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ABSTRACT

Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend
their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem,
this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework
through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the
generation mechanism of blade loads and the load theoretical calculation method based on material damage theory
are analyzed, and four measurable operating state parameters related to blade loads are screened; in the feature
extraction part, 15 characteristic indicators of each screened parameter are extracted in the time and frequency
domain, and feature selection is completed through correlation analysis with blade loads to determine the input
parameters of data-driven modeling; in the model construction part, a deep neural network based on feedforward
and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating
parameter characteristics and blade loads. The results show that the proposed method mines the wind turbine
operating state characteristics highly correlated with the blade load, such as the standard deviation of wind speed.
The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load
and shows a better fitting level for untrained out-of-sample data than the traditional scheme. Based on the mean
absolute percentage error calculation, the modeling accuracy of the two blade loads can reach more than 90% and
80%, respectively, providing a good foundation for the subsequent optimization control to suppress the blade load.
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Nomenclature

M f Flapwise bending moment
Me Edgewise bending moment
V rel Relative wind speed
V 0 Wind speed
r0 Hub radius
l Chord length
C l Lift coefficient
Cd Drag coefficient
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α Attack angle
β Pitch angle
I Inflow angle
a Axial induction factor
b Tangential induction factor
σ Stress amplitude
N Number of stress cycles experienced by the material
C Maximum force on the material
m Wöhler coefficient
nj Number of cycles at stress level σ j

Nj Number of cycles at which the stress σ j causes the component to fail
N s Number of sampling points in the calculation period
x(i) Wind turbine operating condition sampling point i
Np Number of sampling points in the calculation period
u(n) Sampled data converted into frequency domain signal
ωr Rotor speed
T i Turbulence intensity
Pe Active power

Abbreviation

C1 Comparison scheme 1
C2 Comparison scheme 2
CMS Central monitoring system
DEL Damage equivalent load
DNN Deep neural network
ELU Exponential linear unit
MAPE Mean absolute percentage error
NREL National renewable energy laboratory
OpenFAST Open fatigue, aerodynamics, structures, turbulence interface
P-DNN Proposed DNN model
ReLU Rectified linear unit
RMSE Root mean square error
SCADA Supervisory control and data acquisition
SeLU Scaled exponential linear unit
TCV Theoretical calculation value

1 Introduction

As an essential component of energy capture, the blades of wind turbines are both essential and
relatively fragile. Optimizing and controlling fatigue damage during operation can help extend their
service life [1,2]. One of the most critical tasks is to define fatigue damage accurately.

There are many methods to define fatigue damage of wind turbine blades, each with its advantages
and disadvantages. The most intuitive method is to define it based on expert experience. In [3],
researchers believe that the structural damage of wind turbines is a custom function relationship related
to power generation and wind field turbulence. Similar indicators are common in the optimal control
of wind farms [4,5]. In addition to the custom function model, some literature defines fatigue damage
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based on the standard deviation of fatigue stress. For example, reseaechers [6–8] focused on the blade
bending moment and used its fluctuation as an indicator to measure blade damage. However, whether
it is the custom damage function or the stress standard deviation method, the relevant indicators can
only partially linearly represent the fatigue load. As described in [9], stress and corresponding fatigue
load are generated. However, the torque generated by the mechanical structure may be the same under
different environments and conditions, so fatigue damage can not be represented by torque [10].

In contrast, fatigue assessment methods that use rain flow counting [11] and the Palmgren-Miner
method [12] to represent load changes and calculate DEL [13] are more accurate and have been widely
recognized by researchers in practical applications and simulations [14,15]. However, the principle of
DEL is complex and difficult to calculate, so it is generally only used to evaluate fatigue loads in wind
farms. It can not be applied to real-time power control.

In order to introduce accurate load indicators in real-time control or scheduling, data-driven load
modeling methods have received attention in recent years [16]. Some researchers use relatively simple
fitting or regression methods such as static lookup table method [17], arbitrary polynomial chaos
expansion [18], or support vector machine [19] to model loads, but such methods usually lack good
generalization ability and the accuracy of modeling data outside the training sample is not guaranteed.
Furthermore, some more complex methods have been introduced into the modeling process, such as
neural networks [20,21], DNN [22], and deep residual recurrent neural networks [23]. More complex
network structures help better describe the nonlinear coupling relationship. However, the relevant
literature needs standardized design schemes for the inputs required for modeling, which are usually
only subjective settings based on human experience. As for the data source required for modeling
input, most studies choose to use wind farm SCADA system data, as introduced in [20–23]. A small
number of studies require the installation of additional sensors [24] or the use of CMS data [25]. For
wind farms, additional sensors or CMS systems will increase costs, so it is more feasible only to use
SCADA system data.

