of methods

e Mecthods of PDNR are classified
in chronological order

(Continued)
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Table 1 (continued)

Literature/Year Highlights Limitations
Badran et al. (2017) [24] e Focus on power distribution e Lack of specific parameters
systems containing distributed e Lack of discussion of targeted
power supplies applications
e Review meta-heuristics, artificial ¢ Lack of recommendations for
intelligence methods future research
e Overlook some advanced
methods

Guimaraes et al. (2021) [25] o Consider distribution network e Lack of evaluation system
reliability, network loss

Mahdavi et al. (2021) [26] e Highlight switch time, capacitor e Lack of visual evaluation
placement, electricity market, e Insufficiently detailed vision of

reliability the future

e Consider the complete scope
of DSR

e Integrate various methods
systematically

Mahdavi et al. (2021) [27] e A detailed overview of e Lack of quantitative evaluation

meta-heuristics is presented of methods

e The mechanism and application e Non-intuitive presentation of
of the proposed algorithm are advantages and disadvantages of
deeply analyzed various methods

e Propose a novel ADNR method e Incomplete overview of ADNR
and validate the feasibility methods

For the sake of overcoming these gaps addressed in Table 1, this paper aims to provide a fully
comprehensive and integrated review of the various methods used in ADNR. Specifically, each method
will be systematically compared, analyzed, and evaluated to formulate a reliable reference guide for
future in-depth research in related fields. Fig. 2 illustrates the tackled problems and main goals.

Therefore, this paper aims to provide a fully comprehensive and integrated review of the various
methods used in ADNR. Specifically, the paper seeks to systematically analyze and compare different
methods and develop a detailed evaluation of each method to provide a comprehensive reference guide
for future in-depth research in related fields. The main contributions of this paper are as follows:

e A comprehensive review of existing algorithms for ADNR is given, which are classified into five
categories, i.e., traditional, mathematical, meta-heuristic, machine learning based method, and
hybrid algorithm. Besides, the specific optimization structures and strengths and weaknesses of
each algorithm are detailly introduced and analyzed.

e A set of systematic scoring guidelines based on theoretical and practical aspects are developed
to analyze and evaluate various methods profoundly and objectively. Which theoretical index
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incorporates optimization objective algorithm structure, and hyperparameter while the practi-
cal one includes economic cost, power and voltage loss, and practical application.

e Insightful suggestions/recommendations are proposed for further improvements of ADNR
from four different aspects, i.e., technology, constant, testing system, and network.

. . . This review aims to achieve the
Main problems in current reviews . .
following goals

The 52 ADNR methods are

Lack of systematic introduction - S
described and classified into

and categorization of the ADNR

methods five categories

- . . The initial configuration of
Lack of discussion of the

- . . common test systems is given
configuration of the test network

) 1

Improve
Objective evaluation of different
Lack of objective evaluation ADNR methods from both
system theoretical and practical
perspectives

Lack of practical perspectives Suggestions for ADNR research in

for future works technology, constants, test systems,

and networks areas
\ / k. /

Figure 2: Tackled problems and main goals of this paper

The remainder of this paper is organized as follows: Section 2 provides the technical background
of ADNR, summarizes the mathematical modeling of the ADNR process, provides detailed objec-
tive/constraint formulations, and summaries the initial state of the network configuration. Section 3
reviews 52 methods for ADNR, classified into five categories, and analyzes and compares the
theoretical properties of each method, such as complexity, practicality, number of switching actions,
and reconfiguration effectiveness. Section 4 provides a discussion of this literature. Finally, Section 5
offers a thorough analysis, summary, suggestions, and outlooks for future research in this area.

2 Active Distribution Network Reconfiguration

The ADN is designed as a closed-loop system with an open-loop operation, and it has a radial
structure [28]. During normal operating conditions, the sectional switch is closed and the contact
switch is disconnected, which allows the network to operate in a radial configuration [29]. In this state,
network reconfiguration can be implemented to achieve load balancing, eliminate overloads, reduce
network loss, improve voltage quality, and enhance the overall economic performance of the system.
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2.1 Distribution Network
2.1.1 Passive Distribution Network

Due to the safe power supply development concept, the operation, control, and management
modes of traditional distribution networks are passive, also referred to as passive distribution networks
(PDNs) [30], as depicted in Fig. 3. Electric energy is primarily generated by large power plants,
transmitted through the transmission grid, and ultimately distributed to consumers via the distribution
network [31]. In PDNSs, electric energy flows from the grid to the load, which leads to the consideration
of one-way energy flow characteristics in various aspects such as line selection [32], equipment
selection, relay protection, power flow control, and metering [33]. The natural distribution of load
demand in PDNs cannot be automatically adjusted, and abnormal operating states and faults cannot
be controlled in advance [34], making it difficult to ensure the quality of power supply in all directions
and achieve optimal economic operation of the entire distribution system [35].

—
mmercial Power

—|9—

Transmission System Substation System
Hydroelectric Power

Residential Electric Power

Figure 3: Passive distribution network architecture

The connection of DG to the distribution network will have a significant impact on power flow
direction and magnitude [36], short-circuit current direction and magnitude [37], equipment capacity
and selection [38], voltage and reactive power distribution [39], power factor and harmonics, protection
coordination, and settings, automation settings and management, fault restoration, and other factors
[40]. Therefore, to achieve the intelligent transformation of traditional distribution networks [41], it is
crucial to establish an ADN with active control and management functions [42,43].

2.1.2 Active Distribution Network

ADN can actively control various DGs [44] via advanced technologies such as information [45],
communication, and power electronics to manage power flow based on flexible network topology
[46], as shown in Fig. 4. Its control purpose is to increase the capacity of acceptable renewable energy,
enhance the utilization rate of distribution network assets, delay the investment in upgrading [47], and
improve the quality and reliability of power supply for users [48].

Compared to the ADN, which actively controls and manages distributed energy devices in
different areas through a flexible network topology [49], the traditional distribution network is based
on the one-way power distribution network between grid power supply and user power consumption
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[50,51]. The traditional distribution network does not participate in system frequency regulation,
voltage, and reactive power control, and does not provide ancillary services to the system [52].

|
lectric Automobile

Charging Pile Distribution Management system Accumulated Energy

Distribution Network

Figure 4: Distribution network architecture

2.2 Demand Response

The ADN is characterized by high penetration of distributed power sources [53] and flexible
network topology [54]. These characteristics can have an impact on the magnitude of supply voltage,
network loss [55], voltage distribution, and frequency range of unit operation in the power system
[56]. As a result, the ADN requires cooperation with demand-side response, to enable the integration
of distributed power, such as DG [57], ESS, and other distributed resources [58].

Demand-side response (DSR) is a strategy used to manage the balance between the supply and
demand of the power system. When there is an imbalance between supply and demand [59], DSR
involves customers taking an active role in adjusting their regular power consumption patterns in
response to price incentives from the power company. This may involve reducing or shifting their
load during a certain period to improve the operational efficiency of the power system [60]. DSR
aims to improve the reliability and stability of the power system by matching supply and demand in
real-time [61].

Demand-side response measures can be classified into two types: price-based demand-side
response and incentive-based demand-side response [62]. Price-based demand-side response refers
to customers arranging and adjusting their electricity consumption time [63] and mode based on
targeted tariffs set by power supply companies [64,65]. Incentive-based demand-side [66] response
means that power supply companies use economic incentives [67] or compensation mechanisms to
motivate customers to adjust or cut their loads during peak hours based on load availability [68].

The price-based demand-side response includes three types of tariffs:

e Time-sharing tariff: This tariff divides electricity into three prices (peak, flat, and valley) based
on the user’s electricity consumption time.
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e Real-time tariffs: This tariff fluctuates in real-time according to the cost of electricity purchased
in the market and can effectively reflect the supply and demand of electricity.

e Peak tariff: This tariff sets a high price during emergencies to encourage users to use electricity
at off-peak times or reduce consumption.

Moreover, the incentive-based demand-side response includes several measures:

e Direct load control: The power supply company adjusts or shuts down the customer’s electricity
consumption equipment remotely during peak or emergency times and compensates the
customer.

e Interruptible load: After the customer signs a contract with the power supply company, the
company informs the customer in advance of the outage time, capacity, and compensation
method. If the customer defaults on the contract, they will be punished.

e Demand-side bidding: The customer participates in market bidding and, after a consensus is
reached between supply and demand, cuts the load value.

Consequently, demand-side response can promote the transformation of traditional distribution
networks while ensuring the safe and efficient operation of ADNS. It can also enable distributed power
supply, achieve large-scale access to distributed power supply, and optimally allocate resources on both
the supply and demand sides [69].

2.3 Distribution Network Switch

As a large number of distributed power sources and ESSs are put into operation, the distribution
network experiences spatial and temporal differences in load [70], uneven distribution of tidal currents,
and large network losses [71]. In such cases, the topology of the distribution network must be changed
by altering the opening and closing states of switches [72]. Faulty branches can be isolated by closing
some normally open switches [73], while faulty loads can be transferred to other feeders by breaking
some normally closed switches [74]. Reconfiguration of the ADN is achieved by changing the topology
of the network by switching the state of switches in the distribution network [75]. This balances the
load [76], eliminates overload [77], balances current, and reduces network loss [78].

2.4 Reconfiguration Goals
(1) Reduction of power loss

Network loss reduction [79,80] is the most common objective of distribution network reconfigu-
ration [81,82], and its objective function expression is as follows:

SX=2 . RoxIIP (1)

where the control vector X includes three parts. (i) Status of tie switch T, (ii) candidate sectionalizing
switches Sw, and (iii) the power factor of DG units Pf.

[ X = [T, Sw, Pf]

T=[T.T.....Ty,]| o
ﬁ - [SW], SWz, ey SWNlie ]

\ﬁz [Pflspf29""PfNDG]
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(2) Balanced load

The more balanced the load is, the higher the stability margin of the distribution network is [83].
The index describing the degree of load balance is not unique [84], and the load balance coefficient
[85] is usually used as the measurement standard:

2
. Ny S/
min L, = E
I=1 Sl,max

where Ly is the equalization coefficient; S, and S, .., are the apparent power and capacity of branch /.

(€)

The formula that describes the balanced load by maximizing the minimum margin over all lines
is as follows:

min LB == max[minl(sl,max - Sl)] (4)

(3) Power distribution reliability

System reliability indicators [86] considered in distribution network reconfiguration mainly
include the average number of system outages [87], system average outage duration, and customer
average outage demand [8€], etc.:

Total number of customer outages >, A, M,

inSAIFI = _ 5
i Total number of users > M (5
minSAIDI — Total customer outage duration _ > IM, ©

Total number of users > M,
MinAENS — The total power of the systemislow > . LT, .

Total number of users > LM,

where R is the set of load nodes; A, and T; are the average failure rate and the average annual outage
time of load node I; M, is the number of users at load node i; and L, is the average load at load node i.
(4) Voltage quality improvement

Usually, the range of node voltage fluctuation is one of the constraints of distribution network
reconfiguration [89], and some studies also take it as the optimized objective of reconfiguration [90],
expressed by:

. 1 M
min U, = ﬁb Z:l (U,- — Up)2 ®)

where N, is the total number of nodes; U, is the voltage amplitude of node 7, and U, is the average
voltage of all nodes.

Similarly, the formula for measuring the range of node voltage fluctuation is not unique. The
formula for calculating the range of node voltage fluctuation concerning the margins is as follows:

min U, = max {min[min; (U, — U)), min, (U; — U,;n)]} )

where U, 1s the maximum voltages of all nodes; U,,;, is the minimum voltages of all nodes.
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(5) Switch operation times

Frequent changes in the opening and closing state of the switch will reduce the service life of the
switch. To extend the service life of the switch, the number of switch operations should be reduced as
much as possible [91].

min>" x| (10)

where K indicates the total number of line switches in the network; x;, x;,, indicate the opening and
closing state of line switch i before and after reconfiguration; disconnected and closed states are
indicated by ‘0’ and ‘1’, respectively.

(6) Voltage offset index

Node voltage offset size is an important indicator to measure whether the voltage quality is
qualified [92], and the minimum node voltage offset can ensure the safe and stable operation of the
system [93].

. Mo (V= VI'N)2
min Z,»zl e (11)
where M is the number of distribution network nodes; V; and V,y are the actual and rated values of
distribution network node voltages.

2.5 Reconfiguration Constraints
2.5.1 Continuity Constraints

(1) Node voltage constraints
Unin < Ui < U (12)
where U, U..., and U, are the actual voltage and its upper and lower limits of node i.
(2) Bus voltage constraints
Vain <V < Vi (13)
(3) Considering the constraint of the power flow equation of distributed power supply
(00 + Qe + 0 — Ou— U, Z/N=1 U, (Gysin6; 4 B;cos6;) =0
Poo+ P o+ Pi—Pu— U U(G,cos6;+ B;sing;) =0
P = Pp + Pr

PFLmin S PFL S PFLmax

(14)

where P, O, are the active and reactive power of the input transmission line; P}, and Qj, are the
active and reactive power of the DG connected with the ith node, respectively; P/ . and Q' are
the active and reactive power of the non-DG connected with the ith node, respectively; Py;, O, are
the load active and load reactive power of the ith node; B;, 6, are the electric power and phase angle
difference between the nodes i and j; U, and U, are the voltage amplitudes of node i and node j; N is
the total number of nodes connected to node #; P, Py are the flexible load and fixed load power;
P 18 the flexible load power lower limit; Py, is the flexible load power top limit.
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(4) Thermal capacity of distribution lines constraints
|p1| S pi,max V(l) € whne (15)

where p; ... 1S the maximize active power of the ith line.

