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ABSTRACT

Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions dur-
ing power grid integration of renewable energy can affect the performance and failure risk of battery energy
storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically
only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are
computationally intensive and impractical for real-time applications and may not be suitable for power grid
operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address
these issues, in this study, we establish a thermal-electric-performance (TEP) coupling model based on a multi-
time scale BESS model, incorporating the electrical and thermal characteristics of Li-ion batteries along with
their performance degradation to achieve detailed simulation of grid-connected BESS. Additionally, considering
the operating characteristics of energy storage batteries and electrical and thermal abuse factors, we developed a
battery pack operational risk model, which takes into account SOC and charge-discharge rate (Cr), using a modified
failure rate to represent the BESS risk. By integrating detailed simulation of energy storage with predictive failure
risk analysis, we obtained a detailed model for BESS risk analysis. This model offers a multi-time scale integrated
simulation that spans month-level energy storage simulation times, day-level performance degradation, minute-
scale failure rate, and second-level BESS characteristics. It offers a critical tool for the study of BESS. Finally, the
performance and risk of energy storage batteries under three scenarios—microgrid energy storage, wind power
smoothing, and power grid failure response—are simulated, achieving a real-time state-dependent operational risk
analysis of the BESS.

KEYWORDS
Grid-connected battery energy storage system; thermal-electric-performance coupling model; operational risk
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1 Introduction

China’s 2030–2060 dual carbon goals aim to propel the proportion of renewable energy sources,
such as wind and photovoltaic energy, which will gradually replace fossil fuel generation. However,
with the rise in renewable energy resources, the issues brought about by their intermittency and
volatility become increasingly prominent. Battery energy storage system (BESS) act as the primary
means of renewable energy storage and an effective means to address the aforementioned volatility
issue [1,2].
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BESS have extensive applications within power systems: In terms of (i) generation, they can be
used for rapid frequency regulation, smoothing out renewable energy fluctuations, and providing
cold and hot standby; (ii) transmission and distribution networks, they can optimize the integration
of renewable energy and the distribution of power flow; and (iii) load, they can improve power
quality, provide distributed energy supply, and participate in market regulation through means such as
electricity price arbitrage [3]. BESS can help develop a novel, low-carbon power system by significantly
enhancing their ability to accommodate wind and photovoltaic energy. However, the high investment
cost, frequent fire and explosion incidents [4], and poor reliability and safety of BESS are major
bottlenecks for their widespread large-scale BESS application. Therefore, it is particularly important
to conduct refined modeling, simulation, and risk analysis of BESS.

Unlike other operating scenarios, the application of BESS in the power grid involves complex
multi-time scale dynamic characteristics, including second-level and minute-level frequency response,
hour-level peak-cutting and valley-filling and load smoothing, as well as day-level renewable energy
fluctuation smoothing [5,6]. In response to these characteristics, scholars have conducted multi-time
scale modeling of energy storage batteries [7,8] and studied corresponding control strategies [9].
However, these studies mainly focus on the impact of BESS on the grid while neglecting the state
and risk changes of the BESS itself.

Li-ion batteries experience a gradual performance degradation during the cycling process. The
State of Health (SOH) and Remaining Useful Life (RUL) are critical indicators of batteries perfor-
mance [10,11], with changes in capacity and internal resistance being the primary manifestations of its
health status. Health status assessment methods based on capacity degradation and increased internal
resistance are the most direct and effective means [12,13]. However, these methods primarily focus on
changes in the external characteristics of energy storage batteries and often overlook the impact of
various factors, such as temperature and charge-discharge rate. To address this issue, researchers have
conducted extensive charge-discharge experiments on Li-ion batteries, taking into account the impact
of charge-discharge rate, temperature, and the number of charge-discharge cycles on the capacity
degradation of the batteries, and have established semi-empirical aging models for Li-ion batteries
[14–16]. These models incorporate multiple factors affecting Li-ion batteries. Additionally, with the
development of artificial intelligence (AI) techniques, methods such as the modified flower pollination
algorithm-temporal convolutional network [17] and the multi-faceted health estimation method for
lithium-sulfur batteries based on incremental capacity analysis and improved long short-term memory
(LSTM) network [18] have begun to be applied to the state assessment of Li-ion batteries, achieving
significant progress. The literature [19] has reviewed and summarized methods using machine learning
and deep learning to predict the health status of batteries, indicating the potential of deep learning
methods in estimating the health status of Li-ion batteries. The aforementioned model can effectively
simulate the aging characteristics of energy storage batteries and offers advantages in batteries state
monitoring. However, the evaluation of a single health state tends to focus on the steady-state analysis
of long-term processes, making it insufficient to directly reflect the current risk of the energy storage
batteries.

