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ABSTRACT

Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output
curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to
fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm
is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step
perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA
are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial and later stages
of the iterative process and accelerates convergence. During stochastic exploration, the refined position update
formulas enhance diversity and global search capability. The improvements in the algorithm reduces the likelihood
of falling into local optima. In the later stages, the OIP&O algorithm decreases oscillation and increases accuracy.
compared with cuckoo search (CS) and gray wolf optimization (GWO), simulation tests of the PV hybrid inverter
demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under
static, local and dynamic shading conditions. These results can confirm the feasibility and effectiveness of the
proposed PV MPPT algorithm for PV hybrid systems.
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Nomenclature

I = Ipv PV system output current (A)
V = Vpv PV system output current (V)
Ppvout PV system output power (W)
X (g) IKOA planets or solar positions
V (g) IKOA planetary velocity
Fg (g) IKOA planets and sun gravity
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1 Introduction

With advancements in technology, the efficiency and reliability of photovoltaic (PV) inverters have
markedly improved [1]. Features such as maximum power point tracking (MPPT) [2] and remote
monitoring have significantly enhanced the widespread adoption of PV power systems. However,
traditional PV inverters are limited to converting DC power from solar energy to AC power and cannot
store excess energy, which leads to unstable power supply during low-light conditions [3].

With the development of energy storage technology [4] and the reduction of battery costs,
energy storage and bi-directional charging and discharging functions [5] can be integrated in PV
inverters. In the article, these devices are referred to as PV hybrid inverters. PV hybrid inverters
overcome the limitations of traditional PV inverters [6] by storing surplus power for later use, thereby
improving system stability, reliability and overall energy efficiency. PV hybrid inverters offer consistent
power supply and enhance grid quality, which support the expansion of renewable energy and the
development of smart grids [7]. However, the issue of power output variability due to PV panel shading
remains a challenge, which impacts the efficiency and performance of PV hybrid inverters [8].

Changes in ambient temperature and light can easily affect PV cell power output. Partial shading
conditions (PSC) [9], which are caused by tree shading, cloud shading and ash accumulation [10],
make light distribution uneven [11]. MPPT technology aims to keep the PV array operating at the
maximum power point (MPP), adapting to changes in temperature and light intensity to quickly find
the optimal point. MPPT technology greatly reduces power loss. Traditional methods like the constant
voltage method, short-circuit current method, perturbation observation method [12] and conductance
increment method [13] work well under consistent light conditions, but struggle with local shading,
leading to local optima due to multiple peaks in the output curve [9,14].

To address this, intelligent algorithms such as the particle swarm algorithm (PSO) [14], grey
wolf optimization (GWO) algorithm [15], horse herd optimization algorithm (HOA) [16], cuckoo
search (CS) algorithm [10], flower pollination algorithm [17] and kepler optimization algorithm
(KOA) [18] have been proposed. Literature [14] proposed that a dual optimization particle swarm
algorithm optimizes the voltage interval for the MPP and enhances convergence with optimized
coefficients and a search degree factor. Literature [15] proposed that an improved gray wolf opti-
mization algorithm with variable-step perturbation observation improves search efficiency and global
randomness to avoid local optima. Literature [16] proposed that the horse herd optimization algorithm
achieves fast convergence with minimal computation. Literature [10] proposed an adaptive differential
evolution of the improved cuckoo search algorithm combined with the conductance incremental
method balances search efficiency and randomness. Literature [18] proposed that the KOA uses
planetary motion principles for position and velocity updates. These approaches optimize local
shading problems, but still struggle to balance output stability with speed and accuracy under various
environmental conditions.

This paper proposes a composite algorithm that combined the improved kepler optimization
algorithm (IKOA) and the optimized variable-step perturbation observation method (OIP&O). IKOA
is used for global optimization in early iterations, adjusting switching probabilities and orbital motion
step coefficients adaptively. Early iterations use a smaller switching probability and a larger step
coefficient to promote global search, while later iterations use a larger switching probability and
a smaller step coefficient to enhance accuracy and convergence speed. The velocity and position
update formulas are optimized to increase diversity and improve the ability to escape local optima,
which enhance global search randomness. In later stages, the algorithm switches to OIP&O for local
optimization, which reduces output oscillation and improves stability and accuracy. Simulation and
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experimental results confirm the correctness and effectiveness of this PV MPPT algorithm for the PV
hybrid inverter.

