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ABSTRACT

With a further increase in energy flexibility for customers, short-term load forecasting is essential to provide
benchmarks for economic dispatch and real-time alerts in power grids. The electrical load series exhibit periodic
patterns and share high associations with metrological data. However, current studies have merely focused on point-
wise models and failed to sufficiently investigate the periodic patterns of load series, which hinders the further
improvement of short-term load forecasting accuracy. Therefore, this paper improved Autoformer to extract the
periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.
In addition, a novel multi-factor attention mechanism was proposed to handle multi-source metrological and
numerical weather prediction data and thus correct the forecasted electrical load. The paper also compared
the proposed model with various competitive models. As the experimental results reveal, the proposed model
outperforms the benchmark models and maintains stability on various types of load consumers.
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1 Introduction
1.1 Background

The growth of the capacity of renewable energy offers a new opportunity to address the approach-
ing energy crisis and increasing demand for electricity consumption [1,2]. The growing uses of
electricity have prompted multiple agencies to implement a variety of strategies for maximizing its
efficiency [3], the intelligent switching of domestic load consumption in the distribution networks,
reducing auxiliary power consumption, continuously monitoring the reduction of power loss in
transmission and distribution systems [4], utilizing energy-efficient equipment, and educating power
grids for better load optimization [5]. Considering the practical uses, the horizons of load forecasting
cover ultra-short-term (within 0.5 h), short-term (1–6 h), intra-day (within 24 h) and day-ahead (over
24 h) horizons. Among these scenarios, short-term load forecasting is particularly essential to educate
economic dispatch and real-time alerts, which have a wide range of application prospects in power
systems.
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1.2 Related Works
Based on the current literature, the short-term load forecasting models can be briefly divided into

three categories: mathematical-physical, statistical, and hybrid models [6]. The large-computation-
based models have achieved excellent prediction results in long-term load forecasting. Abedinia et al. [7]
proposed a principle-derived mathematical model to convert metrological data to load forecasting
results. These methods do not require a training process and thus enable high efficiency of calculation.
However, the obstacles of capturing real-time data still hinder its wide applications. Also, with the
continuous growth of the flexibility and randomness of load consumption, simple mathematical-
physical models are not capable of adapting to the new situations of electrical load forecasting.

Statistical models aim to learn a reasonable representative trend of electrical load to provide multi-
step-ahead forecasting results. Compared with the linear regression models which struggle to handle
sequential data, the typical time series model considering the periodic characteristics of time series
is widely applied [8]. DF (Decision Free) [9], SVM (Support Vector Machine) [7], ANNs (Artificial
Neural Networks) [10], and other machine learning methods are widely used for load forecasting.
Quilumba et al. [11] used K-means clustering to recognize the consumption patterns of diverse
consumers, while load forecasting results on the systematic level are aggregated from each cluster
of consumers. Ahmad et al. [12] proposed an enhanced differential evolution algorithm to optimize
the errors between the calculated and observed samples, which leads to a distinctive improvement
of 52.78% than conventional optimization methods. Although these models are convenient and
guarantee satisfying outperformance, the performance of a statistical model highly depends on data
characteristics and generally exhibits insufficient generalization [13].

Improved from the obstacles of the aforementioned models, the hybrid models integrating multiple
algorithms were designed to combine the superiority of the included models. Deng et al. [14] proposed
a multi-scale-convolution-based hybrid model, where the accuracy of short-term load forecasting can
be improved by capturing features from various temporal scales. The hybrid model effectively balanced
load forecasting performance between ultra-short and short-term. Also, Lin et al. [15] integrated
the advantages of LSTM (long-short-term memory) and attention mechanism (AM) to investigate
the correlations between load series and metrological factors. Chen et al. [16] improved ResNet
to extract temporal correlations at multiple scales from reconstructed load series, which effectively
handled multi-source data and significantly prevented gradient vanishing. Guo et al. [17] developed a
bidirectional-LSTM-based multitask framework while considering the coupling relationships between
integrated energy. Although the aforementioned hybrid models achieved excellent outperformance in
terms of short-term load forecasting, the LSTM and convolution-based models can merely model
the local features [18], which limits the further improvement of forecasting accuracy. Therefore,
modeling global patterns of load series is still a challenging task. Taking advantage of Transformer
[19], Wang et al. [20] proposed a Transformer-based multi-decoder framework to conduct short-
term forecasting of integrated energy load, which was confirmed to outperform those models merely
focusing on local features. Instead of implementing full attention, Gong et al. [21] developed a sparse
attention mechanism to distinguish dominant features from raw load series. Furthermore, the model
efficiency and forecasting accuracy can be jointly enhanced by neglecting unnecessary features. As the
experimental results reveal, the Transformer can effectively improve the feature extraction process in
the encoder module and ensure forecasting stability in terms of multi-step forecasting. As a summary
of the aforementioned literature review, the basic information and categorizations of these reviewed
articles are presented in Table 1.
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Table 1: Summary of literature reviews