(5) Active power outputs of DG units

P;[)G.,min S P;I)G S P;I)G,max V(d) € WDG (16)
where P . is the minimum active power of the dth DG units, and Py is the maximum power

factor of the dth DG units.
(6) Power factors of DG units

Pf]gG,min S Png S Png,max V(d) € wDG (17)
where Pf;; . is the minimum power factor of the dth DG units, and Pfj . is the maximum power

factor of the dth DG units.

2.5.2 Discreteness Constraints
(1) Network topology constraints

The topology of the distribution network in the reconfiguration process is radial and must not
create loops or islands.

gk € G/c&gk ¢ Gislanding (18)

where G, is the set of switch combinations of the effective radiation state network; Giganain 1S the set of
switch combinations of networks with islands.

(2) Current safety constraints

I < Ziinj.max:Vl:j € chine (19)

i

where [; .., is the upper limit of the branch current amplitude.

2.6 The Initial State of the Network Configuration

Most of the tests related to ADNR are based on the standard IEEE 33 bus and IEEE 69 bus
systems, with flexible configurations for various hybrid energy sources such as wind, photovoltaic,
fuel cells, and energy storage, depending on the research context. Additionally, a small number of
studies have explored the feasibility of field testing methods. In this paper, we have selected systems
with promising performance for illustration.

(1) Initial state of the standard IEEE33-bus radial distribution system:

The IEEE 33 bus radial distribution system comprises 33 buses with 32 lines and 5 interconnection
switches that are normally open: 33, 34, 35, 36, and 37. The initial data for the 33-bus radial
distribution system is provided in Table Al. In Reference [94], the initial total active power was set
at 3715 kW, the total reactive power at 2300 kvar, and the total active losses were 202.676 kW. In
comparison, in Reference [95], considering the presence of a comprehensive energy system, with the
total active/reactive power of the system unchanged, the active power loss was 211 kW.

(2) Initial state of the standard IEEE69-bus radial distribution system:

The IEEE 69 bus radial distribution system consists of 69 buses with 68 lines and 5 interconnection
switches that are normally open: 69, 70, 71, 72, and 73. The initial data for the 69-bus radial distribution
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system is provided in Table A2. In Reference [94] the system was set to have total power losses of
229.73 kW under rated load conditions. In the Reference [96], the system’s total active load was set at
3802 kW, and total reactive load at 2694 kvar, with initial active losses of 225 kW, and reactive losses
of 102.16 kvar.

(3) The initial state of the actual network test system:

Reference [97] conducted experiments on an actual 47-bus distribution network to validate the
effectiveness of their proposed algorithm. This network comprised 47 buses and 42 branches, and
received power from a 132 kV transmission system. Notably, four key substations were connected to
Buses 2, 17, 34, and 39. Additionally, there were seven tie switches facilitating alterations to the system’s
configuration in response to unforeseen events or contingencies. For a comprehensive overview of the
system’s bus details, please refer to Table A3.

3 Research Methods and Evaluation

3.1 Methods Evaluation Criteria

This paper presents a comprehensive evaluation of each reconfiguration method, focusing on
both theoretical and practical aspects. The theoretical evaluation mainly considers the complexity of
reconfiguration methods, with a particular emphasis on the complexity of meta-heuristic algorithms,
which is largely dependent on the algorithm design. The evaluation indicators used for this evaluation
include (a) multi-objective optimization, (b) hyper-parameters, and (c) operational mechanism. The
application evaluation aims to assess the testing process and practical effectiveness of the reconfigura-
tion methods, which is scored based on three aspects: (a) test system, (b) optimization indicators, and
(c) social indicators. The complexity and applicability of reconfiguration methods increase with the
accumulation of the above evaluation indicators. Thus, the overall score of each ADNR method can
be calculated by:

0=3" of (20)

where Q, represents the overall score of the rth method, (r=1, 2, ..., 52); w, is the percentage of each
indicator. To equally showcase the performance of each method across the six evaluation indicators,
the percentages of the six evaluation indicators are objectively divided equally (w;, = w, = ... =
ws = 1/6); f, is the number of % obtained (e.g., if f; = 4 means that the method of ADNR cons1ders
multi-objective function).

The proportions of each indicator and the detailed evaluation criteria are presented in Fig. 5.

3.2 Research Methods and Evaluation

Up to now, many researchers have conducted research on ADNR. In this chapter, we will divide
the existing research methods into five categories: traditional methods, mathematical methods, meta-
heuristic methods, machine learning methods, and hybrid methods. Next, a detailed introduction of
each method will be offered.
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Figure 5: The methods evaluation criteria

3.2.1 Traditional Method
Loop Cutting Method

The LCM was proposed by Darish Shrimohammad in 1989 [98]. It created multiple loops by
closing all the connection switches in the system and then switches the distribution network system
to a weak grid state and ignoring the OFP of the system branch reactance calculation network [99].
Finally, the distribution system was restored to radial structure operation by turning on the switch
with the minimum current under the optimal flow mode [100].

Although the LCM has low requirements on the network structure of the distribution system,
its calculation efficiency is low, and it cannot be applied to medium and large network structures.
Moreover, it is prone to producing the “island” effect in network reconfiguration [101].

Branch Exchange Method

Compared to the LCM, the BEM started from the radial distribution network and calculated the
power flow distribution and network loss of the distribution network [102]. The distribution network
formed a loop network by closing the connection switch. Therefore, another switch needed to be
opened to restore the network to a radial structure, to balance the load and reduce the network loss.
The process would stop when the system network loss couldn’t be further reduced [103]. The BEM had
the advantage of fast solution speed, but it heavily depended on the initial network structure [104].
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3.2.2 Mathematical Programming Method

Mathematical programming methods have not received much attention due to their complex
operation mechanism. In this paper, we review the mathematical methods that have been proposed
so far, the summary of mathematical programming methods is tabulated in Table 2.

Lagrange Relaxation Approach

The LRA is capable of transforming difficult constraints into a part of the objective function
to maintain linearity. This method yields a superior lower bound and is equivalent to transforming
the (0,1) integer variable into a continuous variable ranging from 0 to 1. The Lagrange multiplier,
which reflects duality information, is obtained as a result of Lagrange relaxation, as illustrated in
Fig. 6. The method further decomposes the coupled variables in the constraint and simplifies them
into independent sub-problems [105].

In the Reference [106], the minimum active power loss of the network was taken as the objective
function, and the distribution network reconfiguration was formulated as a mixed integer linear
programming (MILP) problem. The Lagrange relaxation method was used for dynamic distribution
network reconfiguration. The operational constraints were relaxed, and the Lagrange duality problem
was subsequently decoupled into several independent sub-problems. The solution of the Lagrange dual
problem was then used for heuristic search. The algorithm was tested using two examples, a 15-bus
test benchmark and a 1021-bus real test system, and the results showed that the algorithm was robust
and scalability, making it suitable for large-scale distribution networks.

Standard Newton Method

The Standard Newton method is an iterative derivative algorithm, that utilizes the first and second
derivatives of the objective function at the current iteration point, x;, to approximate the function
and determine the minimum point of the quadratic model as the next iteration point. This process
is repeated until the minimum value meets the required accuracy, and the method is known for its
fast-solving speed and high precision.

In Reference [107], the Standard Newton method was applied to calculate the distribution of
branch current in an integer search, which was then used to guide the status of switches in the
distribution network to search for the global optimal value. While this approach can solve the power
flow calculation with only one iteration, it may be susceptible to local minima.

Simplex Algorithm

The simplex method, proposed by George Dantzig in 1947, is an optimization method for multi-
variable functions. It first finds a basic feasible solution and then determines whether it is the optimal
solution. If not, it finds another solution and continues iterating until it either finds the optimal
solution or determines that it is unbounded [108]. In Reference [109], an improved simplex algorithm
for minimizing distribution network losses based on linear programming was proposed. This algorithm
determined the infeasibility of a given problem during the initialization of the linear programming
solution. By ignoring the voltage constraint and considering line capacity, this algorithm generated a
radial system configuration that ensures the minimum system loss under the line capacity constraint.
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2(x): The original problem
Def g(x): The feasible
£ domain of the original
problem

/ f(x): The problem after
relaxation
-\/J\ Def f(x): Feasible domain of
<

relaxation problem

f(x)
L S >
Def g(x) Solutions
Def f(x)

Figure 6: Schematic diagram of LRA

In recent years, the rapid development of bionics and computer technology has led to wide
attention and application of meta-heuristic algorithms due to their high efficiency, accuracy, and
relative simplicity. Meta-heuristic algorithms can effectively balance the exploration of the local and
full-domain equilibrium when dealing with optimization problems, enabling them to quickly find the
full-domain optimal solution. As a result, many meta-heuristic algorithms and their variants have been
applied to ADNR.

3.2.3 Meta-Heuristic Algorithm
Simulated Annealing

Reference [117] employed the SA method to find the optimal switching strategy for DNR
to minimize power losses and balance loads. However, this method is time-consuming due to the
repeated power flow calculations during the solving process. To address this limitation, Reference
[118] proposed a highly efficient and accurate approach for power flow solution. It ensures both high-
speed and high-precision power flow solutions. By incorporating the network connectivity checking
matrix and the criterion for imposing radiality constraint suggested by Lavorato et al., it utilizes the
SA algorithm to determine the radial structure that reduces active power losses.

Tabu Search

Reference [119], to minimize power losses, applied the Tabu Search (TS) method to solve
ADNR with distributed generation (DG). Despite demonstrating that the TS method has superior
computational speed and solution accuracy compared to Simulated Annealing (SA), the global search
capability of the TS algorithm heavily depends on the length of the tabu list. Reference [120] modified
the size of the tabu list with an adaptive strategy. Additionally, it employed a ‘random multiplicative
move’ to achieve a global optimum for ADNR. Reference [121] proposed an adaptive TS method.
Compared to the traditional TS method, this method eliminated the concept of a list of prohibited
attributes and aspiration criteria, and restarted the search from the existing solutions, avoiding the
paths formed by revisiting candidate solutions. This method was tested on 33, 84, 118, and 136 nodes,
and the test results verified its effectiveness.
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Genetic Algorithm

In the Reference [122], the impact of DG and electric vehicle grid-connection’s volatility and
intermittence on the system was considered. A genetic algorithm was adopted to solve the network
distribution network reconfiguration problem, using network loss, voltage deviation, and voltage
stability as the objective function. To improve the PV carrying capacity (PVCC) of a distribution
system with harmonic pollution, the Reference [123] proposed distribution network reconfiguration
and employed the NSGA-II algorithm to find a Pareto-front candidate solution set for the grid-
connection problem of many photovoltaic generating units. Reference [124] aimed to minimize the
economic losses of operators under fault conditions. It used a combination of GA and mathematical
optimization for a comprehensive analysis of the power system through nonlinear programming and
discontinuous derivatives. The method was validated on IEEE 9 bus and 30 bus systems and was
evaluated for its effectiveness in reducing network losses and economic losses. The flowchart of GA

applied to ADNR is shown in Fig. 7.
Begin |

Input network data

|

Reconfiguration with GA <e————

|

Load flow and loss calculations

l

Fitness whether achieve
expectations or selected
whether the maximum
generation number

Yes l

Print results

l

End

Figure 7: The flowchart of GA applied to ADNR

Ant Colony Optimization

Reference [125] established a dynamic reconfiguration model to minimize network losses and
switch operations in the short term. They optimized the model using Ant Colony Optimization
(ACO) and validated the feasibility of this method under the variable characteristics of DG output.
The flowchart of ACO addressing ADNR with DGs is depicted in Fig. 8. The traditional ACO
suffers from slow search speed, low flexibility, and a tendency to fall into local optima. Literature
[126] addressed these shortcomings by proposing an improved differential evolution ACO. This novel
approach integrated an enhanced differential evolution algorithm with linearly decreasing weight into
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the ACO for the reconfiguration of the IEEE 33 bus system with DGs. Simulation results demonstrated
that this method not only achieved faster convergence and avoided local optima but also offered
significantly higher flexibility.

Object code, letn =N
ants travel

!

Update the pheromone
values of each branch
Start l
l Calculate the objective function
Read the initial data value F, and find the minimum

objective function value

!

Division of time periods based on
wind speed and sunshine intensity

Tmax, and set time period T=0 Smallest?
The DG processing mode is l
determined by the light and Reach the set value of iteration
wind speed of T period number, output results
T+l -— T=Tmax ?

|
!

End

Figure 8: The flowchart of ACO addressing ADNR with DGs

Particle Swarm Optimization

Reference [127] achieved significant improvements in network losses and voltage distribution
balance by simultaneously implementing hierarchical reconfiguration, DG integration, and low-
voltage distribution allocation. This demonstrated that the Particle Swarm Optimization (PSO)
algorithm can effectively provide solutions for segmenting switches and sizing DG units. However,
the performance of the PSO algorithm largely depends on the initial data selection. Additionally, a
considerable amount of parameter tuning is required during the reconfiguration process to achieve
optimal results. The Hybrid Particle Swarm Optimization (HPSO) proposed in the Reference [128]
improved the particle position update formula. By balancing local and global searches in later stages,
the results tended towards the optimal particles in the population, ultimately converging to the global
optimum particle. Compared to the approach in Reference [128], which only improved the particle
position update formula, the Improved Particle Swarm Optimization Approach proposed in Reference
[129] employed a chaos-oriented inertia weight and crossover operation mechanism. This method
enhanced the particle velocity update, particle position update, and linearly varying inertia weight. It
required fewer control parameters, needing only the inertia coefficient to be set, and its superiority
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was validated on the IEEE 69 bus system. Reference [94] introduced evolutionary particle swarm
optimization, effectively addressing the problem of poor convergence caused by inaccurate parameter
settings such as inertia weight (w), cognitive constant (cl), and social constant (c2). The process of
applying PSO to ADNR is illustrated in Fig. 9, and the summary of PSO algorithms is tabulated in
Table 3.