Given the above research status and shortcomings, this project intends to conduct data-driven
modeling for the DEL indicators of wind turbine blades. The specific innovations are:

• A DEL calculation model for wind turbine blades based on a DNN framework is proposed;
• By mechanism analysis, this paper ensures that the model input is only the easily measurable

data of the SCADA system;
• A feature extraction method is designed based on correlation analysis, which can standardize

the design of the DNN input and improve the generalization ability.

The following sections are arranged as follows: Section 2 summarizes the overall architecture of
the methodology; Section 3 analyzes the parameters required for blade load data-driven modeling
based on the generation mechanism and theoretical calculation method of blade load; Section 4
proposes a feature extraction and deep learning method to construct a DEL calculation model;
Section 5 uses OpenFAST for simulation verification and discussion; Section 6 is the conclusion.

2 Overall Architecture of Methodology

This paper aims to perform data-driven modeling of wind turbine blade fatigue loads to avoid
overly complex theoretical calculations. The methods to be used in this paper include 1) theoretical
analysis of the calculation method of wind turbine blade loads, screening of easily measurable
operating parameters related to wind turbine blade loads; 2) feature selection of the screened operating
parameter time series data, extracting feature sets to construct data-driven model inputs; 3) using a
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deep neural network model to construct a coupling model between feature sets and blade loads, and
realizing rapid calculation of blade loads. The overall methodology architecture is shown in Fig. 1,
and the following two sections will explain the specific implementation of each step.

Figure 1: The methodological framework of this study

3 Mechanism Analysis of Wind Turbine Blade Fatigue Load

This section will introduce the mechanism model and theoretical calculation method of blade
fatigue load and, based on this, explore the easily measurable operating parameters associated with
blade fatigue load as the theoretical basis for data-driven modeling.

3.1 Blade Aerodynamic Modeling
Fig. 2 shows the element analysis of a blade based on the blade element momentum theory. The

blade structure is like a cantilever beam, so the moment at its root can be regarded as the primary
source of structural damage. M f and Me of the blade root can be expressed as [26]:

Mf = 0.5
∫ R

r0

ρrlV 2
rel (Cl cos I + Cd sin I) dr (1)

Me = 0.5
∫ R

r0

ρrlV 2
rel (Cl sin I − Cd cos I) dr (2)

I = α + β (3)
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Figure 2: Analysis of blade element

When the yaw deviation angle θ does not equal 0, the relative wind speed can be expressed as:

Vrel =
√(

V0 cos θ

(
1 − a

))2

+
(

ωrr
(

1 + b
))2

(4)

3.2 Characterization Parameters of Blade Fatigue Load
Based on M f and Me, the DEL of the blade in two directions can be further calculated to more

accurately characterize the fatigue characteristics of the blade. By definition, DEL is the amplitude
of the sinusoidal stress at a constant frequency f over time T that produces the same damage as
the original stress signal. Using the Palmgren-Miner rule [27] and the S-N curve [28], the calculation
method of DEL [29] can be determined as follows:

DEL =
(

M∑
j=1

σ m
j nj

Tf

) 1
m

(5)

In this paper, the calculation of DEL uses the MCrunch code [13], which can be calculated in
MATLAB. However, the calculation of DEL requires the use of measurement data of the two torque
parameters, M f and Me, over a period of time. This requires additional sensors to measure these two
torques and continuously record a large amount of data over a specific period, which is not easy to
achieve.

3.3 Analysis of Damage-Related Parameters
The DEL calculation of the blade is based on the two moments of blades, M f and Me. According to

Eqs. (1)–(3), M f and Me of the wind turbine blade are related to multiple variables such as relative wind
speed, attack angle, lift coefficient, drag coefficient, and pitch angle. Among them, the lift and drag
coefficient can also be described as related functions with the attack angle as a variable. According to
Eq. (4), the relative wind speed is related to actual V 0 and ωr. The attack angle is the angle between the
blade chord and relative wind speed, which is related to its operating conditions and can be a function
of the Pe.

In summary, the subsequent sections will select the measured V 0, β, ωr, and Pe as input parameters
to establish a blade fatigue load model driven by measurable data.
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4 Deep Neural Network Model for Blade Fatigue Load

In this section, based on the selected wind turbine operating state parameters, a feature set related
to blade loads will be constructed as modeling input. Then, a deep neural network will be designed to
realize data-driven blade load modeling.