As the SOH of Li-ion batteries continues to decline, the possibility of internal short circuit and
thermal runaway increases, with thermal abuse and electrical abuse being the primary triggers for most
failures [20]. Thermal and electrical abuse can lead to a rapid rise in internal temperature, triggering
a series of side reactions such as electrolyte decomposition and collecting fluid melting, which may
result in battery failure or even fire and explosion [21,22]. To study the risk of Li-ion batteries under
abusive conditions, scholars have conducted experiments on energy storage batteries focusing on
high temperatures, over-charging, and other abuse behaviors, analyzing the process from abuse to
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failure [23]. These studies have revealed the relationship between internal short circuit and thermal
runaway [24] and developed models such as a three-dimensional electric-thermal model describing
the battery’s transition from normal to abuse conditions and eventually to thermal runaway [25],
a geometric model based on over-charging experiments [26], a three-dimensional electrochemical-
thermal coupling simulation model of thermal runaway under over-charging conditions [27], and an
internal short circuit failure diagnosis algorithm based on the electrochemical-thermal coupling model
[28]. These studies have made significant contributions to the risk analysis of Li-ion batteries, but
they still face issues such as a focus on single factors, limited adaptability to various scenarios, and
a lack of in-depth analysis of the internal failure mechanisms of Li-ion batteries. They are unable to
comprehensively consider the integrated impact of performance degradation and real-time status on
the risk of Li-ion batteries in grid-connected scenarios.

In recent years, numerous models have made significant advancements about Li-ion battery
simulation technology, such as equivalent circuit model [29], electrochemical model [30], data-driven
model [31], thermal model [32], and multi-physics coupling model [33]. These models comprehensively
simulate the operational characteristics of individual battery cell and their related side reactions. In
particular, the multi-physics coupling model, developed using the multiphysics simulation software
(such as COMSOL), can simulate electrochemical and thermal coupling, along with related side
reactions and thermal runaway phenomena [33]. However, grid-connected system simulations typically
consider only SOC and power of the BESS, while ignoring other critical parameters. This limitation
hampers the accurate assessment of the current state of BESS, hindering the real-time evaluation
of safety risk. Detailed and complex simulation models of individual Li-ion cells tend to have slow
simulation speeds, making them unsuitable for grid system simulations. Therefore, there is an urgent
need to develop efficient BESS models suitable for system-level simulations that encompass a broader
range of critical parameters.

To address the abovementioned concerns, in this study, we propose an improved equivalent
circuit model for BESS by incorporating their thermal characteristics and performance degradation
including capacity “diving” regularity, into a unified multi-time scale model. We established a thermal-
electric-performance (TEP) coupling model to simulate the BESS in grid-connected scenarios with
higher precision. We further analyzed the failure mechanisms of Li-ion batteries to propose a
battery operation risk model considering the BESS failure risk. Risk analysis was performed using
the parameters obtained from the TEP coupling model, comprehensively combining deterministic
operational scenario simulation with predictive failure risk assessment.

The rest of the paper is arranged as follows: In Section 2, we provide a comprehensive overview
of the entire model framework and the coupling relationships between its various components; in
Sections 3 and 4, we provide a detailed introduction to the development of the TEP coupling model
and the battery pack operational risk model, respectively; in Section 5, we conduct a performance and
risk analysis of the BESS under three scenarios: microgrid energy storage, wind power smoothing, and
power grid failure response. Finally, in Section 6, we present the principal conclusions of our study.

2 Model Structure and Coupling Framework

The factors leading to failures in energy storage batteries can be primarily categorized into
electrical, thermal, and mechanical abuse [20]. As generally energy storage batteries are installed in a
fixed position, they have a low risk of mechanical abuse due to external physical impacts and vibrations,
making thermal and electrical abuse the primary causes of BESS failures. It is necessary to consider
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and model in detail the effects of charge-discharge behavior, electrothermal characteristics, and battery
performance on the inherent battery safety risk.

We built on the electromechanical model [8] by considering the thermal characteristics and
performance degradation of the BESS during the cycling processes (Fig. 1), establishing a TEP
coupling model for a more detailed simulation of the operating conditions of the battery pack in grid-
connected scenarios.
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Figure 1: BESS whole framework based on detailed simulation

Based on the multi-time scale BESS model [8], our model accounts for the variations in battery
open-circuit voltage (V 0) and internal resistance (R0) of the battery with changes in its temperature
(Tb) and state of charge (SOC); i.e., the ratio of the current charge of the battery to its maximum
charge capacity, usually calculated using the ampere-hour integral method [34]; Tb is influenced by
the heat generated from R0 and the current (I) flowing through the battery. Additionally, the electrical
and thermal parameters of the battery affect its performance, leading to capacity degradation and
increased internal resistance [35]. These irreversible changes will, in turn, impact its electrical and
thermal characteristics.