Article Approach Forecasting target Learning process
(Y/N)

Features
categorization
(local/global)

Abedinia et al. [7] Principle-derived Customer load N Local
Quilumba et al. [11] K-means Systematic load Y Local
Ahmad et al. [12] Differential

evolution
Customer load Y Local

Deng et al. [14] Multi-scale-
convolution

Customer load Y Local

Lin et al. [15] LSTM-AM Customer load Y Local
Chen et al. [16] ResNet Customer load Y Local
Guo et al. [17] Multitask learning Integrated energy Y Local
Vaswani et al. [19] Multi-decoder

transformer
Integrated energy Y Global

Wang et al. [20] Informer Customer load Y Global

1.3 Research Gaps and Contributions
Although the aforementioned methods effectively improve the accuracy of short-term load

forecasting, these methods merely focus on establishing the point-wise mapping from historical to
future points of electrical load series. The motivations of these methods are to seek correlations
between the target points with the historical ones. However, a key element tends to be ignored the
electrical load series exhibits apparent periodic patterns [16]. The main difference between the point-
wise and series-wise methods is presented in Fig. 1. Intuitively, the forecasting of future electrical
load should be inferred from previous load series. Therefore, developing series-wise methods to
sufficiently investigate the periodic characteristics of electrical load series can be a feasible option
[22]. Distinguishing from conventional time-series modeling methods (e.g., LSTM [17], Informer [21]),
Autoformer especially caters to the scenarios that the investigated time-series is broadly periodic, which
is especially suitable for electrical load forecasting tasks.

I. Point-wise II. Series-wise

Historical Target Historical Target

Figure 1: Comparisons of point-wise and series-wise methods

Besides, conventional feature selection methods mainly rely on prior knowledge or statistical
methods. The commonality lies in that the feature selection cannot change dynamically, which neglects
that the dominant metrological features affecting electrical load can vary with time.
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To bridge the research gap, we proposed an Autoformer-based model to improve short-term
load forecasting by investigating periodic patterns of load series [23]. Also, considering that external
metrological data can greatly affect the consumption patterns of electrical load, a multi-factor AM
was proposed to seek the correlations between the load series and metrological factors [17]. The
contributions of this study are listed as follows:

• Inherited from Autoformer which has the advantage of extracting series-wise features, Aut-
oformer was improved to investigate the periodic dependencies of electrical load. Within
Autoformer, series decomposition was used to decompose raw load series into trend and
seasonal parts. Auto-correlation was improved to enhance the periodic dependencies.

• A multi-factor AM with continuous adaptive weights was proposed to handle multi-source
metrological factors. A scoring mechanism in multi-factor AM to select dominant metrological
data, while corresponding NWP can be used as a benchmark to correct the forecasted electri-
cal load.

• An end-to-end short-term load forecasting model was established. The proposed model was
sufficiently validated and compared with various competitive models, which further confirms
the effectiveness and stability of the proposed model.

The rest of the paper is organized as follows. Section 2 formulates the overall process of the
proposed model. Section 3 details the process of Autoformer. Section 4 introduces the multi-factor
AM. Section 5 presents the numerical results. Section 6 draws the conclusion.

2 Problem Formulation

The proposed short-term load forecasting model can be described as an optimization process.
The proposed receives historical load series {xt−d+1, . . . , xt} with temporal length as d for time-
series modeling. And multi-source historical metrological {pt−d+1, . . . , pt} and numerical weather data{
p̂t+1, . . . , p̂t+k

}
are also combined as input

{
pt−d+1, . . . , pt ‖ p̂t+1, . . . , p̂t+k

}
. The metrological data covers

five elements, that is, temperature, relative humidity, average wind speed, average wind direction, and
rain fall. The overall process can be formulated as:

x̂t+1, . . . , x̂t+1 ⇐ F
({xt−d+1, . . . xt} ,

{
pt−d+1, . . . , pt ‖ p̂t+1, . . . , p̂t+k

}
, {θ}) (1)

where x̂t is the target load forecasting result at the time t. F is the whole calculation process. {θ} is
training parameter. ⇐ is a nonlinear optimization process. k denotes the number of multi-steps.