This paper is structured as follows, Section 2 describes the PV hybrid inverter system modeling and
presents its main combinatorial elements to introduce the PV array that is the object of study. Section 3
describes the basics of PV modeling and analyzes the effect of PSC on the power output of the PV
array. The IKOA-OIP&O algorithm and the corresponding MPPT process are presented in Section 4.
Experimental results by the proposed algorithm and comparison between different algorithms are
given in Section 5. The paper is summarized in Section 6.

2 PV Hybrid Inverter System Design

PV hybrid inverter is a smart energy solution that utilizes solar power to generate electricity and
realizes power storage and power supply management [19], through bi-directional inverter and energy
storage system, as shown in Fig. 1. PV hybrid inverter mainly consists of PV battery system, energy
storage battery system, bi-directional inverter and so on.

Figure 1: PV hybrid inverter system

The PV cell system in a PV hybrid inverter is a technological device that converts solar energy
into electrical energy and consists mainly of PV panels, boosting circuits and a MPPT controller
[11]. It converts solar energy directly into usable DC energy through the PV effect, which is then
passed through an inverter for domestic and commercial use [5,6]. PV cell systems can reduce carbon
emissions, realize sustainable use of energy, and bring economic benefits through reduced electricity
bills and revenue from electricity sales, providing users with a stable and reliable power supply [1,20].

The storage battery system in a PV hybrid inverter is a device for storing and managing the
electrical energy generated by PV panels [7]. It includes a battery module, a battery management
system (BMS) and bi-directional charging and discharging circuits [5]. Its main function is to store
excess electrical energy during the day for use at night or on cloudy days to ensure the continuity
and stability of power supply. The system effectively improves the overall efficiency of the PV hybrid
inverter, reduces dependence on the grid, optimizes energy utilization and provides a backup power
function, thus enhancing the reliability and economy of the energy system.
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The bi-directional inverter circuit in a PV hybrid inverter is a power electronic device capable of
realizing bi-directional conversion between DC and AC power [7]. It includes a bidirectional DC/AC
converter [21], an inverter module and a control system [22]. As the demand for energy storage and
management continues to rise, bidirectional converters are poised to become a critical technology
for optimizing electrical energy utilization and enhancing system flexibility and efficiency [23]. These
converters not only facilitate efficient bidirectional conversion of PV power but also provide precise
control between energy storage and release, addressing power demand fluctuations and improving
system reliability [7].

3 PV Component Models

PV panels, which are crucial components of PV hybrid inverters, have primarily been categorized
into single-sided and bifacial panels [20] to improve PV conversion efficiency [24]. Bifacial panels
can simultaneously receive light from both the front and back sides, resulting in higher current and
power output under identical illumination conditions compared to single-sided panels [25]. However,
the output characteristic curves (I-V and P-V curves) of both types are very similar in shape, with
the curves of bifacial panels being steeper and more efficient. Due to this similarity, it is feasible
to approximate the output curves of bifacial panel arrays under shading conditions using those of
single-sided panel arrays. Therefore, the focus of this study will primarily be on single-sided PV panels.
PV panels have P-U and I-U output curves that are greatly affected by light intensity and operating
ambient temperature. the equivalent model of PV cells is shown in Fig. 2.

Figure 2: Equivalent model diagram of PV modules

The expression for the output current is shown below [20]:

I = Iph − Id

{
exp

[
q (V + IRs)

AkTpv

]
− 1

}
− V + IR

Rsh

(1)

where Iph for the photogenerated current; I for the PV module output current; V for the PV module
output voltage Id for the diode reverse saturation current; Rs and Rsh for the equivalent series resistance
and the equivalent parallel resistance; k for Boltzmann’s constant, the value of which is usually 1.38
× 1023 J/K; q for the electronic charge constant, the value of which is usually 1.6 × 1019 C; A for the
ideal factor of the PN junction, and Tpv for the absolute temperature.

Iph = [
Isc + Ki

(
Tpv − Tr

)] S
Sr

(2)

where Isc for the short-circuit current in the standard operating environment; Ki for the short-circuit
current temperature coefficient; Tr for the standard operating temperature (25°C); Sr for the standard
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light intensity (1000 W/m2); S is the work of light intensity ( W/m2). Saturation current expression:

Id = Ido

{
exp

[
q (V + IRs)

AKT

]
− 1

}
(3)

where Ido is the saturation current at standard conditions.

The PV array is made of Ns individual cells connected in series with the following output current
equation:

I = Iph − Id

[
exp

(
q (V + IRs)

NsAkT

)
− 1

]
− V + NsIRs

NsRsh

(4)

In the simulation to build a PV cell model, set up five PV panels connected in parallel as a group,
a total of five groups connected in series in turn, components arranged PV arrays, and change the
lighting conditions, the temperature is constant 25°C. The key parameters of a single PV cell (TSM-
200DA01.08) as shown in Table 1.