By using the TEP coupling model for a detailed BESS simulation, we obtain parameters, such
as SOC and charge-discharge rate (Cr) which calculated as the ratio of I to the rated current Irate

using Eq. (1). Subsequently, we perform a risk analysis using the battery pack operational risk model.
The various parts of this model are closely connected and mutually influential, necessitating detailed
modeling to determine the coupling relationships. Based on the time scale requirements for differ-
ent parameters, the simulation outputs include month-level simulation time, day-level performance
degradation, minute-level failure rates, and second-level energy storage batteries characteristics in a
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multi-time scale simulation. This allows for a comprehensive analysis combining deterministic detailed
simulation and predictive operational risk of the BESS.

Cr = I/Irate (1)

3 Thermal-Electric-Performance Coupling Model

The TEP coupling model comprehensively considers the electrical characteristics, thermal char-
acteristics, and performance degradation of the BESS. The models of various modules interact and
operate synergistically, enabling a more realistic and detailed BESS simulation.

3.1 Electrical Model
The electrical model included two parts: the grid-connected control model and the equivalent

circuit model of the BESS. The grid-connected control model of the multi-time scale model of BESS
has already been modeled in detail [8], and will not be elaborated here. It should be noted that when
smoothing wind power fluctuations, the filter’s time constant τ can be set to 150 s. For the equivalent
circuit model, V 0 was considered as a function of temperature and SOC, expressed as

V0 = Vini,T · SOC/ [1 − βT · (1 − SOC)] (2)

with

Vini,T = Vini · [1 + μV · (Tb − T1)] (3)

βT = β · [
1 + μβ · (Tb − T1)

]
(4)

where V ini,T is the open-circuit voltage of the fully charged battery with no load, defined by the voltage
rating; βT is the SOC correction factor; T 1 is the rated temperature and Tb is current temperature
of the battery; V ini is the open-circuit voltage of the fully charged battery at temperature T 1; μV is the
temperature correction factor for the voltage; β is the SOC correction factor at temperature T 1; and μB

is the temperature correction factor for β. Further, R0 can be expressed as a function of temperature as

R0 = Rini · [1 + μR · (Tb − T1)] · βin,p (5)

where Rini is the internal resistance at T 1; μR is the temperature correction factor for internal resistance;
and β in,p is the resistance correction factor under performance degradation (detailed in Section 3.3.3).

3.2 Thermal Model
We adopt a lumped parameter model to describe the thermal behavior of energy storage batteries

as it is simple to establish and calculate, and can be used to study the overall battery performance and
the related influencing factors. The lumped parameter model ignores the non-uniform heat generation
within the battery, considering a uniform battery temperature, Tb, calculated using the following heat
balance equation [36]

M · cp · dTb

dt
= qc − qs (6)

where M is the battery mass; cp is the specific heat capacity of the battery material; and qc and qs are
the heat generation and transfer by the battery, respectively, defined as

qc = I 2 · R0 (7)

qs = hv · A · (Tb − Ta) (8)
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where hv and A are the coefficient and area of convective heat transfer, respectively; and Ta is the
ambient temperature. The battery primarily generates heat due to its internal resistance, while transfer
it mainly through convective heat transfer with the environment.

3.3 Performance Degradation Model
During the cycling process, Li-ion batteries inevitably undergo certain irreversible side reactions.

These include, but are not limited to, the formation of a solid electrolyte interphase (SEI) layer;
structural changes in the electrode materials during insertion and extraction; loss of active material;
and electrolyte decomposition. These side reactions lead to the loss of Li-ions and active electrode
materials degradation, resulting in battery performance degradation, which manifests as capacity
degradation and increased internal resistance [35].

3.3.1 Equivalent Cycle Number

For an accurate capacity degradation rate analysis, we used a Li-ion battery performance
degradation model based on the Dakin degradation method [37]. This model combined calendar and
cycle aging, while comprehensively considering the effects of temperature, discharge depth, and charge-
discharge rate on capacity degradation. The overall capacity degradation rate, k, can be expressed as

k = exp
[

exp
(

u
RTb

+ z
)

· I
I0

]
· exp

(
c · SOC

a

)
· exp

(
d
a

)
· exp

( −b
a · Tb

)
(9)

where I 0 = 1 A; R is the gas constant; and a, b, c, d, u, and z are fitting parameters. For Li-ion batteries
of different models, the fitting parameters have different values. For simplicity, this paper uses the
fitting results from [37], where the value of a is 8.314 J/(mol·K), b is 81.48 kJ/mol, c is 0.288 J/(mol·K),
d is 158.28 J/(mol·K), u is 49.45 kJ/mol, z is −24.06.