3 Autoformer

The Autoformer [23] is designed to investigate load series by using an efficient encoder-decoder
structure. Autoformer covers two modules: series decomposition and Auto-Correlation. Series decom-
position was designed to decompose raw series into a pair of seasonal and trend parts, while Auto-
Correlation was developed to enhance the periodic dependencies of seasonal parts.

3.1 Series Decomposition
To learn about the complex temporal patterns in a long-term load forecasting context without

feature elimination, the idea of decomposition was taken to separate the series into trend and seasonal
parts. However, directly decomposing is impractical because the distributions of load in the future
are unknown. Therefore, the series decomposition block was designed to extract long-term stationary
trends from the raw load series. Concretely, the moving average was adopted to smooth out periodic
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fluctuations and highlight long-term trends. The decomposition process can be formulated as:

fdecp : X → Xs, Xt{
Xt = fAvgpool

(
fpad (X)

)
Xs = X − Xt

(2)

where X ∈ R
d×dv denotes the raw load series with temporal length as d. Xs, Xt ∈ R

d×dv denote the
seasonal and trend parts, respectively. dv denotes the dimensions of the load series. fAvgpool is an average
pooling operation. And fpad is zero-padding operation to keep the series unchanged.

3.2 Auto-Correlation Mechanism
Auto-Correlation can discover the period-based dependencies by calculating the series autocor-

relation and aggregates similar load sub-series by time delay aggregation [23]. For a given load series
{xt}, the autocorrelation Rxx (τ ) can be obtained as:

Rxx (τ ) = lim
L→∞

1
L

L∑
t=1

xtxt−τ (3)

where τ is a time delay factor. And Rxx (τ ) reflects the time-delay similarity between {xt} and its τ lag
series {xt−τ}. L denotes the length of the input sequence.

To sufficiently model the temporal dependencies of the load series, the most k possible period
length τ1, . . . , τk is selected to aggregate the extracted sub-series by SoftMax normalization, which
holds the advantage that SoftMax can effectively attend to different data distributions and avoid
gradient vanishing in the training process. Furthermore, inherited from Transformers [24], we get
query Q, key K, and value V to replace single head situation. The Auto-Correlation mechanism is
formulated as:⎧⎪⎨
⎪⎩

τ1, . . . , τk = arg Topk
τ∈{1,...,L}

(
RQ,K (τ )

)
HAuto−Corr =

k∑
i=1

Roll (V , τi) fSoftMax

(
RQ,K (τ )

) (4)

where arg Topk is to get the arguments of the Topk autocorrelations. And k = �c × log L�, where c is a
dominant feature controller. Roll (V , τi) = {xd−τ+1: d ‖ x0: d−τ} is a time-delay reconstructed by τ , which
is presented in Fig. 2.

Figure 2: The principles of time-delay aggregation
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However, merely relying on Softmax can cause O
(
L2

)
complexity. To speed up the computational

process, the autocorrelation formulated in Eq. (4) can be calculated by Fast Fourier Transforms (FFT):

Sxx (f ) = F (xt)F ∗ (xt) =
∫ ∞

−∞
xte−i2π tf

∫ ∞

−∞
xte−i2π tf

Rxx (τ ) = F−1 (Sxx (f )) =
∫ ∞

−∞
xtei2π f τ df

(5)

where F denotes the FFT and F−1 is its inverse. By using FFT to calculate Rxx (τ ), the complexity can
be reduced from O

(
L2

)
originally to O (L log L). The principles of the Auto-correlation mechanism

are displayed in Fig. 3.

Figure 3: The principles of auto-correlation mechanism

4 Proposed Hybrid Model for Short-Term Load Forecasting

In this section, the principles of multi-factor AM were first introduced. In addition, the detailed
architecture of the proposed model was illustrated.

4.1 Multi-Factor Attention Mechanism
Besides the individual electrical consumption behaviors, the metrological information has a

significant influence on load curves, which can be reflected by unexpected ramp events within load
curves. The metrological associated with the electrical load series, the metrological data was collected
for feature richness. The collected metrological data covers temperature (T), relative humidity (RH),
average wind speed (WP), average wind direction (WD), and intra-hour rainfall (RF).