Table 1: Key parameters of PV cells

Parameter name Parameter value

Open-circuit voltage Uoc/V 46.2
MPP voltage Ump/V 38.2
Short-circuit current Isc/A 5.62
MPP current Imp/A 5.26
Uoc temperature coefficient /

(
%/

◦C
) −0.35

Isc temperature coefficient /
(
%/

◦C
)

0.05

PV systems are usually operated in natural environments, so the power output is generally
nonlinear. When the illumination is uneven due to natural factors, especially the PV cells are greatly
affected by temperature and illumination in the environment, the P-U output curve will show a
phenomenon of multiple peaks. If the peaks do not differ much, it will increase the probability of
falling into the local optimum solution and also trigger the hot spot effect. In order to avoid the hot
spot effect, a bypass diode is usually connected in parallel next to the PV array, and the presence
of the bypass diode will also make the P-V output characteristics of the PV array characterized by
multiple peaks.

4 Implementation of IKOA-OIP&O Based Multi-Peak MPPT Algorithm
4.1 Improved Kepler Optimization Algorithm

Inspired by Kepler’s laws of planetary motion, the KOA is a novel meta-heuristic optimization
algorithm [18]. KOA simulates the interaction between the sun and the planets, provides an intuitive
optimization method using the natural laws of celestial motion. It has good global search capability
for the PV maximum power tracking problem in PV hybrid inverters, and avoids the probability
of falling into a local optimum through the introduction of stochastic perturbations that can be
mentioned [26,27].

However, the traditional KOA is computationally large due to the complexity of simulating
planetary motions, leading to slow convergence, as well as the complex optimization problem, although
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random perturbations are introduced, it is still easy to fall into the local optimal solution, which is
difficult to jump out of [27]. At the same time, in order to target the specific scenario of the PV maximal
power tracking, it is necessary to modify and adjust the parameters of the KOA algorithm (e.g., the
number of planets, the initial speed, the strength of the perturbations, etc.).

In order to effectively balance the relationship between the search accuracy and convergence
speed of the KOA algorithm, the convergence speed and stability of the algorithm are improved while
maintaining the global search capability of the algorithm. The IKOA algorithm is described below:

4.1.1 IKOA Parameter Initialization Settings

As shown in Fig. 3, the IKOA algorithm has to initialize the positions of the individual planets in
the search space, i.e., the target duty cycle, whose position equations are shown in Eq. (5):

Xi = Xi,lb + r0 × (
Xi,ub − Xi,lb

)
(5)

where Xi,ub and Xi,lb are the upper and lower bounds of the search space, respectively; r0 are random
numbers between 0 and 1. It is also necessary to initialize other parameters, such as the orbital
parameters e and the orbital period T , which need to be initialized before the optimization starts.
The orbital eccentricity and orbital period initialization equations are shown below [18]:

ei = r1 (6)

Ti = |rn| (7)

where r1 is a random number from 0 to 1; rn is a random number based on a normal distribution.

Figure 3: Schematic diagram of the position of the planets in relation to the sun

4.1.2 Calculation of IKOA Gravitational Force

The gravitational force Fg of the planet relative to the Sun is calculated, as follows [18]:

Fg,ı (t) = ei × μ (t) × Ms × mi

R
2

i + ε
+ r2 (8)
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where μ (t) is a function of exponentially decreasing with time, used to control the search precision,
defined as shown in Eq. (15); Ms and mi denote the normalized values of the masses Ms and of mi the
sun Xs and planets Xi, respectively, calculated according to Eqs. (11) and (12); r2 denoted by a random
number between 0 and 1; Ri denoted by the Euclidean distance of the sun Xs and the planets Xi; Ri

denoted by the Euclidean normalized distance; ε denoted by a small value to avoid being divided by
zero is a small value to avoid division by zero; The Euclidean distance between the Sun and the planets
and the related parameters can be calculated from Eqs. (9) to (14) as follows [18]:

Ri (t) = ‖XS (t) − Xi (t)‖ =
√(

XS (t) − Xi (t)
)2

(9)

Ri = Ri (t) − min (R (t))

max
(
R (t)

) − min
(
R (t)

) (10)

MS = r3

fitS (t) − worst (t)∑N

k=1

(
fit (t) − worst (t)

) (11)

mi = fiti (t) − worst (t)∑N

k=1

(
fitk (t) − worst (t)

) (12)