Update the velocity and

Parameters initialization o
position of the branch group

Feasible solution analysis

Simplify distribution
network structure

Update the branch position
within the group

]

Calculate fitness value

Population initialization

Better?

Feasible solution analysis

Record the optimal solution and
generate the power grid topology
diagram

Reach the
maximum iterations?

Calculate fitness value

N2

Results |

Figure 9: Flow chart of PSO applied to ADNR
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Harmony Search Algorithm

In Reference [135], the Harmony Search Algorithm (HSA) was used to solve the distribution
network reconfiguration problem. However, due to the large amount of data in the large-scale
distribution network reconfiguration, the algorithm was prone to falling into the local minimum and
unable to find the global optimal solution. Based on this, an improved HSA was proposed in Reference
[96] to optimize the algorithm by enhancing the PAR and BW parameters in the iteration process
of optimization. The process of solving ADNR with IHSA is illustrated in Fig. 10. Additionally,
Reference [136] proposed a self-adaptive HSA that provides better accuracy and convergence. The
performance of HSA for ADNR is shown in Table 4.

Read the system data and specify
decision variable

| "~ 3T T T T T T :

Generate initial harmony memory
randomly as many as HMS

I

Calculate the power flow using
forward and backward substitution load

: Is new harmony]1 is better than a stored
I
I
I
flow method |
I
I
I
I

harmony in HM?

Is new harmony? is better than a stored
harmony in HM?

l

Evaluate the fitness function of
reconfiguration

I

Improvisation of a new harmony1 from
HM based on the HMCR, PAR and
random choice

| T _____

Improvise a new harmony?2 from best
harmony

Update HM
]

Termination condition satisfied?

Improvisation of a new harmony1 from HM based on the
| HMCR, PAR and random choice

Figure 10: Flow chart of IHSA for solving ADNR

Artificial Bee Colony

To improve the convergence of the algorithm, the discrete artificial bee colony (DABC) [138] was
proposed to continuously search for the new food source location in memory. Furthermore, Reference
[95] proposed the multi-objective artificial bee colony (MABC) to enrich the search process for optimal
solutions by using archived solutions. The specific evaluation is shown in Table 5. The flowchart of
the artificial bee colony based ADNR is depicted in Fig. 11.
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Figure 11: Principle of ABC applied to ADNR

Cuckoo Search Algorithm

The original cuckoo search algorithm (CSA) can only solve the simple continuous optimization
problem. Therefore, Reference [140] introduced the variable radix operation and incorporated the
concept of quantum bits to construct an improved CSA for ADNR. Additionally, the hybrid algorithm
of CSA and simulated annealing was developed to effectively improve the convergence speed and
solution quality of ADNR [117]. The specific performance of the above methods is tabulated in
Table 6. The flowchart of CSA is given in Fig. 12.

Slime Mold Algorithm

Inspired by the diffusion and foraging behavior of slime molds, the SMA optimizes the changing
process of vein morphology and systolic patterns during foraging. With the change of food odor
concentration in the air, slime molds constantly change their movement position and speed [142].
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Figure 12: Flow chart of CSA

However, SMA is slow to converge, has low computational efficiency, and is prone to falling into
local optima. In Reference [143], a parallel slime mold algorithm based on packet communication
strategy and inertia weights was proposed to improve its convergence. Additionally, a multi-group
flight slime mold algorithm based on packet communication and Levy flight was proposed in the
Reference [144]. The flow chart of SMA to solve the problem of DNR with DG is shown in Fig. 13.
Specific parameters are shown in Table 7.

round (X} +p - v, (W - X, — X})),r <p
X = round (- v. - X),r > p 2D

round (rand - (v, — [,) + 1)), rand < z

Other Meta-Heuristic Methods

Overall, genetic algorithm (GA), particle swarm optimization (PSO), and Tabu search (TS) are
the most commonly used meta-heuristic algorithms for ADNR. However, with the increasing scale
of grid-connected distributed power supply and ESSs, as well as the demand for more intelligent
and reliable power supply in the distribution network, the reconfiguration of ADN has become
increasingly complex. As a result, meta-heuristic algorithms with stronger search capabilities and
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higher optimization efficiency are being increasingly applied in the reconfiguration of ADNs, summary
of other meta-heuristic methods applications is demonstrated in Table 8.

3.2.4 Machine Learning Based Method

Machine learning exhibits powerful parallel information processing capabilities through self-
adaptation and self-learning. Machine learning based ADNR methods are summarized in Table 9.

Begin No
- Rand<z? —~ ——Update P, vb and vc
Set the required parameters,
import distribution network data,
initialize the population and

ou Y
gfi p es Vs No

r<p?

Whether the switch Ho Adjust switch
combination satisfies the ~| combination
constraint?
= Yes

; - Update the switch  Update the switch Update the switch
By solving the model with DG, combination combination combination
Use strategy 1 and | The fitness value of e.ach slime through the through the through the
strategy 2 to mould was obtained. formula 21(3) formula 21(1) formula 21(2)
communicate I ! : '

between groups
Get the best fitness value

and the best switch
combination and update W

I

No

Meet the end conditions?
1 Yes
Output best switch
combination

|
End |

Figure 13: Flow chart of SMA applied to ADNR

Reinforcement Learning Approach

RL is a machine learning method where agents act based on feedback from environmental char-
acteristics. By continuously observing the environment and through repeated trial-and-error, agents
accumulate experience and ultimately achieve goal optimization. The principle of RL based ADNR
is shown in Fig. 14. The model-free multi-agent deep reinforcement learning (MDRL) proposed by
the Reference [157], used multi agents to control the operations of the branch switches in the network.
Through centralized training and distributed execution, this training framework reconstructed the
network. Reference [158] developed a data-driven batch-constrained reinforcement learning (RL)
algorithm for the dynamic ADNR problem, which learned the network reconfiguration control policy
from a finite historical operational dataset without interacting with the distribution network.
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Deep Learning Approach

Reference [159] proposed an ADNR method based on Efficient Deep Learning (EDL), which
is based on deep convolutional neural network (CNN) to design the short-term voltage stability
assessment network, and selected historical data to train it. The STVS platform calculated the indices
under all topologies and gradually filters out the topologies that meet the requirements. The large
number of computations leads to poor robustness of the algorithm, which is difficult to cope with the
challenges of ADN. Reference [160] combined DL with robust optimization: based on deep neural
networks adaptively constructing the uncertainty set of DG and load from the historical dataset
of the distribution network, robust ADNR was considered as a two-stage mixed-integer quadratic
programming problem, and solved the ADNR configuration by using column generation method and
constraint generation method. The flowchart for solving ADNR by DL is shown in Fig. 15.
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Figure 14: Reinforcement learning principles
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Figure 15: The flowchart for solving ADNR by DL

3.2.5 Hybrid Algorithm

As ESS and DG become more widely connected to the grid, DSR to incentive measures such as
time-of-use and real-time pricing are causing tidal changes in the power system, resulting in voltage
fluctuations, and increasing system complexity. Many scholars have attempted to mix meta-heuristic
algorithms to ensure global optimal results, The summary of hybrid algorithm is shown in Table 10.

4 Summary and Discussion

The paper provides a comprehensive review of numerous existing methods for ADNR, which
focuses on both theoretical and practical aspects, aiming to emphasize the operational mechanisms,
testing systems, optimization objectives, complexities, strengths, weaknesses, and limitations of each
method to facilitate a more comprehensive and practical comparison. Tables 2—10 offer detailed
summaries of the 52 ADNR methods mentioned in this paper, categorized by application years, sub-
methods, and experimental data.

Based on the recently proposed ADNR methods, two constructive discussions are conducted to
illustrate the current research status and existing issues, as follows:

a) Photovoltaic, wind power and other renewable energy sources exhibit strong randomness and
significant fluctuations. The integration of a large amount of renewable energy into the distribution
network can lead to issues such as poor power quality, excessive voltage fluctuations, uneven load
distribution, and high network losses. To address these difficult and complex issues, each type of
method goes its way, as follows:

Mathematical programming methods (e.g., linear programming and nonlinear programming)
mainly consider the impact of renewable energy sources on the power loss of the active distribution
network. In particular, the Lagrange relaxation divides the network into smaller regions via dual
decomposition, which converts this MINLP problem into a simpler MILP one. Then coordinating
node solutions can be obtained to minimize overall network loss. The Standard Newton method
transforms the objective into an unconstrained problem using Lagrange multipliers or penalty
functions, making it ideal for large-scale reconfiguration under renewable energy integration. The
Simplex algorithm, while ignoring the capacity limits of transmission lines, converts the minimum
network loss problem into a linear programming problem. However, when a significant number of
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renewable energy sources are integrated into the system, it significantly increases the complexity and
difficulty of computation. Therefore, the effectiveness of this method may decline substantially.

Unlike mathematical programming methods that only consider a single objective, i.e., power loss,
and ignore mitigating the impact of renewable energy sources on the distribution network, Meta-
heuristic algorithms effectively and flexibly handle large-scale nonlinear optimization problems e.g.,
minimizing power losses, maximizing renewable energy utilization, minimizing voltage fluctuations,
etc. They enable decision-making on variables such as capacity, location, output power of renewable
energy sources, and load adjustments, which exhibit good global exploration capabilities. Further-
more, their stochastic elements can effectively address the uncertainty of renewable energy sources.

By leveraging data-driven insights, Machine Learning methods establish models that accurately
describe the operation status, load demands, and power quality of distribution networks containing
renewable energy sources. Through training these models and addressing multi-objective optimization
problems like minimizing power losses, maximizing renewable utilization, and minimizing voltage
fluctuations, rational reconfiguration solutions are obtained. Subsequently, their adaptive learning
capabilities are applied to adapt the reconfiguration strategies dynamically, aligning with the output
stochastic nature of renewable energy sources. Moreover, Machine Learning methods can accurately
predict the energy supply and demand relationship, effectively overcoming uncertainty and fluctua-
tions in the distribution network.

b) The applicable electrical network scenarios of each ADNR method are different due to their
mechanism differences, as follows:

The traditional method has the advantages of simple modeling and fast solving speed, but it is only
suitable for small and medium-sized distribution networks. When facing more complex networks, it
is unable to handle intricate typologies and multiple constraints, and may get stuck in local optimal
solutions;

The Mathematical programming method can accurately establish mathematical models and is
suitable for small and medium-sized distribution network reconfiguration. As the distribution network
scales up, the Mathematical programming method needs to consider complex linear and nonlinear
constraints, making the model establishment and solving process more complicated and resulting in
longer reconfiguration times;

Meta-heuristic algorithms are currently widely applied in medium to large-scale active distribution
network reconfiguration. By utilizing diverse searching strategies, they have the opportunity to find
global optimal solutions. However, due to the need for multiple iterations and searches, as well as
their susceptibility to initial solutions, they tend to have longer run times and may lead to sub-optimal
reconfiguration results;

Machine learning based methods can leverage the advantages of data-driven approaches to adapt
to the environment and requirements of distribution networks while possessing strong predictive and
optimization capabilities. With the development of big data and artificial intelligence technologies,
machine learning based methods are expected to gain even more applications in the future;

Hybrid algorithms make full use of the strengths of different methods, considering various
problems and requirements, and utilize diverse and global search strategies to obtain more optimal
solutions. However, when dealing with large-scale distribution network reconfiguration, the design
and implementation of the algorithm can be more complex.

c¢) The distribution networks studied in this paper are all tree structures, so in most cases, there is
no loop. Complex loop problems need to be unlooped and tested, and each node is verified to be out
of bounds through simulation, which in turn calculates the loop.
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Overall, Table 11 tabulates a comprehensive and systematic summary and analysis.

Table 11: Practical analysis of ADNR methods

Method Applicable systems Reason
Traditional Small-scale virtual e Only address local issues and cannot obtain a global
method distribution optimal solution
networks e Face challenges in dealing with complex network
topologies and frequent load variations
Mathematical ~ Medium to e The algorithm’s execution time is too long, making it
program- smal}-scgle virtual difficult to apply in practical situations
ming distribution e Involves a substantial number of matrix computations,
method networks (only resulting in high memory requirements
LRA is feasible for e Poor convergence makes it prone to getting trapped in
medium-scale local optima
actual distribution e LRA decomposes the large-scale formulated original
networks) problem into independent subproblems, enabling faster
solution speeds
Meta- Medium to ¢ Involving extensive search and iteration processes, the
heuristic large-scale actual running speed is slow
algorithms distribution e Complex ADNR may involve multiple locally optimal
networks solutions
o Difficult to effectively handle constraints, resulting
solutions may not meet practical requirements
e Poor scalability
Machine L_arg_e-scgle actual e Speeding up the training process through parallel
learning distribution computing
based networks e Possesses strong global search capabilities
method e Dynamically adjust decisions through adaptive learning
e Using historical operational data and real-time
monitoring data of the distribution network for
modeling and optimization, adapting to real-world
operating conditions
Hybrid Medium to e Fulfilling the strengths of various methods and
algorithm large-scale actual compensating for their respective weaknesses

active distribution
networks

e Strong adaptability
e By combining multiple optimization methods, diverse

searching strategies can be achieved

Lastly, Fig. 16a systematically summarizes the major benefits and limitations of each method.
Based on the summary of the major benefits and limitations of each method in Fig. 16a, a 6-axis
radar chart is used in Fig. 16b to visually compare the performance of five types of ADNR methods
across six indicators: objective function, social indicator, hyperparameters, optimization indicators,
operational mechanism, and test system. The scoring system used in the radar chart rates methods
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according to their relative performance: the best-performing method in each indicator receives 5
points, the second-best receives 4 points, the average method receives 3 points, and the worst receives
1 point.