Due to the direct application of the fitted parameters without differentiating between battery
models, there may be a significant error when calculating BESS capacity degradation using Eq. (9).
Therefore, we introduce an equivalent cycle factor, βcyc, to characterize the capacity degradation rate
in grid-connected scenarios, expressed as

βcyc = k/kc,ave (10)

where k and kc,ave are the capacity degradation rate of Li-ion batteries during actual use and at 25°C
under constant power condition, respectively. Once the battery model, capacity, and other parameters
are determined, the kc,ave value becomes fixed.

Thus, the equivalent cycle number, neq, for the battery in a grid-connected BESS scenario, over a
certain period, can be calculated as

neq = nc · βcyc,ave (11)

nc = (Ec + Ed)/(2V0 · Qbess) (12)

βcyc,ave =
∫ t+�t

t

βcycdt/�t (13)

where nc is the number of cycles under rated power charge and discharge conditions, calculated using
the grid-connected energy storage charging energy, Ec, discharging energy, Ed, V 0, and battery capacity,
Qbess. The average equivalent cycle factor, βcyc,ave, is the average value of βcyc over the time interval Δt,
where t in Eq. (13) represents time.
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3.3.2 Capacity Degradation

As the number of cycles increases, the capacity of Li-ion batteries gradually degrades. It is
commonly believed that the capacity of individual Li-ion battery cell exhibits a linear degradation
before capacity “diving” occurs [38]. However, due to the presence of inconsistencies in internal
resistance, actual capacity, voltage, and other parameters among the cells within the battery pack,
the battery performance deteriorates further. Research has found that [39], under the commonly used
charge-discharge rate of 0.5 C, the presence of inconsistencies in capacity, state of charge (SOC), and
internal resistance results in an additional capacity degradation of 0.148 per cycle. Based on this, the
capacity correction factor, β life, after neq cycles of grid-connected BESS can be calculated as

βlife =
(

1 −
n∑

i=1

κC,i · βic · neq,i/NC,i

)
(14)

where, the total capacity degradation is the sum of the capacity degradation over n time intervals. κC,i

is the capacity degradation proportion when the battery reaches the end of lifespan, and NC,i is the
number of cycles corresponding to κC,i. β ic is the inconsistency-accelerated degradation factor, with a
value of 0.148.

In studies concerning the lifespan of Li-ion batteries in electric vehicles, the value of κC is typically
set at 20%. However, this value is inappropriate for grid-connected energy storage batteries. Because
batteries from electric vehicles can be repurposed for grid-connected energy storage batteries after
some screening processes [40]. The true source of danger in batteries is the capacity “diving”, which is
the rapid nonlinear degradation following the linear degradation phase. Hence, we consider the onset
of capacity “diving” as the end of the battery’s lifespan, meaning that the value of κC is the capacity
degradation proportion at the point of capacity “diving”.

Research has found that the κC and NC at which Li-ion batteries experience capacity “diving” is
related to the charge-discharge rate of the batteries. The higher the charge-discharge rate, the fewer
cycles are experienced before capacity “diving” occurs. Consequently, even with the same number of
cycles, the resulting capacity degradation may differ. The capacity degradation under four different
charge-discharge rates is provided in [41], including the capacity degradation proportion κC and the
cycles number NC at which capacity “diving” occurs. However, since this discrete data can’t meet our
requirement, we used a three degree polynomial to fit the data, obtaining the relationships between κC

and NC with Cr. The fitting results are shown in Eq. (15).{
κC = −0.0115C3

r + 0.0575C2
r − 0.0939Cr + 0.2978

NC = −24.38C3
r + 144.25C2

r + −460.13Cr + 3439.25
(15)

Thus, assuming Q0 is the initial capacity of the battery, the battery capacity Qbess after neq cycles
can be calculated as

Qbess = βlife · Q0 (16)

3.3.3 Internal Resistance Model

As the battery performance degrades, R0 increases, correlating approximately linearly with
capacity degradation, with a proportionality constant of 1.53, obtained through fitting [42]. Based
on this, the resistance correction factor β in,p can be calculated as

βin,p = 1.53 · (1 − Qbess/Q0) (17)
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4 Battery Pack Operation Risk Model

Battery failure scenarios mainly include internal short circuit and thermal runaway. In terms
of electrical abuse, over-charging and over-discharging tend to increase the risk of internal short
circuit, which can release a large amount of heat in a short period; this process is uncontrollable
and irreversible. In terms of thermal abuse, rising battery temperature increases the risk of triggering
thermal runaway. Therefore, we established a battery operation risk model based on the probabilities
of internal short circuit caused by electrical abuse and thermal runaway triggered by thermal abuse,
considering SOC and charge-discharge rate.