4.1 Feature Extraction
According to the above analysis, four parameters are selected as the input parameters of the data-

driven model. However, these wind turbine operating parameters are recorded as time series. The
amount of data is significant, and it is not easy to use all of them directly as input. Therefore, this
section will extract features from multiple time series and filter them based on correlation as direct
input to the neural network model. For the above time series signals, effective features can usually be
extracted from the time and frequency domain [30].

The time domain analysis method obtains the dynamic change law by describing the autocorrela-
tion structure of the time series. This method is relatively simple and easy to understand. The frequency
domain analysis method is most commonly used in Fourier transform analysis and wavelet analysis,
which are used to quantify the periodicity or the multi-scale time pattern characteristics [31]. The time
and frequency domain parameters are exhibited in Tables 1 and 2.

Table 1: Time domain parameters

Time domain parameters Calculation formula

Maximum value F1 = max (x (i))
Minimum value F2 = min (x (i))
Median value F3 = median (x (i))
Peak difference F4 = max (x (i)) − min (x (i))

Average value F5 = x = 1
Ns

Ns∑
i=1

x (i)

Rectified average value F6 = x = 1
Ns

Ns∑
i=1

|x (i) |

Variance F7 = 1
Ns − 1

Ns∑
i=1

(x (i) − x)
2

Standard deviation F8 =
√

1
Ns

Ns∑
i=1

(x (i) − x)
2

Kurtosis F9 =
Ns∑

n=1

[x (i) − F5]
3
/ (Ns − 1) F 3

8

Root mean square F10 =
√

Ns∑
i=1

(x (i))2
/Ns

Skewness F11 = NsF10/
Ns∑

n=1

|x (i) |
Margin factor F12 = max |x (i) |/F10

In Table 1, there are 12 sets of characteristic parameters for the time domain, among which the
peak value is also called the maximum value, and the peak difference is the difference between the
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peak and minimum. When a wind turbine usually operates, the peak and minimum values will not
fluctuate too much. If there is a significant deviation from the normal value, it can be judged that the
wind turbine has a fault. The abnormal maximum and minimum values and peak differences can also
screen normal data. The average value and the rectified average value reflect the average parameters
of the data of each working condition when the wind turbine is running, which can represent the
changing relationship between different working conditions. The variance, standard deviation, and
root mean square values can represent the degree of fluctuation of the working condition within the
sampling time. Kurtosis and margin factors are more sensitive to impact signals and can characterize
whether the working condition has a change within the sampling time. Skewness is used to measure
the asymmetry of the time series, that is, the degree of deviation between the more extensive working
condition and the more minor working condition relative to the average value.

In Table 2, the centroid frequency is the frequency of the more significant component in the
spectrum, describing the distribution of the power spectrum. The frequency variance is the square
of the frequency standard deviation, which can quantify the degree of spectral energy dispersion. The
mean square frequency is the weighted average of the square of the root mean square frequency.

Table 2: Frequency domain parameters

Frequency domain parameters Calculation formula

Centroid frequency F13 =
Np∑
n=1

u (n) u (n) /2π
N∑

n=1

u (n)
2

Frequency variance F14 =
Np∑
n=1

u (n)
2
/4π 2u (n)

2

Mean square frequency F15 =
Np∑
n=1

(−F13)
2 u (n) /

N∑
n−1

u (n)

In the calculation process of the characteristic parameters mentioned above, the calculation period
is 5 min, and the sampling interval is 1 s.

Tables 1 and 2 show that some commonly used time domain and frequency domain indicators
are included. These indicators can universally analyze the characteristics of time series data, but not
all are related to the DEL to be calculated. Therefore, before being used for DEL modeling, an
analysis based on Pearson correlation will be performed first. Indicators with correlation coefficients
higher than 0.6 can be considered solid correlation parameters [32] and will be screened as the input
of the corresponding DEL model in the subsequent modeling process. The formula of the Pearson
correlation coefficient is [32]:

r =

Ns∑
i=1

(x (i) − x) (y (i) − y)√
Ns∑
i=1

(x (i) − x)
2

√
Ns∑
i=1

(y (i) − y)
2

(6)

4.2 Model Structure
The prototype of a deep neural network is a discriminant model. Knowing the input variable can

infer the value of the output variable. Generally speaking, the internal network structure of a DNN is
shown in Fig. 3.
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Figure 3: Deep neural network structure diagram

Unlike traditional perceptrons, the deep neural network also contains backpropagation and
forward channels. The back-propagation channel compares the outputs with the true values and
propagates the calculated error back to the input layer by layer. In the subsequent process, the
parameters in the forward propagation process are adjusted to minimize the impact of the error
value on the network. The idea of model construction can be found in our previous work [22]. After
determining the structure of the DNN, the network training process is shown in Algorithm 1.