Major benefits Major limitations
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Figure 16: (Continued)
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Figure 16: Comprehensive evaluation of ADNR methods (a) Summary and comparison of all
algorithms (b) Comprehensive comparison

5 Conclusions and Prospects

This paper profoundly summarizes and analyzes active distribution network reconfiguration
methods, which endeavors to offer future researchers comprehensive and systematic references and
guidelines. Here, several conclusions are stated as follows:

a) A total of 52 methods are summarized and counted in this paper, which are categorized into
five major categories, i.e., traditional (2 methods), mathematics-based (3 methods), meta-heuristic (32
methods), hybrid (3 methods), and machine learning based (2 methods).

b) Given the uniqueness of ADNR methods and their impact on the network, a comprehensive
evaluation system is carefully established considering complexity and applicability. Specifically, com-
plexity is determined by three indicators: (a) multi-objective optimization, (b) hyperparameters, and
(c) operational mechanism. Meanwhile, the applicability is scored according to three aspects: (a) test
system, (b) optimization indicators, and (c) social indicators.

¢) 32 meta-heuristic algorithms are widely used in ADNR thanks to their fast convergence speed
and independence for models. However, due to their inherent randomness, it is challenging to balance
the relationship between local and global optimization. Many scholars have attempted to mix meta-
heuristic algorithms to ensure global optimal results.

On this basis, the paper provides the following recommendations for future research:

a) Reconfiguration technology improvement: Heuristic algorithms such as PSO [131,133], GA
[132], and HSA [96,136] were heavily used in ADNR, and the feasibility of the algorithms was verified
in small-scale simulation test networks, ¢.g., IEEE 33-bus system and IEEE 69-bus system. Compared
with heuristic algorithms, machine learning algorithms such as DL [160], RL [162,163], etc., acquired
more satisfactory performance on actual 123-node networks, Modified CIGRE 14-bus network actual
networks. Hence, RL and DL with strong stability, adaptability, portability, and drivability seem to be
promising tools for large-scale ADNR in the future.
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b) Reconfiguration constraint improvement: The introduction of numerous ESSs, DGs, and DR
complexifies the topology of the grid. Additionally, DRs based on incentives such as time-sharing tar-
iffs and real-time tariffs can change power flow and cause voltage fluctuations. Unfortunately, DRs are
usually ignored in ADNR, which contradicts reality and application. Thus, more complex constraints
of flexible power sources and the influence of DRs ought to be covered when implementing ADNR.

c¢) Reconfiguration test system improvement: Test systems of ADNR are mainly small-scale, e.g.,
the IEEE 14 bus system [137], IEEE16 bus system [156], and IEEE32 bus system [145]. The small-
scale test network cannot effectively reflect the real situation of power grids, especially integrated ESSs
and DGs. Therefore, larger-scale systems with real nodes are recommended to validate the proposed
ADNR methods.

d) Reconfiguration network improvement: More significant consideration should be given to the
unified whole of the heat network, gas network, and grid, and the reconfiguration problem should be
approached from the perspective of energy integration and synergy.

Acknowledgement: The authors would like to acknowledge the Science and Technology Commission
of Shanghai Municipality.

Funding Statement: The authors received funding from the National Natural Science Foundation of
China (62263014), Yunnan Provincial Basic Research Project (202401AT070344, 202301AT070443)
and Science and Technology Commission of Shanghai Municipality (STCSM) Sailing Program
(22YF1414400).

Author Contributions: The authors confirm contribution to the paper as follows: Funding acquisition,
supervision, resources: Bo Yang; investigation, data collection, writing—original draft and editing,
analysis and interpretation of results: Rui Zhang; validation: Jie Zhang; supervision: Jiale Li; formal
analysis: Yimin Zhou; visualization: Yuanweiji Hu; data collection: Bin He; analysis and interpre-
tation of results: Xianlong Cheng; investigation: Gongshuai Zhang; formal analysis: Xiuping Du;
visualization: Si Ji; funding acquisition: Yiyan Sang; visualization and contributed to the discussion
of the topic: Zhengxun Guo. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The authors confirm that the data used in this study are available
on request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] M. R. Dar and S. Ganguly, “Dual-Stage model predictive control with reduced model framework for
voltage control in active distribution networks,” J. Mod. Power Syst. Clean Energy, pp. 1-12, Jun. 2024.
doi: 10.35833/MPCE.2024.000394.

[2] P. K. Kesavan, U. Subramaniam, D. J. Almakhles, and S. Selvam, “Modelling and coordinated con-
trol of grid connected photovoltaic, wind turbine driven PMSG, and energy storage device for a
hybrid DC/AC microgrid,” Prot. Control Mod. Power Syst., vol. 9, no. 1, pp. 154-167, Jan. 2024. doi:
10.23919/PCMP.2023.000272.


https://doi.org/10.35833/MPCE.2024.000394
https://doi.org/10.23919/PCMP.2023.000272

EE, 2024, vol.121, no.12 3533

(3]

(4]

[5]

J. X. Gong, Y. L. Xu, J. Zhang, and C. H. Xu, “Research on the network structure of new power system
distribution network,” (in Chinese), Shandong Electr. Power, vol. 51, no. 1, pp. 45-51, Jan. 2024. doi:
10.20097/.cnki.issn1007-9904.2024.01.005.

L. Q. Bai, T. Jiang, F. X. Li, H. H. Chen, and X. Li, “Distributed energy storage planning in soft open
point based active distribution networks incorporating network reconfiguration and DG reactive power
capability,” Appl. Energy, vol. 210, no. 15, pp. 1082-1091, Jan. 2018. doi: 10.1016/j.apenergy.2017.07.004.
Q. Chen, S. Bu, and C. Y. Chung, “Small-Signal stability criteria in power electronics-dominated power
systems: A comparative review,” J. Mod. Power Syst. Clean Energy, vol. 12, no. 4, pp. 1-16, Dec. 2023.
doi: 10.35833/MPCE.2023.000526.

B. Yang et al., “Recent advances in fault diagnosis techniques for photovoltaic systems: A critical review,”
Prot. Control Mod. Power Syst., vol. 9, no. 3, pp. 36-59, May 2024. doi: 10.23919/PCMP.2023.000583.
H. C. Wang, H. Y. Song, and J. Yu, “Research on optimization scheme for new power system terminal
communication network,” (in Chinese), Shandong Electr. Power, vol. 51, no. 2, pp. 56-66, Feb. 2024. doi:
10.20097/j.cnki.issn1007-9904.2024.02.006.

A. Saxena and R. Shankar, “An interactive operating demand response approach for hybrid power
systems integrating renewable energy sources,” Prot. Control Mod. Power Syst., vol. 9, no. 3, pp. 174-194,
May 2024. doi: 10.23919/PCMP.2023.000282.

S. A. Arefifar, M. S. Alam, and A. Hamadi, “A review on self-healing in modern power distribu-
tion systems,” J Mod. Power Syst. Clean Energy, vol. 11, no. 6, pp. 1719-1733, Nov. 2023. doi:
10.35833/MPCE.2022.000032.

H. Wang, L. Wang, and Q. Yao, “Research on the safety assessment of operation of distribution network
based on the timing characteristics,” in 2018 Chin. Automat. Congress (CAC), Xi’an, China, 2018, pp.
47-52.

T. Ahmad et al, “Artificial intelligence in sustainable energy industry: Status quo, challenges and
opportunities,” J. Clean. Prod., vol. 289, Mar. 2021, Art. no. 125834. doi: 10.1016/].jclepro.2021.125834,
X. Zhao, Q. Xu, and Y. Yang, “Service restoration of distribution system considering novel battery
charging and swapping station, repair crews, and network reconfigurations,” J. Mod. Power Syst. Clean
Energy, pp. 1-13, Jun. 2024. doi: 10.35833/MPCE.2024.000010.

S. Repo, F. Ponci, and D. D. Giustina, “Holistic view of active distribution network and evolution of
distribution automation,” in IEEE PES Innov. Smart Grid Technol., Istanbul, Turkey, 2014, pp. 1-6.

X. X. Gong, B. Gu, and Z. S. Wu, “Research on dynamic reconfiguration of active distribution network,”
(in Chinese), Electr. Technol., vol. 12, pp. 52-60, Dec. 2014. doi: 10.3969/j.issn.1673-3800.2014.12.013.

B. Yang, T. Yu, H. C. Shu, J. Dong, and L. Jiang, “Robust sliding-mode control of wind energy conversion
systems for optimal power extraction via nonlinear perturbation observers,” Appl. Energy, vol. 210, pp.
711-723, Jan. 2018. doi: 10.1016/j.apenergy.2017.08.027.

X. Z. Dong, Z. R. Wu, L. M. Chen, Z. W. Liu, and X. L. Xu, “Distribution network reconfiguration
method with distributed generators based on an improved shuffled frog leaping algorithm,” in 2018 IEEE
PES/IAS Power Africa, Cape Town, South Africa, 2018, pp. 102-107.

A. Merlin and H. Back, “Search for a minimal loss operating spanning tree configuration in an urban
power distribution system,” in Proc. 5th Power Syst. Comput. Conf., Cambridge, UK, 1975, pp. 1-18.
Z.Dongand L. Lin, “Dynamic reconfiguration strategy based on partition of time intervals with improved
fuzzy C-means clustering,” in 2018 China Int. Conf. Electr. Distrib., Tianjin, China, 2018, pp. 398—404.

I. Diaaeldin, S. Abdel Aleem, A. El-Rafei, A. Abdelaziz, and A. F. Zobaa, “Optimal network reconfigu-
ration in active distribution networks with soft open points and distributed generation,” Energies, vol. 12,
no. 21, Sep. 2019, Art. no. 4172. doi: 10.3390/en12214172.

M. Mahdavi, K. Schmitt, and F. Jurado, “Robust distribution network reconfiguration in the presence of

distributed generation under uncertainty in demand and load variations,” IEEE Trans. Power Deliv., vol.
38, no. 5, pp. 3480-3495, Oct. 2023. doi: 10.1109/TPWRD.2023.3277816.


https://doi.org/10.20097/j.cnki.issn1007-9904.2024.01.005
https://doi.org/10.1016/j.apenergy.2017.07.004
https://doi.org/10.35833/MPCE.2023.000526
https://doi.org/10.23919/PCMP.2023.000583
https://doi.org/10.20097/j.cnki.issn1007-9904.2024.02.006
https://doi.org/10.23919/PCMP.2023.000282
https://doi.org/10.35833/MPCE.2022.000032
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.35833/MPCE.2024.000010
https://doi.org/10.3969/j.issn.1673-3800.2014.12.013
https://doi.org/10.1016/j.apenergy.2017.08.027
https://doi.org/10.3390/en12214172
https://doi.org/10.1109/TPWRD.2023.3277816

3534

[21]

[22]

[23]

[24]

EE, 2024, vol.121, no.12

M. Mahdavi, H. H. Alhelou, P. Gopi, and N. Hosseinzadeh, “Importance of radiality constraints
formulation in reconfiguration problems,” IEEE Syst. J.,, vol. 2015, pp. 1-14, Jul. 2023. doi:
10.1109/JSYST.2023.3283970.

B. Sultana, M. W. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power
loss reduction in distribution system via network reconfiguration,” Renew. Sustain. Energ. Rev., vol. 66,
pp. 297-310, Dec. 2016. doi: 10.1016/j.rser.2016.08.011.

S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution network reconfiguration,”
Energy Syst., vol. 8, pp. 227-284, Mar. 2017. doi: 10.1007/s12667-016-0195-7.

O. Badran, S. Mekhilef, H. Mokhlis, and W. Dahalan, “Optimal reconfiguration of distribution system
connected with distributed generations: A review of different methodologies,” Renew. Sustain. Energy
Rev., vol. 73, pp. 854-867, Jun. 2017. doi: 10.1016/j.rser.2017.02.010.

I. G. Guimaraes, D. P. Bernardon, V. J. Garcia, M. Schmitz, and L. L. Pfitscher, “A decomposition
heuristic algorithm for dynamic reconfiguration after contingency situations in distribution systems
considering island operations,” Elect. Power Syst. Res., vol. 192, Mar. 2021. Art. no. 106969. doi:
10.1016/j.epsr.2020.106969.

M. Mahdavi, H. H. Alhelou, and N. D. Hatziargyriou, “Reconfiguration of electric power distribution sys-
tems: Comprehensive reconfiguration of electric power distribution systems: Comprehensive review and
classification,” IEEE Access, vol. 9, pp. 118502-118527, Aug. 2021. doi: 10.1109/ACCESS.2021.3107475.
M. Mahdavi, H. H. Alhelou, A. Bagheri, S. Z. Djokic, and R. A. V. Ramos, “A comprehensive review of
metaheuristic methods for the reconfiguration of electric power distribution systems and comparison with
a novel approach based on efficient genetic algorithm,” Access, vol. 9, pp. 122872-122906, Aug. 2021. doi:
10.1109/ACCESS.2021.3109247.

G. B. He et al., “Optimal location and sizing of distributed generator via improved multi-objective particle
swarm optimization in active distribution network considering multi-resource,” Energy Eng., vol. 120, no.
9, pp. 2133-2154, Aug. 2023. doi: 10.32604/ee.2023.029007.