μ (t) = μ0 × exp
(

−γ
t

Tmax

)
(13)

where r3 is a random number in the range of 0∼1; MS denoted as the quality of the sun Xs; mi denoted
as the quality of the planet Xi; γ is a fixed value; μ0 is an initial value; t and Tmax denotes the current
iteration number and the maximum iteration number, respectively; fit (t) and worst (t) are calculated
as shown below [18]:

fitS (t) = best (t) = max
k∈[1, 2,··· ,N]

(
fitk (t)

)
(14)

worst (t) = min
k∈[1, 2,··· ,N]

(
fitk (t)

)
(15)

4.1.3 Calculation of Planetary Orbital Velocities in IKOA

The planetary velocity is calculated by the distance from the sun, and the planetary velocity
increases as the planet gets closer to the sun and decreases as it gets farther away from the sun. In
the traditional KOA, the planetary velocity update step parameter is a fixed value of 1 or −1. The
step size of planetary velocity update is too large, which leads to the results of skipping the optimal
solution, slower convergence, oscillations or discretization, and lower accuracy. In order to ensure that
the algorithm has a sufficient search range and at the same time ensure a fine search near the optimal
solution, the planetary velocity update step size is improved by nonlinearly incrementing in the range
of 0∼1. In turn, according to the Vis-viva equation [18], the velocity of the planet relative to the Sun,
modified based on the MPPT, is shown in Eqs. (16) to (27) [18]:

Vi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l × (2 × r5 × Xi − Xb) + l̈ × (Xa − Xb) +
(1 − Ri−norm (t)) × αt × U1 × →

r 6 × (
Xi, ub − Xi, lb

)
,

Ri−norm (t) ≤ 0.5

r5 × L × (Xa − Xi) +
(1 − Ri−norm (t)) × αt × U2 × →

r 6 × (
r4 × Xi, ub − Xi, lb

)
,

Ri−norm (t) > 0.5

(16)
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l = U × M × L (17)

L =
[
μ (t) × (Ms + mi)

(
2

Ri (t) + ε
− 1

ai (t) + ε

)] 1
2

(18)

M = (r4 × (1 − r5) + r5) (19)

U =
{

0 r6 ≤ r7

1 r6 > r7
(20)

l̈ = (1 − U) × M × L (21)

U1 =
{

0 r6 ≤ r5

1 r6 > r5
(22)

U2 =
{

0 r4 ≤ r5

1 r4 > r5
(23)

where Vi (t) indicates the current planetary velocity; r4, r5, r6 and r7 are random numbers in the range
0 to 1; Xa and Xb are two random solutions in the current solution; ai (t) is the half-length axis of
the elliptical orbit of the ith celestial planets, which can be calculated by Eq. (24); αt is the planetary
velocity update step, which can be calculated by Eq. (25); Ri−norm (t) denotes the normalization of the
Euclidean distance between a celestial body Xs and Xi, which can be calculated by Eq. (26).

ai (t) = r4 ×
[

T 2
i × μ (t) × (Ms + mi)

4π 2

]
(24)

αt = Ri−norm × αmax ×
(

αmin

αmax

) t
Tmax

(25)

where αmax and αmin are the upper and lower step values, respectively.

Ri−norm (t) = Ri (t) − min
(
R (t)

)
max

(
R (t)

) − min
(
R (t)

) (26)

The purpose of Eq. (26) is to calculate the percentage of steps in which each object undergoes a
change; if Ri−norm (t) ≤ 0.5, then the celestial planet is close to the sun and will increase its speed to
prevent drifting towards the sun due to the sun’s immense gravitational pull. Otherwise, the celestial
planet will slow down.

4.1.4 Escape from IKOA Local Optimization

The improved adaptive perturbation switching probability facilitates the optimal solution to jump
out of the local optimum at a later stage of the algorithm. In the traditional KOA, the normalized
Euclidean distance between a celestial body and the condition for judgment is fixed, typically 0.5, so
that the probability of updating the planetary velocity is the same throughout the iteration period.
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Therefore, this paper proposes an adaptive probability Pr−norm. In the early stage of the algorithm
operation, in order to improve the global search ability and increase the search range, a larger value
Pr−norm is needed; in the late stage of the algorithm operation, in order to improve the search accuracy
and accelerate the convergence speed, a smaller value Pr−norm is needed. The proposed formula for
adaptive is:

Pr−norm = 0.7 − 0.4 (Tmax − t) /Tmax (27)

where t is the number of iterations at the current moment; Tmax is the maximum number of iterations.