To handle the multi-source metrological data and electrical load series, a novel multi-factor AM
was proposed to correct the load forecasting results. First, a novel scoring mechanism based on cross-
attention was proposed to investigate the correlations between historical load series {xt} and every
single metrological factor {pt}:
Sp→x = fSoftMax

(
pxT

√
dmodel

)
(6)
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where dmodel is the embedding dimension. And p ∈ {T , RH, WP, WD, RF} is a metrological factor.
The scoring mechanism is extended to the five metrological factors. Therefore, a series of scores
{ST→x, SRH→x, SWP→x, SWD→x, SRF→x} can be obtained. Furthermore, with the assumption that the fore-
casted load follows the same distribution as the historical load, the scores can be extended with the
NWP (numerical weather report) data to correct the forecast electrical load. The correction scheme
can be formulated as:

P = fSoftMax

⎛
⎜⎜⎜⎝

(∑
p

p̂Sp→x

)
ŷT

√
dmodel

⎞
⎟⎟⎟⎠ ŷ (7)

where p̂ and ŷ are NWP data and a hidden state after Autoformer, respectively. P is the forecasted
electrical load.

4.2 Overall Proposed Short-Term Load Forecasting Model
Based on the aforementioned methodologies, the proposed load forecasting model can be

established, which is presented in Fig. 4. Considering a separated two-stage network can cause target
loss and feature elimination, the proposed method combined Autoformer and multi-factor AM to
enable end-to-end learning.

Figure 4: Overall proposed short-term load forecasting model

In the Autoformer stage, the encoder learns a representative seasonal feature from the raw load
series, while the decoder gradually exploits trend characteristics from the raw load series to form a
distinguishing pair of seasonal and trend parts. The output of Autoformer is a distinctive feature
symbolizing a highly-refined periodic pattern, acting as the input of multi-factor AM. The principle
of improved Autoformer can be formulated as follows:

ŷt+1, . . . , ŷt+k ⇐ FAutoformer ({xt−d+1, . . . xt} , {θ1}) (8)

where ŷt+1, . . . , ŷt+k is the k-step output of improved Autoformer. θ1 denotes the trainable parameters
within the improved Autoformer. FAutoformer denotes the calculation process of Autoformer.

Multi-factor AM stage covers two modules. Inherited from historical data, scoring mechanism
measures the effects of metrological factors on load series. It is assumed the dominant metrological
features affecting electrical load cannot severely change in the short term. Therefore, the correction
module combines the dynamic scores and NWP data to correct load forecasting results. The proposed
model ensures end-to-end dynamic weight adjustment without the assistance of prior knowledge. The
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process of the multi-factor AM stage can also be formulated as follows:

x̂t+1, . . . , x̂t+k ⇐ FAM

({
ŷt+1, . . . , ŷt+k

}
, {θ2}

)
(9)

where FAM and θ2 denote the calculation process and the trainable parameters of multi-factor AM,
respectively. The proposed built MSE loss function to measure the difference between forecasted and
actual electrical load values, which were defined as follows:

LMSE = 1
k · nt

k∑
j=1

nt∑
i=1

(
x̂i+j − xi+j

)2
(10)

where nt denotes the number of training samples.

5 Results and Discussions

In this section, the performance and superiority of the proposed model were validated in detail.
Based on a comprehensive dataset, various competitive models were adopted for comparisons from
different aspects. Furthermore, the strengths and drawbacks of the proposed model were further
discussed.

5.1 Data Source
The data used in this case study were collected from various consumers in Jiangsu, China,

including the educational, property, and commercial service industry, etc. All the consumers are
located in the climate zone of temperature climate. For all the consumers, the metrological data
was collected at the same standard in their nearest metrological measurements. The original time
granularity of electrical load and metrological data is 15 min and 1 h, respectively. Furthermore,
intra-day NWP was used to provide future weather conditions, which were obtained by a weather
report service provider. To validate the generalization of the proposed model, three representative
consumers with distinguishing patterns were selected from three industries for comparisons. The basic
information of the three consumers is presented in Table 2. The load characteristics of property and
commercial service exhibit higher fluctuations. In general, the dataset is split into training (80%),
validation (10%), and testing sets (10%).