C. X. Tao, S. Z. Yang, and T. G. Li, “Application of DSAPSO algorithm in distribution network
reconfiguration with distributed generation,” Energy Eng., vol. 121, no. 1, pp. 187-201, Dec. 2023. doi:
10.32604/ee.2023.042421.

S. T. Xi, N. Liu, Y. Wang, Y. Liu, and F. Jing, “Exploration of traditional distribution network
optimization construction scheme,” (in Chinese), Electric Age, vol. 9, pp. 48-50, Sep. 2019. doi:
10.1186/s42162-024-00368-6.

G. Bratati, K. C. Ajoy, and R. B. Arup, “Reliability and efficiency enhancement of a radial distribution
system through value-based auto-recloser placement and network remodeling,” Prot. Control Mod. Power
Syst., vol. 8, no. 1, pp. 1-14, Jan. 2023. doi: 10.1186/s41601-022-00274-7.

B. Chen, K. Xiang, L. Yang, Q. M. Su, D. S. Huang and T. Huang, “Theoretical line loss calculation of
distribution network based on the integrated electricity and line loss management system,” in 2018 China
Int. Conf. Electr. Distrib. (CICED ), Tianjin, China, 2018, pp. 2531-2535.

L. Lan et al., “Distribution network planning method using demand response resources,” in 2018 China
Int. Conf. Electr. Distrib. (CICED ), Tianjin, China, 2018, pp. 2641-2644.

K. Liu and Y. Y. Li, “Study on solutions for active distribution network protection,” (in Chinese), Proc.
CSEE, vol. 34, no. 16, pp. 2584-2590, Jun. 2014. doi: 10.13334/5.0258-8013.pcsee.2014.16.008.

Y. Yu, Z. G. Zhu, C. Huang, and K. Deng, “Fault trend judgment for distribution network based
on big data analysis,” (in Chinese), Autom. Today, vol. 42, no. 1, pp. 132-146, Jan. 2018. doi:
10.3969/}.1ssn.1002-087X.2018.01.039.

K. H. Wuetal , “Research on voltage stability of active distribution network with distributed generations,”
in 2018 China Int. Conf. Electr. Distrib. (CICED ), Tianjin, China, 2018, pp. 78-83.


https://doi.org/10.1109/JSYST.2023.3283970
https://doi.org/10.1016/j.rser.2016.08.011
https://doi.org/10.1007/s12667-016-0195-7
https://doi.org/10.1016/j.rser.2017.02.010
https://doi.org/10.1016/j.epsr.2020.106969
https://doi.org/10.1109/ACCESS.2021.3107475
https://doi.org/10.1109/ACCESS.2021.3109247
https://doi.org/10.32604/ee.2023.029007
https://doi.org/10.32604/ee.2023.042421
https://doi.org/10.1186/s42162-024-00368-6
https://doi.org/10.1186/s41601-022-00274-7
https://doi.org/10.13334/j.0258-8013.pcsee.2014.16.008
https://doi.org/10.3969/j.issn.1002-087X.2018.01.039

EE, 2024, vol.121, no.12 3535

[37]

[38]

[39]

[41]

[42]

[43]

(48]

[50]

[51]

[52]

S. Q1, X. Wang, Q. Huang, and C. Shao, “Analysis on voltage fluctuation of active distribution network
containing wind-solar hybrid distributed generation,” in China Int. Conf. Electr. Distrib. (CICED),
Tianjin, China, 2018, pp. 168-173.
C.L.Li, W. Han, L. L. Zhou, and X. J. Li, “Coordinated control strategy of distributed generation based
on active distribution network under multi-time scales,” in Int. Conf. Smart City Syst. Eng. (ICSCSE),
Hunan, China, 2016, pp. 417-420.

E. Luo, H. Lu, P. Cong, and Y. H. Li, “Multi-stage coordinated optimization of active distribution network
with adjustable load and distributed generation,” in 2019 6th Int. Conf. Inf. Sci. Control Eng. (ICISCE),
Shanghai, China, 2019, pp. 793-797.

W. X. Liu, T. Ma, and Y. H. Xu, “Cooperative optimisation strategy of comprehensive vulnerability of
active distribution network considering information interrupted,” IET Renew. Power Gener., vol. 14, no.
11, pp. 1978-1987, Jul. 2020. doi: 10.1049/iet-rpg.2019.0742.

X. Q. Fu, X.P.Wu, C. Y. Zhang, S. Q. Fan, and N. Liu, “Planning of distributed renewable energy systems
under uncertainty based on statistical machine learning,” Prot. Control Mod. Power Syst., vol. 7, no. 4,
pp. 619-645, Oct. 2022. doi: 10.1186/s41601-022-00262-x.

Y. J. Chen et al., “Dynamic reconfiguration for TEG systems under heterogeneous temperature distribu-
tion via adaptive coordinated seeker,” Prot. Control Mod. Power Syst., vol. 7, no. 3, pp. 567-585, Oct.
2022. doi: 10.1186/s41601-022-00259-6.

B. Xu et al., “Reactive power optimization of a distribution network with high-penetration of wind and
solar renewable energy and electric vehicles,” Prot. Control Mod. Power Syst., vol. 7, no. 4, pp. 801-813,
Oct. 2022. doi: 10.1186/s41601-022-00271-w.

W. Wang et al, “Partitioning calculation method of short-circuit current for high proportion DG
access to distribution network,” Energy Eng., vol. 121, no. 9, pp. 2569-2584, Aug. 2024. doi:
10.32604/ee.2024.051409.

G. Dai, Z. J. Wu, J. Xu, and X. L. Dou, “Study of FTU optimal placement in the active distribution
network,” Power Syst. Prot. Control, vol. 44, no. 23, pp. 86-93, Dec. 2016. doi: 10.7667/PSPC152089.

H. Xiao, X. Ge, and Z. Zhao, “Day-ahead active distribution network optimal schedule with EV
penetration,” in Int. Conf. Electr. Utility Deregul. Restruct. Power Technol. (DRPT), Changsha, China,
2015, pp. 2695-2699.

J. H. Li et al., “Two-stage planning of distributed power supply and energy storage capacity considering
hierarchical partition control of distribution network with source-load-storage,” Energy Eng., vol. 121,
no. 9, pp. 2389-2408, Aug. 2024. doi: 10.32604/ee.2024.050239.

G. F. Wang et al., “Dynamic economic scheduling with self-adaptive uncertainty in distribution network
based on deep reinforcement learning,” Energy Eng., vol. 121, no. 6, pp. 1671-1695, May 2024. doi:
10.32604/¢e.2024.047794.

Y. Jia, L. Yang, and Z. Wang, “Impact of the active management and active control on the survivability
of distribution network structure,” in 2015 5th Int. Conf. Electr. Utility Deregul. Restruct. Power Technol.
(DRPT), Changsha, China, 2015, pp. 1250-1254.

B. Yang et al., “A critical survey of technologies of large offshore wind farm integration: Summary,
advances, and perspectives,” Prot. Control Mod. Power Syst., vol. 7, no. 2, pp. 233-264, May 2022. doi:
10.1186/s41601-022-00239-w.

W. Lu, W. X. Li, W. H. Du, and P. Zhang, “Design and application of integrated energy management
system for active distribution network,” (in Chinese), Autom. Electr. Power Syst., vol. 40, no. 8, pp. 133—
139, Apr. 2016.

X. L. Fang, Q. Yang, and W. J. Yan, “Power generation maximization of distributed photovoltaic systems
using dynamic topology reconfiguration,” Prot. Control Mod. Power Syst., vol. 7, no. 3, pp. 508-522, Jul.
2022. doi: 10.1186/s41601-022-00254-x.


https://doi.org/10.1049/iet-rpg.2019.0742
https://doi.org/10.1186/s41601-022-00262-x
https://doi.org/10.1186/s41601-022-00259-6
https://doi.org/10.1186/s41601-022-00271-w
https://doi.org/10.32604/ee.2024.051409
https://doi.org/10.7667/PSPC152089
https://doi.org/10.32604/ee.2024.050239
https://doi.org/10.32604/ee.2024.047794
https://doi.org/10.1186/s41601-022-00239-w
https://doi.org/10.1186/s41601-022-00254-x

EE, 2024, vol.121, no.12

D. Zhang and J. Wang, “Research on construction and development trend of micro-grid in China,” (in
Chinese), Power Syst. Technol., vol. 40, no. 2, p. 8, Dec. 2015. doi: 10.13335/5.1000-3673.pst.2016.02.017.
X. Shen and M. Cao, “Research on the influence of distributed power grid for distribution network,” (in
Chinese), Trans. China Electr. Soc., vol. 30, pp. 346-351, Sep. 2015.

H. Mehrjerdi and R. Hemmati, “Modeling and optimal scheduling of battery energy storage sys-
tems in electric power distribution networks,” J Clean. Prod., vol. 234, pp. 810-821, Oct. 2019. doi:
10.1016/j.jclepro.2019.06.195.

S. T. Meraj, S. S. Yu, M. S. Rahman, K. Hasan, M. S. H. Lipu and H. Trinh, “Energy management schemes,
challenges and impacts of emerging inverter technology for renewable energy integration towards grid
decarbonization,” J. Clean. Prod., vol. 405, Jun. 2023. Art. no. 137002. doi: 10.1016/j.jclepro.2023.137002.
X.L.Li, G F Geng, Y. Q. Ji, and L. Z. Lu, “Integrated optimal planning of energy storage and demand
side response in active power distribution network,” (in Chinese), Power Syst. Technol., vol. 40, no. 12, pp.
3803-3810, Dec. 2016. doi: 10.13335/1.1000-3673.pst.2016.12.024.

G. A. Di, F. Liberati, and A. Lanna, “Electric energy storage systems integration in distribution grids,” in
2015 IEEE 15th Int. Conf. Environ. Electr. Eng. (EEEIC), Rome, Italy, 2015, pp. 1279-1284.

S. Han, X. Yan, L. Qin, X. Q. Lin, and B. Zeng, “Research on electricity market operation mechanism
and its benefit of demand side participation,” IOP Conf. Series: Earth Environ. Sci., vol. 81, Apr. 2017,
Art. no. 012180. doi: 10.1088/1755-1315/81/1/012180.

H. G. Yan, S. S. Chen, M. Zhong, and L. M. Jiang, “Research and design of demand side energy efficiency
management and demand response system,” (in Chinese), Power Syst. Technol., vol. 39, no. 1, pp. 42-47,
Jan. 2015. doi: 10.13335/5.1000-3673.pst.2015.01.007.

B. Yang et al., “Comprehensive summary of solid oxide fuel cell control: A state-of-the-art review,” Prot.
Control Mod. Power Syst., vol. 7, no. 3, pp. 523-553, Sep. 2022. doi: 10.1186/s41601-022-00251-0.

L. Gelazanskas and K. A. A. Gamage, “Demand side management in smart grid: A review and proposals
for future direction,” Sustain. Cities Soc., vol. 11, pp. 22-30, 2014. doi: 10.1016/j.s¢s.2013.11.001.

S. Wen, W. Xiong, J. Tan, S. W. Chen, and Q. Li, “Blockchain enhanced price incentive demand response
for building user energy network in sustainable society,” Sustain. Cities Soc., vol. 68, May 2021, Art. no.
102748. doi: 10.1016/j.5¢5.2021.102748.

J. Ma, K. L. Di, and R. Li, “Hierarchical optimization method for price incentive demand response to
improve the consumption rate of microgrid PV,” (in Chinese), Electr. Power, vol. 49, no. 8, pp. 99-105,
Aug. 2016. doi: 10.11930/5.1ssn.1004-9649.2016.08.099.07.

H. Hou, Y. Wang, C. Xie, B. Y. Xiong, Q. Y. Zhang and L. Huang, “A dispatching strategy for electric
vehicle aggregator combined price and incentive demand response,” IET Energy Syst. Integr., vol. 3, no.
4, pp. 508-519, Aug. 2021. doi: 10.1049/es12.12042.

P. P. Wang, Y. J. Sun, and Y. Li, “Application of uncertainty demand response modeling to power credit
incentive decisions,” (in Chinese), Autom. Electr. Power Syst., vol. 39, no. 10, pp. 93-99, May 2015. doi:
10.7500/AEPS20140705006.

X.Gong, Y.Su, X. F. Zhang, and X. J. Huang, “Optimal charging scheduling for electric vehicle aggregator
considering incentive demand response,” (in Chinese), Mod. Electr. Power, vol. 36, no. 6, pp. 16-22, Dec.
2019. doi: 10.19725/j.cnki.1007-2322.2019.06.003.

B. Y. Tian, H. Q. Xu, X. Y. Zhang, X. Q. Chang, and T. Ma, “Day-ahead optimal dispatching method
of microgrid considering electricity price incentive demand response,” (in Chinese), Power Demand Side
Manag., vol. 22, no. 6, pp. 45-50, Nov. 2020. doi: 10.3969/j.issn.1009-1831.2020.06.010.