4.1.5 Update of Planetary Positions in IKOA

Escaping the local optimum, as shown in Fig. 4, by simulating the gravitational pull of the Sun on
the planet, the local optimum region is broken through by periodically switching the search direction
to provide the planet with a better chance to explore the whole space. The exploration operation is
simulated in IKOA when the planets are farther away from the sun, while the mining operation is
realized when the planets are closer to the sun. The positions are updated as shown below [18]:

Xi (t + 1) = Xi (t) + Pr−norm × Vi (t) + (
Fg, i (t) + |r8|

) × U × (Xs (t) − Xi (t)) (28)

where r8 is a random number from 0 to 1.

Figure 4: Exploration and exploration of planets in search space

The positions of the celestial planets are updated to simulate the natural change in the distance
between the sun and the planets over time. As the planets get closer to the sun, the mining operator
is activated to increase the rate of convergence, while when the sun is farther away, The exploration
operator is activated to minimize falling into a local optimum, as shown below [18]:

Xi (t + 1) = Xi (t)×U1+(1 − U1)×
(

Xi (t) + XS + Xa (t)
3.0

+ h ×
(

Xi (t) + XS + Xa (t)
3.0

− Xb (t)
))

(29)

where h is the adaptive factor for the distance between the Sun and the current planet at the control
moment t, as shown in the following equation [18]:

h = 1
eηr9

(30)

where r9 is the randomized number of the normal distribution, η is a linear decreasing factor from 1
to −2, as shown in the following equation [18]:

η = (a2 − 1) × r10 + 1 (31)
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where r10 is a random number from 0 to 1, a2 is the control parameter, as shown in the following
equation:

a2 = −1 − 1 ×

⎛
⎜⎜⎝

t%
Tmax

T
Tmax

T

⎞
⎟⎟⎠ (32)

where T is the number of cycles control parameter.

When the number of iterations of the above IKOA algorithm reaches a set value and the tracking
is near the current MPP, in order to further improve the accuracy of the algorithm in tracking the
maximum power, an optimized variable-step perturbation algorithm is used to perform a small-scale
local search to find the global MPP.

4.2 Optimized Variable-Step Perturbation Observation Method Algorithm Implementation
The P&O perturbation observation method is one of the commonly used MPPT methods,

which has the characteristics of easy implementation and simplicity, and can help the optimization
algorithm’s further search for the optimal point. However, the traditional P&O perturbation method,
its step size is usually a constant fixed value. If the step size is set too small, it will reduce the search
speed and lead to a long convergence time; when the step size is set too large, it will lead to large
fluctuations at the MPP, which reduces the accuracy of the search. Therefore, in this paper, an OIP&O
is used to improve the perturbation step size by sampling the PV system, which is comparing and
calculating the output power and output voltage before and after the perturbation and their change
rates to optimize the step size, and the perturbation process is shown in the following equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ppv, out = Upv × Ipv

�Ppv, out = Ppv, out (i) − Ppv, out (i − 1)

�Upv (i) = Upv (i) − Upv (i − 1)

�D (k) = ∣∣�Ppv, out (i) /�Upv (i)
∣∣ × �D

(33)

where Upv and Ipv are the output voltage and current of the PV system; Ppv, out (i) and Ppv, out (i − 1) are the
power values before and after the ith perturbation, separately; �Ppv, out is the power increment before
and after the perturbation. �Upv (i) is the value of the output voltage change caused by the duty cycle
change from time k − 1 to time k; �D (k) is the value of the duty cycle change step at time k; �D is
the value of the fixed duty cycle change, which is a fixed value. If �Ppv, out is positive after perturbation,
the next perturbation will be made in the same direction; if �Ppv, out is negative after perturbation, the
next perturbation will be made in the opposite direction.

The OIP&O initially approaches the MPP faster by a larger amount of perturbation. After
successfully tracking near the MPP, the reduction of power variation and voltage variation causes
the perturbation amount to be reduced accordingly, thus improving the tracking accuracy.

4.3 Algorithm Restart Condition
For the MPPT control strategy algorithm, it is necessary to ensure that the whole system works

at the MPP in real time, but the sudden change of the external environment often affects the output
power of the system, in order to avoid the loss of power to ensure the stable operation of the system,
the restart of the algorithm is also very important. This paper adopts the absolute magnitude of
the fluctuation of the output power of the PV array and the ratio of the maximum output power.
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Under the working conditions as the restart conditions, that is, to meet Eq. (34) when the algorithm
restarts [28].∣∣Preal − Pmppt

∣∣
Pmppt

> λ (34)

where Preal is the real-time output power of the PV panel; Pmppt is the maximum output power searched
by the algorithm under the current working condition; λ is the occupancy factor, λ = 0.04.