4.1 Electrical Failure Coefficient under Electrical Abuse
Electrical abuse of Li-ion batteries mainly include over-charging and over-discharging, and

excessive charge-discharge rate. Over-charging and over-discharging can lead to the growth of copper
(Cu) and Li dendrites on the electrode, which can pierce the separator and increase the risk of internal
short circuit. Experimental statistics have shown that at a discharge rate of 1 Cr, the risk of internal
short circuit can occur approximately 270 s after over-discharging [43] and approximately 660 s after
over-charging [44]. The charge-discharge rate, Cr, affects the failure time under over-charging and
over-discharging conditions, with an inverse proportionality [45,46].

Assuming that during charging and discharging, the Cu-ions and Li-ions generation rates are
linear, the risk of internal short circuit becomes inversely linearly related to time. The electrical failure
coefficient ηE for over-charging and over-discharging are assumed to be 1 at SOC = 80% and 20%,
respectively.

Considering the SOC and charge-discharge rate effects, the electrical failure coefficient, ηE, can
be expressed as (Fig. 2)

ηE =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cr · 1380
3600 · (1 − SOC) + 660

, I > 0

0, I = 0

Cr · 990
3600 · SOC + 270

, I < 0

(18)

Figure 2: Relationship of electrical failure coefficient (ηE) vs. SOC
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4.2 Thermal Failure Coefficient under Thermal Abuse
For Li-ion batteries, the conditions that trigger thermal runaway and the subsequent severity of

the events differ under given heating conditions depending on the SOC. Specifically, batteries with a
low SOC are less prone to thermal runaway as the internal chemical reactions are relatively weak due
to a lower charge. Conversely, batteries with a high SOC have more active internal chemical reactions
and can experience thermal runaway at relatively low temperatures, with more severe consequences.
SOC is inversely proportional to the temperature at which thermal runaway is triggered, and directly
proportional to the battery mass loss that represents the severity of thermal runaway; the higher the
SOC, the lower the thermal runaway trigger temperature and the greater safety risk. To describe
the relationship between SOC and thermal runaway failure under thermal abuse conditions more
intuitively, we utilized the dataset obtained from the work of Wang et al. [46] on thermal runaway
trigger temperature and mass loss at different SOC levels. Assuming the thermal failure coefficient,
ηT , to be 1 for SOC = 50%, we can compute it for other SOC values as

ηT = 1/Ttr,SOC=j

1/Ttr,SOC=50%

· ml,SOC=j

ml,SOC=50%

(19)

where Ttr,SOC = 50% and ml,SOC = 50% are the thermal runaway trigger temperature and mass loss at SOC =
50%, respectively, and Ttr,SOC = j and ml,SOC = j are the thermal runaway trigger temperature and mass loss
at SOC = j, respectively.

We calculated ηT at different SOC levels (Table 1) and fitted the ηT-SOC curve (Fig. 3) using a
double exponential function to obtain the relationship between ηT with SOC as

ηT = 0.53 exp (−0.73 · SOC) + 0.17 exp (2.65 · SOC) (20)

Table 1: Thermal failure coefficient (ηT) at different SOC

SOC (%) ηT

25 0.8
50 1
75 1.59
100 2.72

Figure 3: Thermal failure coefficient (ηT) - SOC fitting curve
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4.3 Time-Varying Failure Rate
Thorough and accurate evaluation of energy storage batteries failure coefficients requires a

comprehensive consideration of electrical and thermal abuse factors, reflecting the overall battery
failure risk. Furthermore, the health status of the battery is influenced by the difference between the
capacity of the last cycle and the current capacity, that is, the impact of the capacity degradation rate
[47]. As the battery is used, its performance continuously degrades, with the loss of available Li-ions
and active materials of the positive and negative electrodes, and the risk of failure increases. Therefore,
the equivalent cycle factor, βcyc, is used to correct the electrical failure coefficient ηE and the thermal
failure coefficient ηT , to obtain the comprehensive time-varying failure coefficient η of the battery, as
shown in the following equation:

η = βcyc · (ηE + ηT) (21)

For a more precise reflection of the actual operation conditions, we adjusted the battery pack
failure rate, λ, using time-varying failure coefficient η as

λ = η · s · λ0 (22)

where λ is the time-varying failure rate of the battery pack; s is the number of cells in the battery pack;
and λ0 is the single-cell failure rate, with its value typically taken as 1 × 10−7 failures per year (f/y).