L. Zhang and Y. Xia, “Optimal scheduling strategy for active distribution network considering demand
side response,” in 2018 2nd IEEE Conf. Energy Internet Energy Syst. Integr. (EI2), Beijing, China, 2018,

pp. 1-6.


https://doi.org/10.13335/j.1000-3673.pst.2016.02.017
https://doi.org/10.1016/j.jclepro.2019.06.195
https://doi.org/10.1016/j.jclepro.2023.137002
https://doi.org/10.13335/j.1000-3673.pst.2016.12.024
https://doi.org/10.1088/1755-1315/81/1/012180
https://doi.org/10.13335/j.1000-3673.pst.2015.01.007
https://doi.org/10.1186/s41601-022-00251-0
https://doi.org/10.1016/j.scs.2013.11.001
https://doi.org/10.1016/j.scs.2021.102748
https://doi.org/10.11930/j.issn.1004-9649.2016.08.099.07
https://doi.org/10.1049/esi2.12042
https://doi.org/10.7500/AEPS20140705006
https://doi.org/10.19725/j.cnki.1007-2322.2019.06.003
https://doi.org/10.3969/j.issn.1009-1831.2020.06.010

EE, 2024, vol.121, no.12 3537

[70]

[71]

[72]

[79]

[80]

(82]

[83]

D. Swaminathan and A. Rajagopalan, “Multi-objective golden flower optimization algorithm for sustain-
able reconfiguration of power distribution network with decentralized generation,” Axioms, vol. 12, no.
1, Jan. 2023, Art. no. 70. doi: 10.3390/axioms12010070.

V. FE. S. Junior, R. S. F. Ferraz, R. S. F. Ferraz, and A. C. Rueda-Medina, “Network reconfiguration and
distributed generators allocation and sizing using multi-objective optimization algorithms,” in 2023 15th
Seminar Power Electr. Control (SEPOC), Santa Maria, Brazil, 2023, pp. 1-6.

B. S. K. Patnam and N. M. Pindoriya, “Centralized stochastic energy management framework of an
aggregator in active distribution network,” IEEE Trans. Ind. Inform., vol. 15, no. 3, pp. 1350-1360, Mar.
2019. doi: 10.1109/T11.2018.2854744,

D. S. Rani, N. Subrahmanyam, and M. Sydulu, “Multi-objective invasive weed optimization-an applica-
tion to optimal network reconfiguration in radial distribution systems,” Int. J. Electr. Power Energy Syst.,
vol. 73, pp. 932-942, Dec. 2015. doi: 10.1016/j.1jepes.2015.06.020.

F. Capitanescu, L. F. Ochoa, H. Margossian, and N. D. Hatziargyriou, “Assesing the potential of network
reconfiguration to improve distributed generation hosting capacity in active distribution systems,” I[EEE
Trans. Power Syst., vol. 30, no. 1, pp. 346-356, May 2014. doi: 10.1109/TPWRS.2014.2320895.

B. Katanchi, A. A. Shojaei, and M. Yaghoobi, “Distribution network reconfiguration in effective presence
of dgs, evess and drp: A novel multi-objective approach,” Electr. Power Components Syst., pp. 1-17, Apr.
2024. doi: 10.1080/15325008.2024.2342009.

N. W.Tuand Z. H. Fan, “IMODBO for optimal dynamic reconfiguration in active distribution networks,”
Processes, vol. 11, no. 6, Jun. 2023, Art. no. 1827. doi: 10.3390/pr11061827.

W. Huang and S. Q. Ji, “Fast loss reduction reconfiguration method of distribution network based
on feeder couple,” (in Chinese), Power Syst. Autom., vol. 39, no. 5, pp. 75-80, Mar. 2015. doi:
10.7500/AEPS20140513002.

A. Asrari, S. Lotfifard, and M. S. Payam, “Pareto dominance-based multiobjective optimization method
for distribution network reconfiguration,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1401-1410, May
2016. doi: 10.1109/TSG.2015.2468683.

A. Azizi, B. Vahidi, and A. F. Nematollahi, “Reconfiguration of active distribution networks equipped
with soft open points considering protection constraints,” J. Mod. Power Syst. Clean Energy, vol. 11, no.
1, pp. 212-222, Jan. 2023. doi: 10.35833/MPCE.2022.000425.

M. B. Shafik, H. Chen, G. I. Rashed, R. A. El-Sehiemy, M. R. Elkadeem and S. R. Wang, “Adequate
topology for efficient energy resources utilization of active distribution networks equipped with soft open
points,” IEEE Access, vol. 7, pp. 99003-99016, Jul. 2019. doi: 10.1109/ACCESS.2019.2930631.

H. Yu, S. Niu, Y. Shang, Z. Y. Shao, Y. W. Jia and L. N. Jian, “Electric vehicles integration and vehicle-to-
grid operation in active distribution grids: A comprehensive review on power architectures, grid connection
standards and typical applications,” Renew. Sustain. Energ. Rev.,vol. 168, Oct. 2022, Art. no. 112812. doi:
10.1016/j.rser.2022.112812.

S. A. A. Matin, S. A. Mansouri, M. Bayat, A. R. Jordehi, and P. Radmehr, “A multi-objective bi-
level optimization framework for dynamic maintenance planning of active distribution networks in
the presence of energy storage systems,” J. Energy Storage, vol. 52, Aug. 2022, Art. no. 104762. doi:
10.1016/j.est.2022.104762.

V. Janamala, K. Radha Rani, P. Sobha Rani, A. N. Venkateswarlu, and S. Ram, “Optimal switching
operations of soft open points in active distribution network for handling variable penetration of
photovoltaic and electric vehicles using artificial rabbits optimization,” Process Integr. Optim. Sustain.,
vol. 7, no. 1, pp. 419-437, Jul. 2023. doi: 10.1007/s41660-022-00304-9.

Y. Xu, M. Zhao, H. Wu, S. Xiang, and Y. Yuan, “Coordination of network reconfiguration and
mobile energy storage system fleets to facilitate active distribution network restoration under forecast
uncertainty,” Front. Energy Res., vol. 10, Jan. 2023, Art. no. 1024282. doi: 10.3389/fenrg.2022.1024282.


https://doi.org/10.3390/axioms12010070
https://doi.org/10.1109/TII.2018.2854744
https://doi.org/10.1016/j.ijepes.2015.06.020
https://doi.org/10.1109/TPWRS.2014.2320895
https://doi.org/10.1080/15325008.2024.2342009
https://doi.org/10.3390/pr11061827
https://doi.org/10.7500/AEPS20140513002
https://doi.org/10.1109/TSG.2015.2468683
https://doi.org/10.35833/MPCE.2022.000425
https://doi.org/10.1109/ACCESS.2019.2930631
https://doi.org/10.1016/j.rser.2022.112812
https://doi.org/10.1016/j.est.2022.104762
https://doi.org/10.1007/s41660-022-00304-9
https://doi.org/10.3389/fenrg.2022.1024282

3538

[85]

[86]

[87]

[100]

EE, 2024, vol.121, no.12

A. Saber, H. H. Zeineldin, T. H. El-Fouly, and A. Al-Durra, “Overcurrent protection coordination with
flexible partitioning of active distribution systems into multiple microgrids,” Int. J. Electr. Power Energy
Syst., vol. 151, Sep. 2023, Art. no. 109205. doi: 10.1016/].ijepes.2023.109205.

W. Jin, S. Zhang, and J. Li, “Robust planning of distributed generators in active distribution net-
work considering network reconfiguration,” Appl. Sci., vol. 13, no. 13, Apr. 2023, Art. no. 7747. doi:
10.3390/app13137747.

M. A. Megjia, L. H. Macedo, G. Muiioz-Delgado, J. Contreras, and A. Padilha-Feltrin, “Active distribu-
tion system planning considering non-utility-owned electric vehicle charging stations and network recon-
figuration,” Sustain. Energy, Grids Netw., Sep. 2023, Art. no. 101101. doi: 10.1016/j.segan.2023.101101.
X. Xu, D. Niu, L. Peng, S. P. Zheng, and J. P. Qiu, “Hierarchical multi-objective optimal planning model
of active distribution network considering distributed generation and demand-side response,” Sustain.
Energy Technol. Assess., vol. 53, Oct. 2022, Art. no. 102438. doi: 10.1016/j.seta.2022.102438.

M. Ehsanbakhsh and M. S. Sepasian, “Simultaneous siting and sizing of soft open points and the
allocation of tie switches in active distribution network considering network reconfiguration,” IET Gener.,
Transm. Distrib., vol. 17, no. 1, pp. 263-280, Nov. 2023. doi: 10.1049/gtd2.12683.

S. Rasheed and A. R. Abhyankar, “Efficient operational planning of active distribution network by
embedding uncertainties and network reconfiguration,” Elect. Power Syst. Res., vol. 216, Mar. 2023, Art.
no. 109036. doi: 10.1016/j.epsr.2022.109036.

Q. Shi et al., “Network reconfiguration and distributed energy resource scheduling for improved distri-
bution system resilience,” Int. J. Electr. Power Energy Syst., vol. 124, Jan. 2021, Art. no. 106355. doi:
10.1016/j.ijepes.2020.106355.

L. Jun, Y. Fan, Z. Y. Song, and X. K. Liu, “Research on multi-objective distribution network reconfigura-
tion considering power supply reliability,” in 2019 4th Int. Conf. Power Renew. Energy, Chengdu, China,
2019, pp. 61-64.

C. Ma, Q. Duan, H. Wang, and Y. Mu, “Multi-objective dynamic network reconstruction method for
active distribution network including distributed generation and electric vehicles,” in 2022 5th Int. Conf.
Energy, Electr. Power Eng. (CEEPE), Chongqing, China, 2022, pp. 612-617.

N. F. Napis, A. F. A. Kadir, T. Khatib, T. Khatib, E. E. Hassan and M. F. Sulaima, “An improved method
for reconfiguring and optimizing electrical active distribution network using evolutionary particle swarm
optimization,” Appl. Sci., vol. 8, no. 5, p. 804, Apr. 2018. doi: 10.3390/app8050804.

H. Nasiraghdam and S. Jadid, “Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration
using multi-objective artificial bee colony (MOABC) algorithm,” Sol. Energy, vol. 86, no. 10, pp. 3057-
3071, Oct. 2012. doi: 10.1016/j.solener.2012.07.014.

D. Sudha, N. Subrahmanyam, and M. Sydulu, “Self adaptive harmony search algorithm for optimal
network reconfiguration,” in 2014 Power Energy Conf. lllinois (PECI), Champaign, IL, USA, 2014, pp.
1-6.

H. Shareef, A. A. Ibrahim, N. Salman, A. Mohamed, and W. L. Ai, “Power quality and reliability enhance-
ment in distribution systems via optimum network reconfiguration by using quantum firefly algorithm,”
Int. J. Electr. Power Energy Syst., vol. 58, pp. 160-169, Jun. 2014. doi: 10.1016/j.1jepes.2014.01.013.

H. W. Hong and D. Shirmohammadi, “Reconfiguration of electric distribution networks for resistive line
losses reduction,” Trans. Power Deliv., vol. 4, no. 2, pp. 1492-1498, Apr. 1989. doi: 10.1109/61.25637.

F. V. Gomes, S. Carneiro, J. L. R. Pereira, M. P. Vinagre, P. A. N. Garcia and L. R. D. Araujo, “A
new distribution system reconfiguration approach using optimum power flow and sensitivity analysis
for loss reduction,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1616-1623, Oct. 2006. doi: 10.1109/TP-
WRS.2006.879290.

X. K. Feng, W. W. Shen, C. Y. Dong, J. L. Zeng, J. D. Shi and D. J. Wang, “Study on fundamental principles
and methodologies of distribution network reconfiguration,” TELKOMNIKA Indonesian J. Electr. Eng.,
vol. 12, no. 3, pp. 1695-1700, Mar. 2014. doi: 10.11591/telkomnika.v12i3.4564.


https://doi.org/10.1016/j.ijepes.2023.109205
https://doi.org/10.3390/app13137747
https://doi.org/10.1016/j.segan.2023.101101
https://doi.org/10.1016/j.seta.2022.102438
https://doi.org/10.1049/gtd2.12683
https://doi.org/10.1016/j.epsr.2022.109036
https://doi.org/10.1016/j.ijepes.2020.106355
https://doi.org/10.3390/app8050804
https://doi.org/10.1016/j.solener.2012.07.014
https://doi.org/10.1016/j.ijepes.2014.01.013
https://doi.org/10.1109/61.25637
https://doi.org/10.1109/TPWRS.2006.879290
https://doi.org/10.11591/telkomnika.v12i3.4564

EE, 2024, vol.121, no.12 3539

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]
[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

H. M. Khodr, M. A. Matos, and J. Pereira, “Distribution optimal power flow,” in IEEE Lausanne Power
Tech, Lausanne, Switzerland, 2007, pp. 1441-1446. doi: 10.1109/PCT.2007.4538527.

N. Gupta, A. Swarnkar, and K. R. Niazi, “A modified branch-exchange heuristic algorithm for large-
scale distribution networks reconfiguration,” in 2012 IEEE Power Energy Soc. Gen. Meet., San Diego,
CA, USA, 2012, pp. 1-7.

A. Dejamkhooy, Y. F. Khaneghah, and H. Shayeghi, “Modified branch exchange reconfiguration of active
distributed network for simultaneous loss reduction and power quality improvement,” Int. Trans. Electr.
Energy Syst., vol. 29, no. 10, Jun. 2019, Art. no. 12065. doi: 10.1002/2050-7038.12065.

E. C. Pereira, C. H. N. R. Barbosa, and J. A. Vasconcelos, “Distribution network reconfiguration using
iterative branch exchange and clustering technique,” Energies, vol. 16, no. 5, Mar. 2023, Art. no. 2395.
doi: 10.3390/en16052395.

M. L. Fisher, “The Lagrangian relaxation method for solving integer programming problems,” Manage.
Sci., vol. 27, no. 1, pp. 1-18, Jan. 1981. doi: 10.1287/mnsc.27.1.1.

N. V. Kovacki, P. M. Vidovi¢, and A. T. Sari¢, “Scalable algorithm for the dynamic reconfiguration of the
distribution network using the Lagrange relaxation approach,” Int. J. Electr. Power Energy Syst., vol. 94,
pp- 188-202, Jan. 2018. doi: 10.1016/j.ijepes.2017.07.005.

