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ABSTRACT

The plug-in hybrid vehicles (PHEV) technology can effectively address the issues of poor dynamics and higher
energy consumption commonly found in traditional mining dump trucks. Meanwhile, plug-in hybrid electric
trucks can achieve excellent fuel economy through efficient energy management strategies (EMS). Therefore, a
series hybrid system is constructed based on a 100-ton mining dump truck in this paper. And inspired by the
dynamic programming (DP) algorithm, a predictive equivalent consumption minimization strategy (P-ECMS)
based on the DP optimization result is proposed. Based on the optimal control manifold and the SOC reference
trajectory obtained by the DP algorithm, the P-ECMS strategy performs real-time stage parameter optimization
to obtain the optimal equivalent factor (EF). Finally, applying the equivalent consumption minimization strategy
(ECMS) realizes real-time control. The simulation results show that the equivalent fuel consumption of the P-
ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km, which is 10.9% less
than that of the common CDCS strategy (169.3 L/100 km), and achieves 99.47% of the fuel saving effect of the DP
strategy(150 L/100 km).

KEYWORDS
Mining dump truck; energy management strategy; plug-in hybrid electric vehicle; equivalent consumption
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Nomenclature

Teng, neng, ηeng Engine torque, engine speed, engine efficiency
ṁf (t) Fuel consumption rate
ηBatt Battery pack efficiency
Pe Generator set output power
Peng Engine output power
Preq Traction motor demand power
PBatt Battery pack output power
Vo Battery open circuit voltage
C Battery pack capacity
g Gravitational acceleration
v Vehicle speed
σ Coefficient of inertia
a Vehicle acceleration
Tm Traction motor torque
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η Drive shaft and gearbox transmission efficiency
ir Main reducer ratio
Rwh Tire rolling radius
Pr Vehicle demand power
Pm Traction motor output power
Pf Road resistance power consumption
Pw Air resistance power consumption
Pa Acceleration resistance power consumption
V (SOC (k)) Battery voltage vs. SOC
R (SOC (k)) Battery resistance vs. SOC
Δmeng Engine fuel consumption
ΔmBatt Battery equivalent fuel consumption
s (t) Equivalent factor

1 Introduction

Recently, the energy consumption of conventional mining dump trucks has received increased
attention as energy and environmental issues have become more prominent. Conventional large mining
dump trucks are typically used in open-pit mining with electric drive. The trucks do not have power
batteries. Therefore, they rely on the main brake and retarder for downhill braking. The mechanical
energy generated during braking is usually converted to heat energy and dissipated, resulting in wasted
energy. In addition, when going uphill with a full load, mining dump trucks must reduce speed to
increase torque due to increased power demand, resulting in increased fuel consumption. Studies have
shown that approximately 30% of all energy used in mining is consumed by the fuel consumption of
mining dump trucks [1]. The PHEV is an essential technical approach to achieve energy savings and
emissions reductions by coordinating multiple power sources, such as engines and electric motors, to
improve overall vehicle dynamics while reducing energy consumption. This provides a reference for
the development of mining dump trucks.

The energy management strategy (EMS) is essential for PHEVs to achieve fuel savings targets [2].
Its essence is that, based on the vehicle’s current operating conditions and mode of operation,
it rationally allocates power between the engine and battery. Rule-based and optimization-based
strategies are the two main areas of recent research on EMS [3]. As a classical rule-based strat-
egy, the Charge-Depleting, Charge-Sustaining (CDCS) strategy has been studied by many scholars
[4–6] due to its simplicity of implementation. However, obtaining desired results in the face of high
battery consumption and rapid depletion is difficult, such as adverse weather or bumpy roads. The
designer’s experience often determines the performance of the rule-based strategy, which ignores the
system’s dynamic characteristics [5]. It has outstanding fuel economy in specific and brief operational
conditions but deteriorates with increasing travel. Therefore, obtaining the optimal solution using
rule-based algorithms alone is challenging.