5 Dynamic Risk Analysis of BESS

We will conduct simulation analyses for three scenarios: microgrid energy storage, wind power
smoothing, and power grid failure response. The batteries used in this study are lithium iron phosphate
(LiFePO4) batteries, with specific parameters shown in Table 2.

Table 2: LiFePO4 battery parameters

Li-ion battery parameters Symbol Value Unit

Rated voltage V ini,T 38.4 V
Battery capacity Q0 50 Ah
Battery mass M 17.7 kg
Specific heat capacity of the battery material cp 900 J/(K·kg)
Internal resistance at rated temperature Rini 0.041 Ω

Single cell failure rate λ0 1 × 10−7 f/y
Initial temperature Tb,t = 0 25 °C
Rated temperature T 1 25 °C
Convective heat transfer coefficient hv 20 W/(K·m2)
Convective heat transfer area A 0.12 m2

Average capacity degradation rate under rated condition kc,ave 0.00034
Note: kc,ave represents the value calculated at 25 degrees Celsius and a charge-discharge rate of 1 Cr. Tb,t = 0 represents the
value of Tb at time t = 0.

5.1 Microgrid BESS
In this section, a microgrid system including wind, solar, and BESS located in a residential area

in Eastern China was taken as the research subject. The dual-layer optimization model for energy
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storage batteries capacity configuration and operational economic benefits of the wind-solar-storage
microgrid system, as constructed in Reference [48], was used to determine the energy storage batteries
capacity configuration and charge-discharge power. Subsequently, a BESS risk analysis model based
on detailed simulation was employed to compare with the traditional energy storage model which
assumed a constant failure rate and considered SOC to be influenced solely by power, to analyze the
real-time risk probability.

According to the BESS study by Zhou [48], we configured the BESS with an energy storage
capacity of 842.1 kWh and analyzed the typical daily output curve (Fig. 4).

Figure 4: Typical daily charging and discharging power of BESS in microgrid

The BESS consisted of 439 cells. Under an ambient temperature of 30°C, we compared the SOC
and failure rate curves for the traditional model (considering only the BESS power and SOC); the
proposed model at SOH = 1; and the proposed model at SOH = 0.8 (Figs. 5 and 6).

As shown in Fig. 5, compared to the traditional model, the proposed model in this study
comprehensively considers external factors and the impact of aging on the BESS as the SOH decreases.
It provides a more detailed description of the behavior of SOC changes, effectively preventing SOC
from exceeding limits.

The traditional model assumes a constant failure rate for Li-ion battery pack throughout the day,
which is evidently inaccurate (Fig. 6). The proposed model can evaluate the Li-ion battery pack failure
rate at different times based on the real-time state. Around 13 h, the failure rate reaches its peak due to
the large SOC resulting from several hours of continuous charging, coupled with the continued high
charging power applied to the energy storage battery pack. This effect is of significant importance as
it allows for a clearer understanding of the real-time risk associated with energy storage battery pack,
enabling personnel to take appropriate measures.
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Figure 5: Typical daily SOC curves for the different BESS models in microgrid

Figure 6: Typical daily failure rate curves for the different BESS models in microgrid

5.2 Wind Power Smoothing
Using wind power output data from a wind power station in Gansu, China, as the basis for

calculation, a month’s wind power data was selected, as shown in Fig. 7.

Using medium- to long-term simulation programs, we simulated the BESS with the filter time
constant of the power smoothing control model set to τ = 150 and computed the output curve (Fig. 8).

To prevent energy storage batteries from exceeding their operational limits, the capacity is set
according to the expected energy storage output curve, with an average charge-discharge rate of 0.5
Cr. The maximum charge-discharge rate is capped at 2 Cr, and the SOC is maintained within a range
of 0.05 to 0.95. Should these constraints be exceeded, the power grid is utilized to mitigate the surplus
wind power. The performance parameters of the model are provided in Table 3.
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Figure 7: Active wind power curve over time for Gansu data

Figure 8: Charging and discharging power curve of the proposed BESS for the Gansu wind power data

Table 3: Parameters related to battery performance

Parameters Symbol Value Unit

Number of battery cells s 169 pieces
Total energy of BESS Et 0.324 MWh
Ambient temperature Ta 25 °C
Total charging energy Ec 32.82 MWh
Total discharging energy Ed 31.36 MWh
Number of cycles nc 98.89 times
Initial SOC SOCini 0.5