H. P. Schmidt, N. Ida, N. Kagan, and J. C. Guaraldo, “Fast reconfiguration of distribution systems
considering loss minimization,” in IEEE Trans. Power Syst., London, UK, 2005, pp. 1311-1319.

F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive parameters,”
Comput. Optim. Appl., vol. 51, no. 1, pp. 259-277, May 2010. doi: 10.1007/s10589-010-9329-3,

A. Abur, “A modified linear programming method for distribution system reconfiguration,” Int. J. Electr.
Power Energy Syst., vol. 18, no. 7, pp. 469-474, Oct. 1996. doi: 10.1016/0142-0615(96)00005-1.

J. A. Taylor and F. S. Hover, “Convex models of distribution system reconfiguration,” IEEFE Trans. Power
Syst., vol. 27, no. 3, pp. 1407-1413, Feb. 2012. doi: 10.1109/TPWRS.2012.2184307.

R. A. Jabr, R. Singh, and B. C. Pal, “Minimum loss network reconfiguration using mixed-integer convex
programming,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1106-1115, May 2012. doi: 10.1109/TP-
WRS.2011.2180406.

J. F. Franco, M. J. Rider, M. Lavorato, and R. Romero, “A mixed-integer LP model for the reconfiguration
of radial electric distribution systems considering distributed generation,” Electr. Power Syst. Res.,vol. 97,
pp. 51-60, Apr. 2013. doi: 10.1016/j.epsr.2012.12.005.

A. S. Deese, “Comparative study of accuracy and computation time for optimal network reconfiguration
techniques via simulation,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 394-400, Dec. 2014. doi:
10.1016/j.1jepes.2014.05.030.

H. F. Zhai, M. Yang, B. Chen, and N. Kang, “Dynamic reconfiguration of three-phase unbal-
anced distribution networks,” Int. J FElectr. Power Energy Syst., vol. 99, pp. 1-10, Jul. 2018. doi:
10.1016/j.ijepes.2017.12.027.

L. H. Macedo, J. M. Home-Ortiz, R. Vargas, J. Mantovani, R. Romero and J. P. S. Cataldo, “Short-circuit
constrained distribution network reconfiguration considering closed-loop operation,” Sustain. Energy
Grids Netw., vol. 32, Dec. 2022, Art. no. 100937. doi: 10.1016/j.scgan.2022.100937.

S. Chen, Y. Yang, M. Qin, and Q. S. Xu, “Coordinated multiobjective optimization of the integrated
energy distribution system considering network reconfiguration and the impact of price fluctuation
in the gas market,” Int. J Electr. Power Energy Syst., vol. 138, Jun. 2022, Art. no. 107776. doi:
10.1016/].ijepes.2021.107776.

X. Q. Xiao, W. Bo, and S. Z. Hong, “Reconfiguration of two-voltage distribution network based on cuckoo
search and simulated annealing algorithm,” (in Chinese), Power Syst. Prot. Control, vol. 48, pp. 84-91,
May 2020. doi: 10.19783/j.cnki.pspc. 190949,


https://doi.org/10.1109/PCT.2007.4538527
https://doi.org/10.1002/2050-7038.12065
https://doi.org/10.3390/en16052395
https://doi.org/10.1287/mnsc.27.1.1
https://doi.org/10.1016/j.ijepes.2017.07.005
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1016/0142-0615(96)00005-1
https://doi.org/10.1109/TPWRS.2012.2184307
https://doi.org/10.1109/TPWRS.2011.2180406
https://doi.org/10.1016/j.epsr.2012.12.005
https://doi.org/10.1016/j.ijepes.2014.05.030
https://doi.org/10.1016/j.ijepes.2017.12.027
https://doi.org/10.1016/j.segan.2022.100937
https://doi.org/10.1016/j.ijepes.2021.107776
https://doi.org/10.19783/j.cnki.pspc.190949

3540

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

EE, 2024, vol.121, no.12

B. Stojanovi¢ and T. Raji¢, “Novel approach to reconfiguration power loss reduction problem by simulated
annealing technique,” Int. Trans. Electr. Energy Syst., vol. 27, no. 12, Nov. 2017, Art. no. 2464. doi:
10.1002/etep.2464.
Y. Mishima, K. Nara, T. Satoh, T. Ito, and H. Kaneda, “Method for minimum-loss reconfiguration
of distribution system by tabu search,” Elect. Eng Jpn., vol. 152, no. 2, pp. 18-25, May 2005. doi:
10.1002/eej.20086.

A. Y. Abdelaziz, F. M. Mohamed, S. F. Mekhamer, and M. A. L. Badr, “Distribution system reconfigu-
ration using a modified Tabu Search algorithm,” Elect. Power Syst. Res., vol. 80, no. 8, pp. 943-953, Aug.
2010. doi: 10.1016/).epsr.2010.01.001.

R.Y. Yamamoto, T. Pinto, R. Romero, and L. H. Macedo, “Reformulated adaptive tabu search algorithm
applied to the reconfiguration of radial distribution systems,” Available at SSRN, Jun. 2024, Art. no.
4871994. doi: 10.2139/ssrn.4871994.

R. Chidanandappa, T. Ananthapadmanabha, and H. C. Ranjith, “Genetic algorithm based network
reconfiguration in distribution systems with multiple DGs for time varying loads,” Procedia Technol.,
vol. 21, pp. 460-467, Oct. 2015. doi: 10.1016/j.protcy.2015.10.023.

E. Kazemi-Robati, M. S. Sepasian, H. Hafezi, and H. Arasteh, “PV-hosting-capacity enhancement
and power-quality improvement through multiobjective reconfiguration of harmonic-polluted dis-
tribution systems,” Int. J. Electr. Power Energy Syst., vol. 140, Sep. 2022, Art. no. 107972. doi:
10.1016/j.ijepes.2022.107972.

G. A. D. Vargas, D. J. Mosquera, and E. R. Trujillo, “Optimization of topological reconfiguration in elec-
tric power systems using genetic algorithm and nonlinear programming with discontinuous derivatives,”
Electronics, vol. 13, no. 3, p. 616, Feb. 2024. doi: 10.3390/electronics13030616.

Y. K. Wu, C. Y. Lee, L. C. Liu, and S. H. Tsai, “Study of reconfiguration for the distribution system
with distributed generators,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1678-1685, Jul. 2010. doi:
10.1109/TPWRD.2010.2046339.

C. Qian and A. Y. Wang, “Distribution network reconfiguration based on improved differential evolution
ant colony algorithm,” in 2022 3rd Int. Conf. Big Data, Artif. Intell. Internet Things Eng. (ICBAIE), X1’an,
China, 2022, pp. 234-240.

K. S. Sambaiah and T. Jayabarathi, “Loss minimization techniques for optimal operation and planning
of distribution systems: A review of different methodologies,” Int. Trans. Electr. Energy Syst., vol. 30, no.
2, Nov. 2019, Art. no. €12230. doi: 10.1002/2050-7038.12230.

C. Ma, C. Li, X. Zhang, G. X. Li, and Y. G. Han, “Reconfiguration of distribution networks with
distributed generation using a dual hybrid particle swarm optimization algorithm,” Math. Probl. Eng.,
vol. 2017, no. 2, pp. 1-10, Aug. 2017. doi: 10.1155/2017/1517435.

A. Alanazi and T. 1. Alanazi, “Multi-objective framework for optimal placement of distributed gener-
ations and switches in reconfigurable distribution networks: An improved particle swarm optimization
approach,” Sustainability, vol. 15, no. 11, May 2023, Art. no. 9034. doi: 10.3390/sul5119034.

L. Li and F. C. Xue, “Distribution network reconfiguration based on niche binary particle swarm
optimization algorithm,” Energy Proc., vol. 17, pp. 178-182, 2012. doi: 10.1016/j.egypro.2012.02.080.

F. Zhao, J. Si, and J. Wang, “Research on optimal schedule strategy for active distribution network using
particle swarm optimization combined with bacterial foraging algorithm,” Int. J Electr. Power Energy
Syst., vol. 78, pp. 637-646, Jun. 2016. doi: 10.1016/.ijepes.2015.11.112.

B. Vasudevan and A. K. Sinha, “Reliability improvement of reconfigurable distribution system using GA
and PSO,” Elect. Eng., vol. 100, pp. 12631275, Jun. 2018. doi: 10.1007/500202-017-0580-9.

M. B. Shafik, G. I. Rashed, H. Chen, M. R. Elkadeem, and S. R. Wang, “Reconfiguration strategy for
active distribution networks with soft open points,” in 2019 14th IEEE Conf. Ind. Electr. Appl., Xi’an,
China, 2019, pp. 330-334.


https://doi.org/10.1002/etep.2464
https://doi.org/10.1002/eej.20086
https://doi.org/10.1016/j.epsr.2010.01.001
https://doi.org/10.2139/ssrn.4871994
https://doi.org/10.1016/j.protcy.2015.10.023
https://doi.org/10.1016/j.ijepes.2022.107972
https://doi.org/10.3390/electronics13030616
https://doi.org/10.1109/TPWRD.2010.2046339
https://doi.org/10.1002/2050-7038.12230
https://doi.org/10.1155/2017/1517435
https://doi.org/10.3390/su15119034
https://doi.org/10.1016/j.egypro.2012.02.080
https://doi.org/10.1016/j.ijepes.2015.11.112
https://doi.org/10.1007/s00202-017-0580-9

EE, 2024, vol.121, no.12 3541

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

A. Rezaee Jordehi, “Particle swarm optimisation with opposition learning-based strategy: An efficient
optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems,” Soft
Comput., vol. 24, no. 24, pp. 18573-18590, Jun. 2020. doi: 10.1007/s00500-020-05093-2.

M. H. Shariatkhah, M. R. Haghifam, J. Salehi, and A. Moser, “Duration based reconfiguration of electric
distribution networks using dynamic programming and harmony search algorithm,” Int. J. Electr. Power
Energy Syst., vol. 41, no. 1, pp. 1-10, Oct. 2012. doi: 10.1016/j.1jepes.2011.12.014.

M. V. Santos, G. A. Brigatto, and L. P. Garcés, “Methodology of solution for the distribution network
reconfiguration problem based on improved harmony search algorithm,” IET Gener., Trans. Distrib., vol.
14, no. 26, pp. 65266533, Feb. 2021. doi: 10.1049/iet-gtd.2020.0917.

S. J. Dias, F. Marques, N. L. P. Garcés, and G. A. A. A. Brigatto, “A novel solution method for the
distribution network reconfiguration problem based on a search mechanism enhancement of the improved
harmony search algorithm,” Energies, vol. 15, no. 6, Feb. 2022, Art. no. 2083. doi: 10.3390/en15062083.

M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, “Optimum network reconfiguration based
on maximization of system loadability using continuation power flow theorem,” Int. J Electr. Power
Energy Syst., vol. 54, pp. 123-133, Jan. 2014. doi: 10.1016/j.1jepes.2013.06.026.

K. D. Choton, B. Octavian, K. Ganesh, T. S. Mahmoud, and D. Habibi, “Optimal placement of distributed
energy storage systems in distribution networks using artificial bee colony algorithm,” Appl. Energy, vol.
232, pp. 212-228, Dec. 2018. doi: 10.1016/j.apenergy.2018.07.100.

C. Gao, A. Q. Yu, and Y. Ding, “Reconfiguration of three-phase unbalanced active distribution network
based on improved cuckoo search algorithm,” (in Chinese), J Power syst. Automati., vol. 32, no. 9, pp.
143-150, Nov. 2019. doi: 10.19635/j.cnki.csu-epsa.000367.

T. T. Nguyen, A. V. Truong, and T. A. Phung, “A novel method based on adaptive cuckoo search for
optimal network reconfiguration and distributed generation allocation in distribution network,” Int. J.
Electr. Power Energy Syst., vol. 78, pp. 801-815, Jun. 2016. doi: 10.1016/j.1jepes.2015.12.030.

A. M. Othman and A. A. El-Fergany, “Optimal dynamic operation and modeling of parallel connected
multi-stacks fuel cells with improved slime mould algorithm,” Renew. Energy, vol. 175, pp. 770-782, Sep.
2021. doi: 10.1016/j.renene.2021.04.148.

H. J. Wang, J. S. Pan, T. T. Nguyen, and S. W. Weng, “Distribution network reconfiguration with
distributed generation based on parallel slime mould algorithm,” Energy, vol. 244, Apr. 2022, Art. no.
123011. doi: 10.1016/j.energy.2021.123011.

J. S. Pan, H. J. Wang, T. T. Nguyen, F. M. Zou, and S. C. Chu, “Dynamic reconfiguration of distribution
network based on dynamic optimal period division and multi-group flight slime mould algorithm,” Elect.
Power Syst. Res., vol. 208, Jul. 2022, Art. no. 107925. doi: 10.1016/j.epsr.2022.107925.

A. Kavousi-Fard and T. Niknam, “Multi-objective stochastic distribution feeder reconfiguration from the
reliability point of view,” Energy, vol. 64, pp. 342-354, Jan. 2014. doi: 10.1016/j.energy.2013.08.060.

S. H. Mirhoseini, S. M. Hosseini, M. Ghanbari, and M. Ahmadi, “A new improved adaptive imperialist
competitive algorithm to solve the reconfiguration problem of distribution systems for loss reduction and
voltage profile improvement,” Int. J Electr. Power Energy Syst., vol. 55, pp. 128-143, Feb. 2014. doi:
10.1016/j.ijepes.2013.08.028.