Optimization-based strategies aim to determine the best value for a control parameter of a
constructed system model, by means of training or computation, in order to attain system optimiza-
tion. These strategies can be categorized into two groups: those based on intelligent algorithms, and
those based on optimization theory. Optimization methods used for optimization-based strategies can
be divided into classical, metaheuristic, and dynamic optimization methods. Classical optimization
methods are mainly based on mathematical theories and principles and are generally applicable to
problems where the parameters of the problem are certain and well-defined. This approach relies
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on mathematical derivations and proofs and can usually provide an exact optimization solution, but
often cannot be applied when the problem is complex or the parameters are not certain. Metaheuristic
optimization methods are mainly derived from the concept of natural heuristics and have the advantage
of being able to deal with problems with a large search space, the existence of local optimal solutions
and complex constraints [7,8]. However, since these methods are based on probabilities, the results
obtained are often approximate rather than theoretically optimal solutions. Dynamic optimization
methods are a class of optimization methods that deal with decisions that change over time. Typical
examples are dynamic programming algorithms. Meta-heuristics and dynamic optimization methods
are introduced in the following pages as common optimization methods in optimization-based
strategies.

Intelligent algorithm-based optimization strategies obtain optimal or near-optimal solutions from
model training results. Kong et al. [9] proposed an action dependent heuristic dynamic programming
(ADHDP) algorithm employing a neural network to approximate the optimal control trajectory
and cost function through multiple iterations. Similar approaches include Reinforcement Learning
(RL) [10,11], Particle Swarm Optimization (PSO) [12], Genetic algorithms [13], etc. Usually, it relies
on optimal data obtained jointly by numerous computational methods [14]. This requires sufficient
forward-looking information, a high level of computation, and ample storage memory, which is
difficult to achieve in real applications.

The other approach is an optimization strategy based on optimal control theory, including
global and transient optimization algorithms. One representative global optimization strategy is
the DP algorithm, references [15–18] described the relevant research. To reduce the difficulty of
implementing DP algorithms, Sundstrom et al. [15] proposed a general DP algorithm for solving
discrete optimal control problems. This algorithm was implemented using Matlab functions and has
been widely used in studying EMS for PHEV. With the development of information technology,
DP-based EMS can optimize fuel consumption by using GPS, GIS, ITS, and other technologies to
obtain previously inaccessible forward-looking information. Zhao et al. [18] used the information
fusion and prediction models of historical and real-time traffic data to identify the path characteristics
and predict the path parameters using the traffic flow prediction model. However, in practice, due
to the significant computational demands of the DP algorithm, so is usually implemented offline
and used as a benchmark for evaluating other strategies [19,20]. The most representative transient
optimization algorithm is the ECMS algorithm. Studies on the ECMS algorithm are available in
references [21–24]. Chen et al. [24] used traffic data to generate simplified velocity profiles to obtain the
desired SOC trajectory by solving the set optimization problem within the set time. The EF is adjusted
according to the difference between the current SOC and the desired SOC. The advent of adaptive
ECMS algorithms allows the EF to adaptively adjust to changes in operating conditions [25–28].
Zeng et al. [28] proposed an optimization-oriented A-ECMS by introducing an ILF-based multistep
predictor to achieve ephemeral demand power prediction, and the optimal EF is periodically updated
through local optimization based on the prediction. The EF obtained using intelligent algorithms after
model training can achieve short-term optimality in the prediction range. However, the enormous
computational burden and prediction errors make it difficult to implement in practice.