Table 2: Performance of the proposed and benchmark models

Consumer Industry Capacity (kW) Annual average
load (kW)

Intra-day mean
load difference (kW)

#1 Education 2500 806.82 677.61
#2 Property 2000 583.79 988.87
#3 Commercial

service
1000 302.61 353.79

5.2 Performance Indicators
In this study, three widely accepted metrics were used to validate the performance of the proposed

and benchmark models, including root mean square error (RMSE), mean absolute error (MAE), and
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determination coefficient (R2):

RMSE =
√√√√ 1

ns

ns∑
i=1

(Yi − Pi)
2 (11)

MAE = 1
ns

ns∑
i=1

|Yi − Pi| (12)

R2 = 1 −

ns∑
i=1

(Yi − Pi)
2

ns∑
i=1

(
Yi − Y

)2
(13)

where Yi and Pi are the actual and forecasted values of electrical load. ns is the number of testing
samples.

5.3 Benchmark Models and Configurations
To validate the effectiveness of the proposed model for short-term load forecasting, several

competitive methods in state-of-the-art literatures were adopted for comparisons, including SVR [25],
LSTM [26], Transformer [20], and Informer [21,27]. Concretely, SVR adopts the soft constraints for
regression. LSTM uses the internal sequential structure of LSTM for time-series modeling, while AM
is used for feature aggregation. Furthermore, the Transformer ensures a highly robust feature extrac-
tion process by stacking multi-headed attention [23]. As an upgraded version of Transformer, Informer
adopts sparse attention as a substitute for full attention to consider the effect of distinguishing points
in load series for forecasting [21]. The detailed configurations of the benchmark models are presented
in Table 3.

Table 3: Configurations of the benchmark models

Benchmark model Configuration

SVR Kernel: rbf
C: 0.001

LSTM Number of cells: 40
Number of layers: 3

Transformer Number of encoder layers: 3
Number of decoder layers: 1
Embedding dimension: 512

Informer Number of encoder layers: 3
Number of decoder layers: 1
Sparse factor: 0.2
Embedding dimension: 256

Furthermore, after numerical pre-experiments, the optimal configurations of the proposed model
can also be obtained. Based on the optimal configurations, the accuracy of the proposed model can be
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improved by around 2.3% over the suboptimal one indicated by R2. The configurations of the proposed
model are presented in Table 4.

Table 4: Optimal configurations of the proposed model

Hyper-parameter Search process Optimal configuration

Sequence length 8, 12, 16, 20, 24 16
Encoder layer 1, 2, 3, 4 2
Decoder layer 1, 2, 3 1
Embedding dimension 256, 512, 1024 512
Sampling factor 0.2, 0.5, 1, 2, 4 1

5.4 Comparisons of the Proposed and Benchmark Models
To comprehensively compare the proposed model with the benchmark models, detailed analysis

regarding different categories of consumers was implemented from the following four aspects:
performance indicators, forecasting curves, error distributions, and statistical significance test.

5.4.1 Comparisons on Performance Indicators

Based on the model configurations, 1-step-ahead (1-h-ahead) electrical load forecasting tasks
were conducted. The performance of the proposed and benchmark models is provided in Table 5.
In terms of error analysis, the Transformer-based models outperform the conventional models (SVR,
LSTM), which is partially owing to the robust feature extraction capacity. Among the Transformer-
based models, the Informer exhibits superior performance in terms of consumer #1 and #3 than
the Transformer. However, these point-wise models are still lagging behind the series-wise model
(proposed). The proposed model has a 1.65%–1.08%–0.33% higher R2 than the suboptimal results
on consumers #1, #2 and #3, respectively. Therefore, with consideration of the inherent periodic
properties of electrical load, investigating the periodic attribute to improve the forecasting accuracy
of electrical load is of great necessity.

Table 5: Performance of the proposed and benchmark models

Consumer Indicators SVR LSTM Transformer Informer Proposed

#1
RMSE (kW) 110.36 100.44 125.17 114.39 91.34
MAE (kW) 80.79 75.94 96.79 86.87 69.23
R2 0.878 0.908 0.860 0.881 0.923

#2
RMSE (kW) 153.63 168.16 137.51 136.01 130.68
MAE (kW) 104.26 129.60 104.54 101.11 91.50
R2 0.904 0.906 0.929 0.922 0.939

#3
RMSE (kW) 46.36 39.29 37.58 34.87 34.88
MAE (kW) 33.83 28.78 29.06 26.91 26.71
R2 0.815 0.909 0.909 0.923 0.926
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5.4.2 Comparisons on Forecasting Curves