Algorithm 1: DNN Training
1. Forward path: Use weight coefficients ω and bias vectors b to connect every two neurons in
adjacent layers.

χ l
i =

Nl−1∑
j=1

ωl
ijϕ

l−1
j + bl

i

ϕ l
i = Φ

(
ωl

ijϕ
l−1
j + bl

i

)
2. Backward path: Set loss function.

JDNN = 1
2

∥∥ϕL − Y
∥∥2

2

3. Update ω and b:
ς l = ∂J/∂χL = (

ϕL − Y
) ⊗ Φ′ (χL

)
∂JDNN/∂ωl = ς l

(
ϕL−1

)T

∂JDNN/∂bl = ς l

where ς l represent the partial derivative of the loss of layer l.
4. End: The specified number of iterations is reached.

During forward propagation modeling, an activation function is generally required to introduce
nonlinear factors in the propagation process in addition to the linear relationship. Commonly used
activation functions in deep neural networks include Sigmoid, ReLU, Leaky ReLU, etc. In the
experiment, it is necessary to screen the activation function with the best effect through multiple
parameter settings.

During backpropagation modeling, a reasonable loss function is critical, which can be used to
measure the deviation between the output calculated by the training data and the true output, and
update ω and b based on iteration and forward propagation. Common loss functions include mean
square error, etc.

ω and b can be updated as Algorithm 1. However, in the training process, as the depth of the DNN
increases, the parameters can be gradually deviate from their set range during the update process. To
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address this problem, this paper uses the Adam algorithm to calculate the exponentially weighted
average of the gradient and then uses the gradient value to update ω and b [33].

As for the accuracy evaluation indicators of the model, RMSE and MAPE will be used. RMSE
is used in the model training process, and MAPE is used for the final model evaluation. The formulas
of RMSE and MAPE are:

RMSE =
√√√√ 1

Ns

Ns∑
i=1

(
x (i) − �x (i)

)2
(7)

MAPE = 1
Ns

Ns∑
i=1

∣∣∣∣x (i) − �x (i)
x (i)

∣∣∣∣ (8)

5 Case Studies
5.1 Training Data Acquisition

This paper uses simulation to verify the proposed data-driven blade DEL calculation method.
The simulation platform is OpenFAST, as mentioned above. Based on the OpenFAST platform in
Matlab/Simulink [34], a pseudo-Monte Carlo experiment is designed to realize the collection of all
working conditions. The wind turbine selected in the experiment is the NREL 5MW model [35], and
the parameters are exhibited in Table 3.

Table 3: Parameters of NREL 5MW wind turbine

Parameters Values

Cut-in wind speed, rated wind speed, cut-out wind speed 3, 11.4, 25 m/s
Rotor diameter 126 m
Rated power 5 MW
Starting speed, rated speed 6.9, 12.1 rpm

The so-called pseudo-Monte Carlo method was proposed in [36], essentially a uniform experi-
mental design. In the experimental design, when there are many parameters and an extensive range,
a specific sampling interval is selected for each parameter and combined into different working
conditions to fully collect parameters that can replace the entire working condition range, similar to
the Monte Carlo method.

In Table 4, the range of each parameter is selected based on the following: Referring to the
theoretical calibration operating conditions of the NREL 5MW wind turbine, it can be started and
operated when the wind speed is greater than 3 m/s and less than 25 m/s, but usually when the wind
speed is less than 5 m/s, its power and load are maintained at a low level, so 6–24 m/s is selected as the
simulated wind speed range. Referring to the international standard IEC 61400-1-2019, the reference
turbulence intensity range of different types of wind turbines is between 0.12–0.18, but the actual
working conditions usually exceed this range, so we have expanded the range in the standard to a
certain extent, setting the simulation turbulence intensity range to 0.06–0.24. As for the active power
and power random values, they are set according to the 0.1–1 and 0.01–0.1 p.u. of the rated power of
the NREL 5 MW, respectively.
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Table 4: Setting of condition ranges for wind turbines

Parameters Condition range Interval

Average V 0 6–24 m/s 2 m/s
T i 0.06–0.24 0.04
Average Pe 0.5–5 MW 0.5 MW
Random number of Pe 0.05–0.5 MW 0.05 MW

Furthermore, the average V 0 and T i can be set by Turbsim, with 10 and 6 different values set,
respectively, including 60 working conditions, while the active power setting and power change value
are set by OpenFAST, with ten different values set, respectively, including 100 working conditions.
Therefore, based on the pseudo-Monte Carlo experiment principle, 6000 different working conditions
will be completed. Among them, the power change value mentioned above is added as a random
number with a variable range to avoid overfitting the training results of the DNN due to the data
being too close.