Incorporating the PHEV-equipped hybrid power system into the mining dump truck’s structure,
its multiple power sources can improve vehicle dynamics. The existence of the Rechargeable Energy
Storage System (REESS) can replace the retarder for auxiliary braking and realize braking energy
recovery, and this can also help the engine work for a longer time in the high efficiency zone, improving
fuel utilization efficiency. The design of a reasonable and efficient EMS to further minimize fuel
consumption and improve the fuel economy of mining dump trucks has become the focus of existing
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research. EMS applied to mining dump trucks must prioritize safety issues. Existing studies typically
use EMS to passively constrain battery SOC and adjust it through a compensation mechanism
when battery SOC exceeds upper and lower limits, which can have serious consequences in practical
applications. For example, in the long downhill process, the vehicle performs the brake energy recovery
according to the set process, and the SOC gradually increases to reach the set upper limit, at which
time the compensation mechanism in the control strategy is triggered to adjust the battery SOC, but
the vehicle is likely to be unable to continue the brake energy recovery because the battery is full, thus
losing the auxiliary brake function, which is very dangerous in the long downhill process. To meet
safety requirements, active control constraints on battery SOC are needed. Therefore, the EMS must
be designed with global planning of battery SOC in advance as a strong constraint for the following
optimization process, and real-time vehicle control in the final stage. Among the EMS discussed
above, the intelligent algorithm-based EMS is still in the initial research stage, and its substantial
computational burden makes practical applications difficult. The CDCS strategy, as a common EMS
in mining dump trucks, often does not perform well in the face of special conditions (e.g., extreme
weather); The ECMS algorithm, as a transient optimization strategy, selecting the appropriate EF can
achieve near-optimal results. However, mining operating conditions vary greatly during the same work
cycle (e.g., uphill and downhill, no load and full load), and achieving the desired performance with a
fixed EF is difficult.

To bridge the foregoing research gaps, this paper proposes a predictive equivalent consumption
minimization strategy (P-ECMS), the core content of which includes global planning and stage
parameter optimization, and the optimization results are used to realize the control of the vehicle
using the ECMS algorithm, so that mining dump trucks can obtain the optimal EF under the current
operating stage, and the EF can be changed with the change of working conditions, to meet the demand
for energy saving and emission reduction, reduce fuel consumption. The details of the P-ECMS
strategy are shown below:

The predictive equivalent consumption minimization strategy is proposed. The global planning is
carried out for the cyclic conditions of the mine, and the optimal control manifold and the reference
trajectory of the battery SOC are obtained by the DP algorithm. Apply the above SOC reference
trajectory to guide the current SOC in the following real-time stage parameter optimization process
and obtain the EF required by the ECMS algorithm in the current stage. Then the ECMS algorithm is
used to achieve real-time control of mining dump trucks. The map information is used to construct the
mining conditions for simulation experiments. The results show that the proposed P-ECMS strategy
outperforms the common CDCS strategy in terms of fuel economy and is very close to the optimal
solution under the DP strategy.

The rest of the article is organized as follows. Section 2 presents the mining dump truck powertrain
model. Section 3 offers and analyzes the ECMS algorithm and DP algorithm. Then, Section 4
proposes the P-ECMS strategy. Section 5 analyzes the simulation results, and conclusions are drawn
in Section 6.

2 Hybrid Powertrain Model

This paper focuses on a 100-ton mining dump truck and develops a series of hybrid systems to
improve its power and fuel economy. The series hybrid structure is shown in Fig. 1. The traction motor
provides traction for the truck, while the generator set consists of an engine and a generator, which
provides power to the traction motor. The battery pack regulates electrical power by receiving excess



EE, 2024, vol.121, no.3 773

energy generated by the generator and energy recovered by the traction motor during braking. The
main vehicle parameters are shown in Table 1.