Besides error analysis, the fitting curves of various models are presented in Fig. 5. In terms of the
fitting curves on consumers #1 and #3 which exhibit apparent periodic characteristics, the proposed
and benchmark models can fit the majority of periodic fluctuations. In addition, the proposed
model can effectively fit unexpected fluctuations. Especially when load curves are less periodic, the
forecasting of electrical load focuses more on the correction of metrological elements. Thus, SVR and
LSTM exhibit poor performance on #2, with RMSE and MAE higher than other models. The local
enlargement of the pinnacle, trough, and ramp events of electrical load curves are also plotted. Major
models can effectively fit the ramp events since the fluctuation cases in ramp events are relatively
rare. When comes to pinnacle and trough events, merely Informer and the proposed method can
generally fit the overall trends and values. Compared with Informer, the proposed method exhibits
higher robustness and stability. Referring to the fitting curves, the proposed method can always fit
different periodic patterns, which further proves the strengths of Autoformer.
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Figure 5: Fitting curves of the proposed and benchmark models (a) consumer 1 (b) consumer 2 (c)
consumer 3
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5.4.3 Comparisons on Error Distributions

Furthermore, the forecasting error box plots are presented in Fig. 6. Although the error dis-
tributions vary between different consumers, the forecasting errors of the proposed model exhibit
the narrowest distribution, with the average values closest to zero. In brief, compared with other
competitive models, the proposed model confirms its highest capacity of learning a representative
periodic pattern, and also can fit unexpected load fluctuations.
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Figure 6: Forecasting error box-plots of the proposed and benchmark models

5.4.4 Comparisons on Statistical Significance Test

The aforementioned validation methods all verify the high performance of the proposed model
by general performance. A statistical significance test, Diebold-Mariano (DM) test, was also used
for validation. The DM test can distinguish whether two time-series data are undifferentiable. The
comparisons of the proposed and benchmark models are displayed in Table 6. Referring to the
statistical results, the proposed model overwhelmingly outperforms LSTM and SVR statistically.
Although the performance of the proposed method is indifferentiable with the Transformer in
customer #3 and the Informer in customer #2, the proposed method can ensure superiority in other
scenarios, which further verifies its effectiveness from statistical views.
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Table 6: Performance of the proposed and benchmark models based on the DM test

Consumer Metrics SVR LSTM Transformer Informer

#1 Confidence −2.037 −1.396 −12.001 −9.161
p value 0.042 0.150 3.989 × 10−9 2.836 × 10−6

#2 Confidence 1.846 −8.67 −3.243 0.161
p value 0.0652 1.674 × 10−9 1.220 × 10−3 0.872

#3 Confidence −4.987 −0.646 −0.175 −4.135
p value 7.237 × 10−3 0.0418 0.861 3.840 × 10−9

5.5 Discussions of the Proposed Model
Besides the analysis of the performance indicators and forecasting curves, the strengths and

drawbacks of the proposed model are further analyzed in the following aspects, including conver-
gence analysis, sensitivity analysis, multi-step performance, effectiveness of multi-factor AM, current
limitations, and future works.

5.5.1 Convergence Analysis

Conducting convergence analysis was essential to validate the stability and efficiency of deep
learning models. Since the loss function of the proposed model was built based on MSE, the converging
training loss based on MSE was displayed in Fig. 7. Referring to the converging results, the proposed
model can quickly converge to an acceptable stage at around 4 epochs. Based on the early-stopping
strategy (patience = 3), the proposed model finally converged at the 10th epoch, with a converged
training loss as 0.0591.
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Figure 7: Convergence analysis of the proposed model

5.5.2 Sensitivity Analysis

The sensitivity analysis is a fundamental approach to validate the stability of the deep learning
models. According to the principles of sensitivity analysis, the model performance under different
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configurations is displayed in Fig. 8. Referring to the results, the performance of the proposed model
is highly sensitive towards the hyper-parameter configurations except number of heads, especially the
number of decoder layers. Therefore, it is of great necessity to implement hyper-parameter tuning.
Based on the optimal configuration, the performance of the proposed model can improve by 2.82%
and 3.73% than the suboptimal model based on MAE and RMSE, respectively.