In summary, this paper constructs 6000 different working conditions for training data-driven
models through the OpenFAST platform. When collecting experimental data, the time scale of
300 s, commonly used in fatigue calculation of wind turbines, is used as the sampling period for each
group of working conditions. The corresponding sampling interval is 0.02 s, and 6000 ∗ 6000 record
points are sampled. After collecting the required data through the OpenFAST simulation toolbox, the
MCrunch code [13] is used to obtained the DELs of the corresponding blades, which are used as the
outputs of the DNN when training the data-driven model.

5.2 Correlation Analysis
After the data acquisition process described above, four groups of operating parameters of the

wind turbine were sampled under multiple simulation conditions. The indicators in Tables 1 and 2
were used for feature extraction and data dimension reduction of the collected operating parameters.
A total of 2 (two DELs of blades) ∗ 4 (four wind turbine parameters) ∗ 15 (number of characteristic
parameters) ∗ 6000 (different operating conditions set in the pseudo-Monte Carlo experiment) groups
of wind turbine characteristic data were obtained for the data analysis below.

To avoid making the DNN modeling input data too complex and redundant, the parameters with
high correlation (>0.6) with blade DEL were selected from the 15 groups of characteristic parameters
for modeling. The Pearson coefficient diagram shown in Fig. 4 was finally obtained by performing
correlation analysis on the characteristic parameters and DEL.

The correlation significance shown in the figure is significant at the bilateral 0.01 level. The
correlations between different characteristics of different parameters and DEL are significantly
different. Taking wind speed as an example, its average value, variance, and standard deviation all
have a correlation with DELMf higher than 0.9, which shows that the average level and fluctuation
of wind speed are the key factors leading to blade flapwise damage. Higher average wind speed and
stronger turbulence will bring more significant blade flapwise damage. As for the damage caused by
edgewise bending moment, the most significant related features of the pitch angle are the mean and
standard deviation, which shows that frequent blade pitch changes or maintaining a large pitch angle
will increase the damage caused by edgewise bending moment. In summary, the results of Fig. 4 are
consistent with the laws of physics.
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Figure 4: Correlation analysis between characteristic value and DEL

By setting the correlation coefficient to 0.6 as the threshold, 19 sets of feature parameters for
DELMf and 25 sets of feature parameters for DELMe can be selected as input data for training the
deep neural network, and the corresponding DEL as output data of the neural network. The specific
parameter selection is shown in Table 5.

Table 5: Selection of DNN input parameters

DEL Parameters Features

M f

V 0

Maximum value, Median value, Peak difference, Average value, Rectified
average value, Variance, Standard deviation, Frequency variance, Mean
square frequency, Kurtosis, Skewness, Margin factor, Centroid frequency

β Maximum value, Median value, Peak difference, Average value, Rectified
average value, Skewness

ωr /
Pe /

Me

V 0

Maximum value, Average value, Variance, Standard deviation, Kurtosis,
Skewness, Frequency variance, Mean square frequency, Margin factor,
Centroid frequency

β Maximum value, Average value, Variance, Standard deviation, Kurtosis,
Root mean square, Centroid frequency, Frequency variance, Mean
square frequency

ωr Maximum value, Median value, Peak difference, Rectified average value,
Skewness

Pe Maximum value
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In Table 5, the DELs of the blade in both dimensions has obvious correlations with multiple
features of V 0 and β. The features of ωr and Pe have more influence on Me and have a lower correlation
with M f. The model is trained next based on the features selected in Table 5.

5.3 Effect of the Proposed DNN Model
During the DNN model training process, all 6000 simulation scenarios constructed in Section 4.1

were shuffled, 5800 working conditions were the training set, and the remaining 200 working
conditions were used for test. After multiple attempts at parameters such as hidden layers, hidden
layer nodes, and the activation function, the final structure selected is the DNN model in Table 6. The
computer configuration used in the DNN training is as follows: i7-9700 CPU @ 3.00 GHz, 16.0 GB
RAM. The training time is 32.7 s.