Figure 1: Structural diagram of the series hybrid system

Table 1: Main parameters of the vehicle

Symbol Parameters Values

m Full vehicle mass 100,000 kg
A Vehicle windward area 10.6 m2

Rwh Tire rolling radius 0.75 m
Cd Air drag coefficient 0.7
f Rolling resistance factor 0.02
DHL The low calorific value of diesel fuel 3.3 ∗ 107 J/L
ir Main reducer ratio 17.8
ig Transmission 1–4 gear ratios [6.5 4.0 2.1 1]

2.1 The Engine Model
Without considering the dynamic characteristics of the engine, the engine model is simplified to a

static model with fuel consumption rate and efficiency defined as Eqs. (1) and (2):

ṁf = f
(
Teng(t), neng (t)

)
(1)

ηeng = Teng (t) ∗ neng (t)
9550 × ṁf (t) ∗ DHL

(2)

The engine power should be satisfied as Eq. (3):

Peng = Pe

ηeng

≥ Preq − ηBatt ∗ PBatt

ηeng

(3)
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The main engine parameters are shown in Table 2. According to the engine bench test, the fuel
consumption rate of the engine is measured, as shown in Fig. 2.

Table 2: Main parameters of the engine

Parameters Values

Engine displacement 12.54 L
Maximum power 361 kW
Rotational speed range 1100–2100 rpm
High-efficiency area power range 160–270 kW

Figure 2: Engine efficiency map

2.2 The Traction Motor and Generator Model
This paper selects two permanent magnet synchronous motors to drive the vehicle in series, with

their main performance parameters listed in Table 3. Positive and negative values indicate different
operating modes: positive value means that the traction motor consumes electrical energy to drive
the vehicle, and negative value means that the vehicle brakes to recover braking energy and charge
the battery pack. Motor data is obtained through bench testing. The generator’s structure is similar
to the traction motor’s, with its main parameters shown in Table 4.

2.3 The Power Battery Model
Lithium iron phosphate batteries, with their high power and energy density, safety, and long service

life, are selected as the battery pack for the hybrid power system. A simple and effective internal
resistance battery model is established [29], as shown below in Eq. (4):

SOCk+1 = SOCk − Vo_k+1 − √
V 2

o_k+1 − 4Rin_k+1 ∗ PBatt_k+1

2Rin_k+1 ∗ C
(4)
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Table 3: Main parameters of the traction motor

Parameters Values

Rated power 215 ∗ 2 kW
Maximum power 270 ∗ 2 kW
Maximum speed 3500 rpm
Rated speed 1500 rpm

Table 4: Main parameters of the generator

Parameters Values

Rated power 300 kW
Maximum power 375 kW
Maximum speed 2000 rpm
Rated speed 1500 rpm

In the formula: Rin is the battery internal resistance, related to battery SOC, as shown in Table 5,
and the main parameters are shown in Table 6.

Table 5: The relationship between battery internal resistance and battery SOC

SOC Battery internal resistance

10% 10.4 Ω

30% 4.6 Ω

50% 4.4 Ω

70% 4.7 Ω

90% 4.8 Ω

Table 6: Main parameters of the battery pack

Parameters Values

Battery pack capacity 108 kWh
Series and parallel form (S ∗ P) 168 ∗ 10
Battery pack voltage 621.6 V
Battery efficiency 0.95
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2.4 The Vehicle Power Demand Model
The road resistance, air resistance, and acceleration resistance when the hybrid mining dump truck

is running on a road with a slope with a full load are shown as Eq. (5):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ff = fmg cos α + mg sin α

Fw = CdA
21.15

v2

Fa = σma

(5)

The driving force provided by the traction motor to the vehicle can be expressed as Eq. (6):

Fm = Tmigirη

Rwh

(6)

The power balance equation is shown as Eq. (7):

Pr = Pm = Pf + Pw + Pa = v
3600η

(
Ff + Fw + Fa

)
(7)

3 Brief Description of the Algorithm

To provide a better comprehension of the P-ECMS strategy, this chapter explains two algorithms
employed for it, the ECMS algorithm and the DP algorithm, in detail in the following two sections.