Figure 5: Flowchart of IKOA-OIP&O algorithm

In summary, as shown in the algorithm flowchart in Fig. 5 below. In the early stage of this paper,
the IKOA algorithm is used as a means of global search, and the initial planetary population position,
spatial upper bound, spatial lower bound, orbital parameters and orbital period are generated,
according to the improved Kepler algorithm. The search and exploration of the solution space are
carried out to determine the value of the maximum PV power and the corresponding duty cycle,
through the optimal strategy. Subsequently, an OIP&O is adopted to locally search the current optimal
duty cycle, in order to improve the search accuracy of the PV MPP. Then the algorithm restart setting
is carried out. The planet position represents the duty cycle of the Boost circuit, which realizes the
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maximum power tracking control and eliminates the traditional PI control loop, simplifying the design
and operation of the controller.

5 Algorithm Simulation Results and Simulation

In order to verify the effectiveness and performance of the present proposed improved Keplerian
algorithm, simulations are carried out in Simulink. The PV array consists of 5 × 5 module blocks with
individual module parameters Pmax = 200.932 W, Voc = 46.2 V, Isc = 5.62 A, Vm = 38.2 V, Im = 5.26 A.
The Boost converter parameters are PV side boost capacitance Cpv = 1000 uF, Load-side capacitance
C = 200 uF, L = 10 mH. The key parameters of the IKOA-OIP&O algorithm are shown in Table 2:

Table 2: IKOA-OIP&O algorithm main parameters

Statuses Value Statuses Value

1 Duty cycle 100.0 6 γ 15
2 Duty cycle 10.0 7 T 3
3 μ0 0.1 8 Tmax 10
4 Xi, ub 0.90 9 Cpv 1000 uF
5 Xi, lb 0.10 10 L 10 mH

In order to specifically analyze the multi-peak output characteristics of PV arrays under localized
PSC, the localized shading conditions are simulated by giving four groups of PV cells set with different
light intensities, respectively. In order to highlight the impact of localized shading on PV arrays, the
environmental parameters are set as shown in Table 3, with the STC as the unshaded state, the set light
intensity of 1000 constant and the temperature of 25°C.

The P-U and I-U characteristic curves of the PV array under four working conditions are shown
in Fig. 6. As can be seen from Fig. 6, under working condition I (uniform illumination), the P-U
characteristic curve of the PV array has only one peak point, and the traditional MPPT algorithm
can effectively track to the MPP. However, under working condition PSC1, PSC2 and PSC3, due to
changes in the external environment (light intensity, temperature, etc.), the P-U characteristic curve of
the PV array is a nonlinear curve with multiple peak points, but there is one and only one global MPP.
Therefore, in order to ensure that the PV array can always work at the MPP under complex operating
conditions, the study of PV multi-peak MPPT is of great significance.

Table 3: Environmental parameter settings

Statuses PV1 PV2 PV3 PV4 PV5

STC 1000 1000 1000 1000 1000
PSC1 1000 800 600 400 200
PSC2 900 700 500 300 100
PSC3 1000 800 500 700 1000

The simulation environment is selected to be at 25°C, and a total of four states are simulated, so
that the PV arrays are simulated under the two conditions of standard working condition (STC) and
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switching to working condition PSC1 (uniform illumination and localized shade), and the mutation of
working condition PSC1 to working condition PSC2, and then to working condition PSC3 (dynamic
shading), and the simulation experiments are conducted to compare the same conditions of CS,
GWO-P&O, KOA-P&O, and IKOA-OIP&O algorithms under the same conditions, and analyze the
convergence speed and tracking accuracy of the algorithms.

(a)

(b)

Figure 6: Characteristic curve of PV array output power under different working conditions. (a) U-I
characteristic curves for four operating conditions. (b) P-U characteristic curves for four operating
conditions

This study evaluates a proposed MPPT algorithm in comparison with three existing methods
designed for PV panel output characteristics: CS algorithm, Grey Wolf Optimization-Perturb and
Observe (GWO-P&O), and kepler optimization algorithm-perturb and observe (KOA-P&O). The
CS algorithm, known for its simplicity and reliability, may exhibit slower dynamic response and
instability under varying PV conditions. This comparison assesses the advancements achieved over
these traditional methods.