Table 6: DNN parameters

DNN parameter Value

Inputs Parameters shown in Table 5
Outputs DELMf, DELMe

Number of hidden layers 3
Hidden nodes (per layer) 100
Activation function Tanh, ReLU, Sigmoid and Linear
Iteration number 200
Learning approach Adam

After training the DNN network based on the structure shown in Table 6, the accuracy was tested
using 200 sets of test data, and the results are exhibited in Figs. 5 and 6.

Figure 5: Training and testing results for DELMf
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Figure 6: Training and testing results for DELMe

The results in Figs. 5 and 6 show that the constructed DNN model has reached a stable level after
200 training iterations. The trained DNN model has a good prediction ability for the DEL of the test
group data, and the calculation accuracy of DELMf and DELMe reaches 98.8% and 91.6%, respectively.
Moreover, when testing based on the trained model, it takes less than 0.02 s to calculate the blade DEL
of the test scenario, which fully meets the requirements of real-time control and optimization.

5.4 Discussion on Generalization Ability
The results in Figs. 5 and 6 show that the constructed DNN model has a good prediction ability

for the DEL of the in-sample working conditions. However, more out-of-sample working conditions
may appear in the actual operation. Therefore, it is necessary to conduct further tests on out-of-sample
working conditions to clarify the generalization ability of the proposed method. In addition, two other
data-driven schemes are provided for comparison. C1 is designed based on [15] and uses the standard
deviation of wind speed to construct a linear lookup table of two DELs of the blade. C2 is based on
[17], using the average and standard deviation of V 0, etc., as input for deep neural network training.

In this experiment, the average V 0 is 10.85 m/s, the T i is 13.27%, and the Pe is 1.165 MW, an
out-of-sample condition inconsistent with the 6000 training and test conditions in Section 4.1. Under
this condition, the DEL comparison results calculated by the proposed model, C1, and C2, are shown
in Fig. 7. In the DELMf part, the results calculated by the three schemes are close to TCV, and the
MAPE is above 98%. However, in the DELMe part, the calculation results of different schemes are
significantly different, and the MAPE of the three schemes is 62%, 79%, and 83%, respectively. The
proposed scheme also has a good calculation accuracy for out-of-sample working conditions.

For the calculation results in Fig. 7, the following discussion can be carried out:
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First, the prediction accuracy of DELMf and DELMe for the same algorithm is inconsistent, and
the prediction accuracy of DELMf is higher than DELMe. This is because the proposed scheme and
the two schemes in the control group have more appropriate input selection for DELMf modeling.
According to Fig. 4, the features used for DELMf calculation include the variance of wind speed,
etc., and its correlation with DELMf is as high as more than 96%. In comparison, the correlation of
modeling features for DELMe is less than 90%. Therefore, better feature selection will lead to better
model accuracy.

Second, compared with the control method, the prediction accuracy of DELMe is higher in the
proposed method. In particular, compared with C2, the same deep neural network modeling method is
used, but the calculation accuracy of out-of-sample data is improved due to the improved input feature
extraction method. Therefore, better feature selection will also lead to better model generalization
ability.

Figure 7: DEL prediction results of out-of-sample conditions under different schemes

Therefore, the deep neural network modeling method proposed in this paper has better description
ability for nonlinear coupling relationships than the simple table lookup method, and the feature
extraction process further improves model accuracy and generalization ability. If more appropriate
features of parameters other than wind speed can be selected in future studies, the accuracy of the
constructed model could be further improved.

6 Conclusions

This paper focuses on the modeling method of wind turbine blade load. Aiming at the problem
of the theoretical calculation of wind turbine blade load being complex and requiring a large amount
of calculation, a data-driven modeling scheme is proposed. The proposed scheme includes multiple
steps: parameter selection, feature screening, scenario expansion, and model construction.

The developed solution avoids the time-consuming theoretical calculations using a large amount
of data and the requirement to add additional sensors while having better generalization capabilities
than existing solutions. Experimental results show that by extracting more relevant features for model
training, the model constructed in this paper is more accurate than the existing data-driven load
modeling method, and the accuracy for out-of-sample conditions is also higher than 80%.

At the same time, this study further highlights the importance of feature selection, especially for
DELMe, whose data-driven modeling accuracy still has room for improvement. In future research, it
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is possible to consider using machine learning solutions to screen quasi-modeling parameters and
autonomous learning of parameter features to improve the effect of the proposed model further.
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