A. Kavousi-Fard and M. R. Akbari-Zadeh, “Reliability enhancement using optimal distribution feeder
reconfiguration,” Neurocomputing, vol. 106, pp. 1-11, Apr. 2013. doi: 10.1016/;.neucom.2012.08.033.

R. Rajaram, K. S. Kumar, and N. Rajasekar, “Power system reconfiguration in a radial distribu-
tion network for reducing losses and to improve voltage profile using modified plant growth simula-
tion algorithm with distributed generation (DG),” Energy Rep., vol. 1, pp. 116-122, Nov. 2015. doi:
10.1016/j.egyr.2015.03.002.

S. Naveen, K. S. Kumar, and K. Rajalakshmi, “Distribution system reconfiguration for loss minimization

using modified bacterial foraging optimization algorithm,” Int. J. Electr. Power Energy Syst., vol. 69, pp.
90-97, Jul. 2015. doi: 10.1016/j.ijepes.2014.12.090.


https://doi.org/10.1007/s00500-020-05093-2
https://doi.org/10.1016/j.ijepes.2011.12.014
https://doi.org/10.1049/iet-gtd.2020.0917
https://doi.org/10.3390/en15062083
https://doi.org/10.1016/j.ijepes.2013.06.026
https://doi.org/10.1016/j.apenergy.2018.07.100
https://doi.org/10.19635/j.cnki.csu-epsa.000367
https://doi.org/10.1016/j.ijepes.2015.12.030
https://doi.org/10.1016/j.renene.2021.04.148
https://doi.org/10.1016/j.energy.2021.123011
https://doi.org/10.1016/j.epsr.2022.107925
https://doi.org/10.1016/j.energy.2013.08.060
https://doi.org/10.1016/j.ijepes.2013.08.028
https://doi.org/10.1016/j.neucom.2012.08.033
https://doi.org/10.1016/j.egyr.2015.03.002
https://doi.org/10.1016/j.ijepes.2014.12.090

3542

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

EE, 2024, vol.121, no.12

H. Li, W. Mao, A. Zhang, and C. Li, “An improved distribution network reconfiguration method based
on minimum spanning tree algorithm and heuristic rules,” Int. J. Electr. Power Energy Syst., vol. 82, pp.
466-473, Nov. 2016. doi: 10.1016/j.ijepes.2016.04.017.

A. Uniyal and S. Sarangi, “Optimal network reconfiguration and DG allocation using adaptive modified
whale optimization algorithm considering probabilistic load flow,” Elect. Power Syst. Res., vol. 192, Mar.
2021, Art. no. 106909. doi: 10.1016/j.epsr.2020.106909.

E. Azad-Farsani, I. G. Sardou, and S. Abedini, “Distribution network reconfiguration based on LMP at
DG connected busses using game theory and self-adaptive FWA,” Energy, vol. 215, Jan. 2021, Art. no.
119146. doi: 10.1016/j.energy.2020.119146.

D. Anteneh, B. Khan, O. P. Mahela, H. H. Alhelou, and J. M. Guerrero, “Distribution network reliability
enhancement and power loss reduction by optimal network reconfiguration,” Comput. Electr. Eng., vol.
96, Dec. 2021, Art. no. 107518. doi: 10.1016/j.compeleceng.2021.107518.

Y. Li, B. Sun, Y. Zeng, S. M. Dong, S. Q. Ma and X. Zhang, “Active distribution network active and
reactive power coordinated dispatching method based on discrete monkey algorithm,” Int. J. Electr. Power
Energy Syst., vol. 143, Dec. 2022, Art. no. 108425. doi: 10.1016/j.1jepes.2022.108425.

L. L. Li, J. L. Xiong, M. L. Tseng, Z. Yan, and M. K. Lim, “Using multi-objective sparrow search
algorithm to establish active distribution network dynamic reconfiguration integrated optimization,”
Expert Syst. Appl., vol. 193, May 2022, Art. no. 116445. doi: 10.1016/j.eswa.2021.116445.

M. Cikan and B. Kekezoglu, “Comparison of metaheuristic optimization techniques including equilib-
rium optimizer algorithm in power distribution network reconfiguration,” Alex. Eng. J., vol. 61, no. 2, pp.
991-1031, 2022. doi: 10.1016/j.2¢].2021.06.079.

Z.Lin, C. X. Jiang, Y. J. Lu, and C. X. Liu, “Active distribution network reconfiguration with renewable
energy based on multi-agent deep reinforcement learning,” in 2023 6th Int. Conf. Energy, Electr. Power
Eng. (CEEPE), Guangzhou, China, 2023, pp. 535-542.

Y. Gao, W. Wang, J. Shi, and N. P. Yu, “Batch-constrained reinforcement learning for dynamic distribution
network reconfiguration,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5357-5369, Jun. 2020. doi:
10.1109/TSG.2020.3005270.

W. Huang, W. Zheng, and D. J. Hill, “Distribution network reconfiguration for short-term voltage stability
enhancement: An efficient deep learning approach,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5385-5395,
Jul. 2021. doi: 10.1109/TSG.2021.3097330.

W. Zheng, W. Huang, and D. J. Hill, “A deep learning-based general robust method for network
reconfiguration in three-phase unbalanced active distribution networks,” Int. J. Electr. Power Energy Syst.,
vol. 120, Sep. 2020, Art. no. 105982. doi: 10.1016/j.ijepes.2020.105982.,

S.H. Oh, Y. T. Yoon, and S. W. Kim, “Online reconfiguration scheme of self-sufficient distribution network
based on a reinforcement learning approach,” Appl. Energy, vol. 280, Dec. 2020, Art. no. 115900. doi:
10.1016/j.apenergy.2020.115900.

V. H. Bui and W. Su, “Real-time operation of distribution network: A deep reinforcement learning-based
reconfiguration approach,” Sustain. Energy Technol. Assess., vol. 50, Mar. 2022, Art. no. 101841. doi:
10.1016/j.seta.2021.101841.

S. Malekshah, A. Rasouli, Y. Malekshah, A. Ramezani, and A. Malekshah, “Reliability-driven dis-
tribution power network dynamic reconfiguration in presence of distributed generation by the deep
reinforcement learning method,” Alex. Eng J, vol. 61, no. 8, pp. 6541-6556, Aug. 2022. doi:
10.1016/j.a€j.2021.12.012.


https://doi.org/10.1016/j.ijepes.2016.04.017
https://doi.org/10.1016/j.epsr.2020.106909
https://doi.org/10.1016/j.energy.2020.119146
https://doi.org/10.1016/j.compeleceng.2021.107518
https://doi.org/10.1016/j.ijepes.2022.108425
https://doi.org/10.1016/j.eswa.2021.116445
https://doi.org/10.1016/j.aej.2021.06.079
https://doi.org/10.1109/TSG.2020.3005270
https://doi.org/10.1109/TSG.2021.3097330
https://doi.org/10.1016/j.ijepes.2020.105982
https://doi.org/10.1016/j.apenergy.2020.115900
https://doi.org/10.1016/j.seta.2021.101841
https://doi.org/10.1016/j.aej.2021.12.012

EE, 2024, vol.121, no.12

Appendix A
Table A1 Practical analysis of ADNR methods
Branch Branch impedance Loads
Re.Nd. Sn.Nd. r(2) x () PL (kW) QL (kvar)
1 2 0.0922 0.0477 100 60
2 3 0.493 0.2511 90 40
3 4 0.366 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.819 0.707 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.03 0.74 60 20
9 10 1.04 0.74 60 20
10 11 0.1966 0.065 45 30
11 12 0.3744 0.1238 60 35
12 13 1.468 1.155 60 35
13 14 0.5416 0.7129 120 80
14 15 0.591 0.526 60 10
15 16 0.7463 0.545 60 20
16 17 1.289 1.721 60 20
17 18 0.732 0.574 90 40
2 19 0.164 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.898 0.7091 420 200
24 25 0.896 0.7011 420 200
6 26 0.203 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.059 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.963 150 70
31 32 0.3105 0.3619 210 100
32 33 0.341 0.5302 60 40
21 8 0 2 - -
9 14 0 2 - -
12 22 0 2 - -
18 33 0 0.5 - -
25 29 0 0.5 - -
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Table A2 Practical analysis of ADNR methods

Branch Branch Loads
impedance

Re.Nd. Sn.Nd. r(2) x(2) PL (kW) QL (kvar)
1 2 0.0005 0.0012 0 0
2 3 0.0005 0.0012 0 0
3 4 0.0015 0.0036 0 0
4 5 0.0251 0.0294 0 0
5 6 0.366 0.1863 2.6 2.2
6 7 0.381 0.1941 40.4 30
7 8 0.0922 0.047 75 54
8 9 0.0493 0.0251 30 22
9 10 0.819 0.2707 28 19
10 11 0.1872 0.0619 145 104
11 12 0.7114 0.2351 145 104
12 13 1.03 0.34 8 5
13 14 1.044 0.345 8 5.5
14 15 1.058 0.3496 0 0
15 16 0.1966 0.065 45.5 30
16 17 0.3744 0.1238 60 35
17 18 0.0047 0.0016 60 35
18 19 0.3276 0.1083 0 0
19 20 0.2106 0.069 1 0.6
20 21 0.3416 0.1129 114 81
21 22 0.014 0.0046 5 3.5
22 23 0.1591 0.0526 0 0
23 24 0.3463 0.1145 28 20
24 25 0.7488 0.2475 0 0
25 26 0.3089 0.1021 14 10
26 27 0.1732 0.0572 14 10
3 28 0.0044 0.0108 26 18.6
28 29 0.064 0.1565 26 18.6
29 30 0.3978 0.1315 0 0
30 31 0.0702 0.0232 0 0
31 32 0.351 0.116 0 0
32 33 0.839 0.2816 14 10
33 34 1.708 0.5646 19.5 14
34 35 1.474 0.4873 6 4
3 36 0.0044 0.0108 26 18.55
36 37 0.064 0.1565 26 18.55
37 38 0.1053 0.123 0 0
38 39 0.0304 0.0355 24 17
39 40 0.0018 0.0021 24 17
40 41 0.7283 0.8509 1.2 1

(Continued)
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Table A2 (continued)
Branch Branch Loads
impedance
Rc.Nd. Sn.Nd. r(2) x(2) PL (kW) QL (kvar)
41 42 0.31 0.3623 0 0
42 43 0.041 0.0478 6 4.3
43 44 0.0092 0.0116 0 0
44 45 0.1089 0.1373 39.22 26.3
45 46 0.0009 0.0012 39.22 26.3
4 47 0.0034 0.0084 0 0
47 48 0.0851 0.2083 79 56.4
48 49 0.2898 0.7091 384.7 274.5
49 50 0.0822 0.2011 384.7 274.5
8 51 0.0928 0.0473 40.5 28.3
51 52 0.3319 0.1114 3.6 2.7
9 53 0.174 0.0886 4.35 3.5
53 54 0.203 0.1034 26.4 19
54 55 0.2842 0.1447 24 17.2
55 56 0.2813 0.1433 0 0
56 57 1.59 0.5337 0 0
57 58 0.7837 0.263 0 0
58 59 0.3042 0.1006 100 72
59 60 0.3861 0.1172 0 0
60 61 0.5075 0.2585 1244 888
61 62 0.0974 0.0496 32 23
62 63 0.145 0.0738 0 0
63 64 0.7105 0.3619 227 162
64 65 1.041 0.5302 59 42
11 66 0.2012 0.0611 18 13
66 67 0.0047 0.0014 18 13
12 68 0.7394 0.2444 28 20
68 69 0.0047 0.0016 28 20
11 43 0.5 0.5
13 21 0.5 0.5
15 46 1 0.5
50 59 2 1
27 65 1 0.5
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Table A3 Practical analysis of ADNR methods

Branch number kV Load Load type No. of customers
PL (kW) QL (kvar)
1 132 0 0 0 0
2 11 0 0 0 0
3 11 0.85 0.527 1 1
4 11 0.342 0.194 4 1
5 11 0.244 0.145 3 24
6 11 0.244 0.177 3 24
7 11 0 0 0 0
8 33 0 0 0 0
9 33 1.275 0.513 1 1
10 0.433 1.594 0.641 1 1
11 11 0.146 0.098 3 14
12 11 0.294 0.143 3 29
13 11 0.488 0.341 2 4
14 11 0.437 0.199 2 4
15 11 1.776 1.006 2 8
16 11 0.297 0.098 3 30
17 11 0 0 0 0
18 11 0.616 0.43 3 61
19 11 0.388 0.23 3 39
20 11 0.732 0.354 1 1
21 33 1.063 0.427 1 1
22 11 0.925 0.549 2 5
23 11 0.582 0.345 2 3
24 11 0.504 0.23 4 100
25 11 1.25 0.605 3 125
26 11 0.351 0.149 6 1
27 11 0.276 0.118 3 28
28 11 0.314 0.134 4 63
29 11 0.613 0.261 2 3
30 11 0.592 0.252 3 59
31 11 0 0 0 0
32 6.6 0 0 0 0
33 11 0.032 0.024 6 1
34 33 0 0 0 0
35 33 0 0 0 0
36 33 0 0 0 0
37 11 8 6 5 8
38 11 7.65 4.741 5 7
39 33 0 0 0 0
40 33 0 0 0 0
41 33 0 0 0 0

(Continued)
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Table A3 (continued)

Branch number kV Load Load type No. of customers
PL (kW) QL (kvar)

42 33 0 0 0 0

43 33 0 0 0 0

44 11 12.75 7.902 5 26

45 11 12.75 7.902 5 26

46 11 6.8 4.214 5 14

47 11 4.8 3.6 5 10
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