The GWO-P&O and KOA-P&O algorithms, representing recent advancements in optimization,
aim to enhance MPPT efficiency and accuracy for PV panels. Despite their improvements, these
methods may face higher computational complexity and adaptability challenges. By contrasting the
proposed algorithm with these advanced methods, strengths in dynamic response, tracking accuracy,
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and computational efficiency are highlighted, demonstrating its practical value and potential for
further research and application in optimizing PV panel performance.

5.1 Uniform Light and Partial Shade
When the PV array is working in uniform illumination (STC), the PV power output curve has only

one peak. At this time, the maximum power of the system is 5018 W. The IKOA-OIP&O algorithm
is simulated and output, and the three algorithms of CS, GWO-P&O, and KOA-P&O are compared,
and the simulation time reaches 1 s when switching to the PSC1 condition, as shown in Fig. 7, the PV
power output presents multiple peaks, and when the peaks do not have much difference, it will appear
to fall into the local optimal The maximum power of the system is 1948.3 W. The simulation results
of the four algorithms are shown in Fig. 6, and the simulation results of STC and PSC1 are shown in
Table 4 and Fig. 8.

Table 4: Simulation results of the algorithm under uniform light and local shade conditions

State mode Algorithm Maximum
power/W

Tracking
power/W

Tracking
rate/%

Tracking
time/s

STC CS 5018 4996.1 99.56 0.62
GWO-P&O 5018 4996.6 99.57 0.42
KOA-P&O 5018 4996.7 99.57 0.92
IKOA-OIP&O 5018 4996.9 99.57 0.39

PSC1 CS 1948.3 1934.9 99.31 0.12
GWO-P&O 1948.3 1935.9 99.36 0.66
KOA-P&O 1948.3 1790.1 91.88 0.48
IKOA-OIP&O 1948.3 1936.1 99.37 0.38

From Figs. 7, 8 and Table 4, it can be seen that: in the initial STC for maximum power tracking,
CS system finds the optimal value around 0.62, and the optimal value is around 4996.1 W; GWO-P&O
finds the optimal value (around 4996.6 W) around 0.42 s; KOA-P&O system finds the optimal value
(around 4996 W) in approximately 0.6 s. the system based on IKOA-OIP&O finds the optimal value
around 0.39 s, and the optimal value is around 4996.9 W. It can be seen that IKOA-OIP&O algorithm
is better than the other three algorithms in terms of optimization speed and accuracy.

When the system is switched from STC to PSC1, CS system finds the optimal value around 0.12
after switching, and the optimal value is about 1934.9 W, however, oscillations occur at a later stage,
leading to system instability; GWO-P&O system finds the optimal value around 0.66 s after switching,
and the optimal value is about 1935.9 W; KOA-P&O system finds the optimal value around 0.6 s after
switching, and the optimal value is about 1790.1 W, which is caught in the local optimum; IKOA-
OIP&O system finds the optimal value around 0.38 s after switching, and the optimal value is about
1936.1 W. It can be seen that the accuracy of the system based on IKOA-OIP&O algorithm is better
than the other three algorithms, and the speed of finding the optimal value still belongs to the top.
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Figure 7: Comparison of algorithms under uniform light and partial shade conditions. (a) CS. (b)
GWO-P&O. (c) KOA-P&O. (d) IKOA-OIP&O
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Figure 8: Comparison chart of algorithm results under STC-PSC1

5.2 Simulation Analysis under Dynamic Shade State Conditions
The natural shade environment is simulated by setting different light intensities, at which time the

power output curve has multiple peaks, and it is easy to fall into possibility of local optimization when
the peaks do not differ much. The power outputs of PSC1, PSC2 and PSC3 are shown in Fig. 5, and
the maximum power in STC1 is 1948.3 W, the maximum power in STC2 is 1628.7 W, and the maximum
power in STC3 is 3054.1 W. The simulation outputs are performed for the IKOA-OIPO algorithm, and
the simulation outputs for the IKOA-OIPO algorithm, while the comparison with three algorithms,
CS, GWO-P&O, and KOA-P&O, the results of the four algorithms are shown in Fig. 9, and the PSC1,
PSC2, and PSC3 simulation results are shown in Table 5 and Fig. 10.

Figure 9: (Continued)
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Figure 9: Comparison of algorithms in dynamic shade condition. (a) CS. (b) GWO-P&O. (c) KOA-
P&O. (d) IKOA-OIP&O

From Figs. 9, 10 and Table 5, it can be seen that: in the initial PSC1 condition for MPPT, CS
system finds the optimal value around 0.74 s of tracking, and the optimal value is around 1934.5 W;
GWO-P&O system finds the optimal value around 0.42 s of tracking, and the optimal value is around
1934.9 W; KOA-P&O system finds the optimal value around 0.54 s and the optimal value is around
1934.9 W; IKOA-OIP&O system finds the optimal value around 0.36 s of tracing and the optimal
value is around 1934.9 W.