3702 EE, 2024, vol.121, no.12

where the calculation formula for Et is

Et = s · Vini · Qbess (23)

To investigate the effects of performance degradation, ambient temperature, and random output
on BESS, we conducted simulations for the following seven cases studies, as described in Table 4.
Case A represents normal operation; Case B and Case C simulate conditions after 6 and 12 months
of operation, with the SOH reduced to 0.918 and 0.837, respectively. Case D and Case E correspond
to ambient temperatures of 40°C and 55°C, respectively. Case F and Case G involve constant power
operation, with Case F limiting the SOC range to 0–1 and Case G limiting the SOC range to 0.2–0.8.

Table 4: Simulation parameters of seven groups of cases

Order number Ambient temperature (°C) SOH Operation scenario

Case A 25 1 wind power smoothing
Case B 25 0.918 wind power smoothing
Case C 25 0.837 wind power smoothing
Case D 40 1 wind power smoothing
Case E 55 1 wind power smoothing
Case F 25 1 constant power (0 < SOC < 1)
Case G 25 1 constant power (0.2 < SOC < 0.8)

Based on the specified conditions, simulations were conducted to obtain BESS related parameters,
as shown in Table 5. To enhance the clarity of the images, the results are divided into three groups.
Fig. 9 presents the simulation results for Cases A, B, and C, which are used to study the impact of
performance degradation. Fig. 10 displays the results for Cases A, D, and E, focusing on the effects
of ambient temperature. Fig. 11 shows the results for Cases A, F, and G, comparing the influence of
random output vs. constant power output on BESS.

Table 5: Simulation results of seven groups of cases

Order number Average equivalent
cycle factor

Average failure rate (f/y) Maximum failure
rate (f/y)

Smoothing
power (MWh)

Case A 1.591 0.455 × 10−4 6.306 × 10−4 64.18
Case B 1.907 0.564 × 10−4 7.688 × 10−4 62.82
Case C 2.101 0.649 × 10−4 10.62 × 10−4 61.22
Case D 4.414 1.236 × 10−4 16.74 × 10−4 64.09
Case E 13.62 3.824 × 10−4 44.66 × 10−4 63.54
Case F 0.786 0.187 × 10−4 0.378 × 10−4

Case G 0.707 0.150 × 10−4 0.232 × 10−4

From the results, it is evident that compared to constant power operation, random output under
grid-connected scenarios accelerates energy storage batteries aging and increases failure risk. Addi-
tionally, both increased temperature and performance degradation accelerate the capacity degradation
of BESS, thereby raising the likelihood of failures. The specific analysis is as follows:
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Figure 9: Simulation results under different performance degradation levels
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Figure 10: Simulation results under different ambient temperatures

Comparing Cases B and C with Case A, it can be observed that performance degradation
results in a gradual increase in the equivalent cycle factor. This is because the rate of performance
degradation does not significantly change before the occurrence of capacity “diving”. Due to capacity
degradation, the SOC fluctuation range is larger in Cases B and C (Fig. 9a). Location Points 1 and 2
(Fig. 9a) illustrate this phenomenon, leading to more frequent SOC boundary reaches and operational
shutdowns in Cases B and C. At Location Point 1 (Fig. 9a), Case C experiences a shutdown due to an
elevated SOC, while Cases A and B do not encounter this issue. Notably, Case A maintains a significant
safety margin. This explains the reduced ability of energy storage to smooth wind power fluctuations
as capacity degrades and the corresponding decrease in amount of smoothed energy. As the capacity
of the energy storage batteries degrades, its failure rate gradually increases, with the maximum failure
rate rise being particularly noticeable (Fig. 9b). The maximum failure rate in Case C is 1.062 × 10–3 f/y,
which is 1.69 times that of Case A.
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Figure 11: Failure rate curves under different kinds of output

Comparing Cases D and E with Case A, it is evident that ambient temperature has a significant
impact on the energy storage temperature (Fig. 10a), which in turn greatly affects performance
degradation and failure risk. As the temperature increases, the rate of performance degradation of
the Li-ion battery accelerates significantly, and the failure rate increases accordingly. The time-varying
failure rates in descending order are Cases E, D, and A, with Case E having the highest failure rate,
reaching a maximum of 4.466 × 10–3 f/y (Fig. 10b). The acceleration of performance degradation and
the increase in failure rate exhibit a nonlinear aggravation trend with temperature, indicating that
elevated temperatures have an exponentially negative impact on battery performance degradation and
the increase in failure rate. Simultaneously, due to the temperature’s impact on battery performance,
the BESS’s ability to smooth wind power slightly decreases as the temperature rises, since BESS is
more likely to reach the SOC limit boundary under high temperatures.