135 140 145 150 155 160 165 170
180

185

190

195

200

205

210

215

220

R
M

SE
 (

kW
)

MAE (kW)

Optimal

Benchmark:
A=512, B=8, C=3, D=1

A. Embedding dimension
B. Number of heads
C. Encoder layers
D. Decoder layers

B=6

B=10

D=2

D=3

A=256

A=1024

C=1

C=3

C=4

B=12

Figure 8: Sensitivity analysis of the proposed model

5.5.3 Multi-Step Forecasting Performance

To validate the effectiveness of the proposed model as the forecast horizon extends, the perfor-
mance of 1-to-6-step (1 to 6 h) forecasting results were sufficiently validated and displayed in Fig. 9.
Referring to the results, there is no apparent performance degradation observed as forecast horizon
within 4 h. When the forecast horizon is over 5 h, several errors can be observed at the pinnacles of
the forecasted load curves. This phenomenon was due to the fact that the pinnacles of the forecasted
curves are of greater uncertainty and higher sensitivity to the accuracy of NWP data, which naturally
leads to more difficulties in accurate forecasting. Therefore, the proposed model was verified to be
effective within 4 h.

5.5.4 Effectiveness of Multi-Factor AM

In this paper, the design of the multi-factor AM is an essential approach to aggregate multi-
source metrological data and electrical load. To validate the effectiveness of multi-factor AM, an
ablation study was implemented. The forecasting curves of electrical load ablated with multi-factor
AM were displayed in Fig. 10. To intuitively measure the improvement brought by multi-factor AM,
error reduction based on MAE was also displayed. When multi-factor was ablated, its performance
lags behind that of the proposed model in major timesteps, because the uncertainty of electrical load
can not be inferred from historical sequence but relies on the involvement of metrological data. As
numerical results indicate, the proposed multi-factor AM was essential to improve the forecasting
accuracy.
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Figure 9: Multi-step performance of the proposed model
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Figure 10: Validation of the effectiveness of multi-factor AM

5.5.5 Model Stability towards Erroneous Data

To validate the model stability more comprehensively, the possible scenarios of missing values
were taken into consideration. The proposed method was validated in those cases to verify whether the
proposed method can still capture periodic features for forecasting when some timesteps were missed.
In simulation works, the proposed method was attended to bad data where the missing timesteps
were randomly masked. The performance of the proposed model towards missing data is presented
in Table 7. When missing data was involved, the model performance degraded slowly with a missing
rate below 10%. However, the performance degraded sharply if more than 10% of data is missing. The
stability analysis validated the reliability of the proposed method with a missing rate below 10%.

Table 7: Model stability towards missing data

Metrics 5% missing 10% missing 20% missing 30% missing No missing

RMSE (kW) 215.75 216.31 247.42 207.53 209.72
MAE (kW) 160.47 166.06 190.07 196.51 153.69
R2 0.863 0.847 0.789 0.647 0.905
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5.5.6 Current Limitations and Future Works

Although this paper effectively investigated the periodic dependencies to improve electrical load
forecasting, there are still some obstacles that need to be overcome. First, more social information such
as vocational calendar and electrical consumption behaviors should be considered, where consumer
classification should be implemented in a more detailed way. Second, due to computational limitations,
it is impossible to validate all the candidates of hyper-parameters with grid search, which means
that the model performance has to sacrifice for computational limits. As for future work, consid-
ering the diverse consumer classes and voltage levels, validating and improving the generalization
of the proposed model is essential. Furthermore, instead of transmitting raw data for forecasting,
investigating data encryption or federated learning to improve the security of data sharing is also a
focal point.

6 Conclusion

As the load capacity and the complexity of the topology complementary relationship grows,
accurate load forecasting greatly benefits the dispatch and management of power systems. Previous
literature mainly focuses on point-wise time-series modeling models, which may neglect the inherent
periodic patterns of electrical load. Therefore, this paper proposed an Autoformer-based model to
investigate the periodic dependencies for short-term load forecasting. A multi-factor AM was pro-
posed to handle metrological data to correct the target electrical load. Furthermore, the comparisons
with other competitive models indicate that the proposed ensures the highest forecasting accuracy
and stability on various types of load consumers. The proposed model can be deployed to distribution
and microgrid systems for situational awareness and real-time management. However, there are still
some obstacles to be solved. The significant difference in consumption patterns on and off holiday has
not been considered in load forecasting. Moreover, since it is impractical to search for all the hyper-
parameter candidates. The model performance has to sacrifice for the computational limits. Future
works may attend to behind-the-meter load forecasting. Also, investigating data encryption to improve
the security of data sharing is a focal point.
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