When the simulation time reaches 1 s, PSC1 switches to PSC2, CS system initially falls into a
local optimum during early tracking, but later becomes unstable due to multiple closely spaced peaks
under condition two; GWO-P&O system finds the optimal value in the tracking of around 0.65 s,
and the optimal value is around 1617.6 W; KOA-P&O system finds the optimal value around
0.66 s, and the optimal value is around 1346.4 W, but falls into the local optimum; IKOA-OIP&O
system finds the optimal value around 0.41 s, and the optimal value is around 1617.5 W.
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When simulation time reaches 2 s, PSC2 is switched to PSC3 condition, CS system finds the
optimal value around the tracking 0.61 s process, and the optimal value is around 3037.5 W; the
GWO-P&O system finds the optimal value around the tracking 0.62 s, and the optimal value is around
3038.4 W; KOA-P&O system finds the optimal value around the tracking 0.54 s, but falls into the local
optimum; IKOA-OIP&O based on finds the optimal value around tracking around 0.42 s, and the
optimal value is around 3038.4 W. In summary, the IKOA-OIP&O algorithm outperforms the other
three algorithms in both speed and accuracy.

Table 5: Simulation results of the algorithm under dynamic shade condition

State mode Algorithm Maximum
power/W

Tracking
power/W

Tracking
rate/%

Tracking
time/s

PSC1 CS 1948.3 1934.5 99.29 0.74
GWO-P&O 1948.3 1934.9 99.31 0.42
KOA-P&O 1948.3 1934.9 99.31 0.54
IKOA-OIP&O 1948.3 1934.9 99.31 0.36

PSC2 CS 1628.7 – – –
GWO-P&O 1628.7 1617.6 99.32 0.65
KOA-P&O 1628.7 1346.4 82.67 0.66
IKOA-OIP&O 1628.7 1617.5 99.31 0.41

PSC3 CS 3054.1 3037.5 99.46 0.61
GWO-P&O 3054.1 3038.4 99.49 0.62
KOA-P&O 3054.1 2827.8 92.59 0.54
IKOA-OIP&O 3054.1 3038.4 99.49 0.42

Figure 10: Comparison of algorithm results under PSC1-PSC2-PSC3



EE, 2024, vol.121, no.12 3797

6 Conclusion

This paper proposes an MPPT optimization algorithm for PV systems in hybrid inverters, named
the IKOA-OIP&O algorithm. This algorithm combines the IKOA with the OIP&O. The integration of
algorithmic improvements and adaptive optimization coefficients enhances the MPPT accuracy and
convergence speed.

Simulation analysis shows that compared to CS, GWO-P&O, and KOA-P&O algorithms with
the same PV output sampling rate, IKOA-OIP&O exhibits stronger global search randomness in
its early stages. Later, leveraging the OIP&O allows for swift local convergence, achieving up to
30% faster convergence time. Faster MPPT speeds enable the inverter to respond more quickly to
changes in solar irradiance and temperature, thus optimizing power extraction in real time. This rapid
adaptation minimizes energy losses and maximizes the energy harvested from the PV panels. More
accurate MPPT tracking rates enhance the precision of power extraction by maintaining the inverter’s
operation at the true MPP. This precision ensures that the system operates efficiently even under
fluctuating environmental conditions, leading to better overall system performance and energy yield.
Improved MPPT accuracy also contributes to the stability and reliability of the energy storage system
by preventing unnecessary power fluctuations and maintaining consistent energy flow to the grid or
storage units. The algorithm mitigates power oscillations in PV outputs, showing stability and faster
convergence in multi-state MPPs and single-state multi-peak shading conditions, making it suitable
for MPPT in diverse shading scenarios.

The main contribution of this study is a systematic comparison of the performance of MPPT
algorithms for single-and double-sided PV panels in hybrid PV inverters. Additionally, this study
proposes an optimized MPPT strategy tailored for varying light conditions to enhance the dynamic
responsiveness and accuracy of the MPPT algorithm, thereby improving overall power generation
efficiency.

However, the algorithm has certain limitations. For instance, its performance may be compromised
under extreme climatic conditions, such as high temperatures or significant shading. Additionally,
challenges related to hardware deployment and computational resources may arise. Future research
should address these limitations by enhancing the algorithm’s robustness and computational efficiency
to improve its applicability and performance across diverse environmental conditions.
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