Comparing Cases F and G with Case A, it can be seen that under grid-connected scenarios, for
the same amount of charge and discharge energy, the average equivalent cycle factor of the energy
storage battery is higher than that under constant power output, leading to a faster performance
degradation rate. The failure rate follows a similar rule to the equivalent cycle factor; under grid-
connected scenarios, the average failure rate is more than twice that under constant power output, with
the maximum failure rate exceeding 10 times. This is due to the high charge-discharge rate required at
certain moments in grid-connected scenarios, although such high-risk points are relatively infrequent
(Fig. 11). It is clear that grid-connected scenarios significantly accelerate the performance degradation
of energy storage batteries and greatly increase the failure rate.

5.3 Power Grid Failure Response
During the process of wind power smoothing by the BESS, it is assumed that on the 23rd day

at around 1 o’clock in the morning, a failure occurs in the system, requiring additional support from
the BESS. The BESS provides an additional output of 405.6 kW, sustaining it for 15 min. Through
simulation calculations, the SOC curve and the failure rate curve for the energy storage on the 23rd
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day, when participating in power grid failure response, are obtained and compared with the relevant
parameters of the energy storage when not participating in power grid failure response, as shown in
Figs. 12–13.

Figure 12: The SOC curves of BESS with and without power grid failure response

Figure 13: The failure rate curves of BESS with and without power grid failure response

It can be observed that when the BESS is involved in power grid failure response, the SOC
significantly decreases (Fig. 12). At the completion of the power grid failure response, the SOC is 0.516,
which is a reduction of 0.433 compared to the 0.949 when not involved in power grid failure response.
Concurrently, during the power grid failure response period, the failure rate increases substantially
due to the increased charge-discharge rate and a drop in SOC (Fig. 13), reaching a peak of 8.247 ×
10−5 f/y, which is an increase of 4.807 × 10−5 f/y compared to the 3.440 × 10−5 f/y when not involved
in power grid failure response, indicating a multi-fold increase in the risk of failure.
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After the power grid failure response is concluded, for a period, the SOC of the BESS remains
below the level when not involved in power grid failure response due to the energy consumed during
the power grid failure response (Fig. 12). It reaches the lowest SOC limit around 7:30 in the morning
and remains there for approximately 25 min, during which the system is unable to participate in wind
power smoothing. This situation does not occur when not involved in power grid failure response, and
thus, participation in power grid failure response has a certain negative impact on the BESS’s ability
to smooth wind power. In terms of the failure rate, after the power grid failure response ends, the
charge-discharge rate decreases, leading to a reduction in the failure rate (Fig. 13). However, it remains
higher than the situation when not involved in power grid failure response. Nevertheless, during the
subsequent charging phase, when the SOC is low, both the electrical failure coefficient and the thermal
failure coefficient are smaller, resulting in a lower failure rate for the BESS during the charging phase
when involved in power grid failure response compared to normal operation.

6 Conclusion

This article addresses the risk analysis of BESS in new energy grid-connected scenarios by
establishing a detailed simulation model of the TEP coupling of energy storage batteries and a battery
pack operation risk model. These models can be used for comprehensive analysis of different working
conditions in the medium- to long-term response of grid-connected energy storage. The specific
contributions and innovations are as follows:

(1) Considering the degradation pattern of energy storage batteries, this study proposes an
equivalent cycle factor and a cycle life related to the charge-discharge rate based on the mechanism of
capacity diving. By integrating a lumped thermal model, a TEP coupling model for energy storage is
established, enabling detailed simulation of grid-connected BESS.

(2) By integrating electrical and thermal abuse factors, time-varying failure coefficients are
proposed based on battery SOC and charge rate. These coefficients are corrected using an equivalent
cycle factor that characterizes performance degradation, leading to the development of a battery
pack operational risk model. This model, combined with the TEP coupling model, enables extensive
analysis through deterministic operational scenario simulations and predictive failure risk calculations,
providing a valuable tool for the study of energy storage batteries.

(3) Through case studies, the performance and risk of BESS in microgrid energy storage, wind
power smoothing, and power grid failure response scenarios are analyzed. The results demonstrate that
the model proposed in this paper comprehensively considers the impact of various factors in different
grid-connected scenarios. While maintaining simulation efficiency, it achieves real-time assessment of
failure risk, which is of significant importance for the safety analysis of grid-connected BESS.

The model established in this study is deterministic simulation model. In future research, methods
such as artificial intelligence can be integrated to further develop predictive models.
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