3.1 The ECMS Algorithm
The ECMS algorithm is a transient optimization algorithm that aims to minimize equivalent fuel

consumption while satisfying the driver’s demand. The objective function as Eq. (8):[
Popt

e (t) , Popt
Batt (t) , sopt (t)

] = arg min
[Pe ,s]

{
Δmeng (Pe) + ΔmBatt (PBatt, s)

}
(8)

Subject to the physical constraints of⎧⎪⎪⎨
⎪⎪⎩

Preq (t) = Pe (t) + PBatt (t)

Pe_ min (t) ≤ Pe (t) ≤ Pe_ max (t)

PBatt_ min (t) ≤ PBatt (t) ≤ PBatt_ min (t)

(9)

In the formula: Popt
e (t), Popt

Batt (t) are the optimal generator set and battery output power, respectively.

3.2 The DP Algorithm
The DP algorithm is based on the Bellman optimality principle. In solving the optimal control

problem, the DP algorithm divides the control problem into several periods. In each period, the
optimal solution in the current state is calculated by combining the optimal solution of the previous
period to obtain the optimal control manifold.

The equation of state for an optimal control problem can be expressed as Eq. (10):

xk+1 = f (xk, uk) (10)
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Its cost function is

J = Φ (xN) +
N−1∑
k=1

L (xk, uk) (11)

In the formula: Φ (xN) is the penalty value at the terminal moment, x and u denote state variable
and control variable.

The optimal control problem is solved by controlling the variables u to minimize or maximize
J subject to constraints. DP is an effective tool for addressing the aforementioned general optimal
control problem [30]. A common approach is dividing the state variables into a grid and performing
an inverse derivation based on the state transfer equation.

The cumulative cost function at step k is shown as Eq. (12):

J∗
k−1

(
xk−1, u∗

k−1

) = min
[
L (xk−1, uk−1) + J∗

k

]
k = N − 1, N − 2, . . . , 1 (12)

After the above backpropagation procedure, the optimal cost function of the whole trip J∗ =[
J∗

1 , . . . , J∗
N−1

]
and its corresponding optimal control manifold U∗ = [

u∗
1, . . . , u∗

N−1

]
, i.e., the optimal

control strategy, are obtained. Then, from the given state quantity at the initial point, the optimal
control process to the terminal is derived step by step under the action of the optimal control manifold.

4 The Predictive Equivalent Consumption Minimization Strategy

To obtain good fuel economy and solve the common problems of mining dump trucks, this paper
proposes a predictive equivalent consumption minimization strategy based on the DP optimization
results, P-ECMS, to improve fuel economy. Given the single repetition of the mining dump truck’s
working cycle and the significant differences between stages, the process can be divided into different
stages. The optimal EF for each stage can be calculated in real time to achieve global optimization.

First, geographic information data is collected through real vehicle tests and processed to
construct the mining site map. Since mining dump trucks operate under single-repetition working
conditions, the collected driving data can be used to create typical cycle working conditions corre-
sponding to the map. Then, the optimal global results for these typical cycle working conditions are
solved offline using the DP algorithm. Segmentation points are determined based on characteristic
points of the typical cycle condition (such as speed, slope, and load change points). By performing the
stage parameter optimization based on the map information and the current SOC, the current optimal
EF is obtained and applied to the ECMS algorithm, the realization of real-time control based on this
optimal EF. The P-ECMS flow chart is shown in Fig. 3.

4.1 Global Optimal Control Based on the Dynamic Programming Strategy
The P-ECMS strategy comprises global planning based on the DP algorithm, stage parameter

optimization, and control implementation using the ECMS algorithm. This section describes global
planning using the DP algorithm in the offline state to determine the optimal control manifold and
the optimal reference trajectory of the battery SOC.
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Figure 3: The P-ECMS strategy flow chart

For the energy management problem of a series hybrid mining dump truck, the battery SOC is
taken as the state variable, and the Pe as the control variable, the SOCinit and the SOCend are set. The
state equation can be expressed as Eq. (13):

SOC (k + 1) = SOC (k) −
(

Preq (k) − Pe (k)

C
+ V 2 (SOC (k))

C ∗ R (SOC (k))

)
�t (13)

In the formula: C is the battery pack capacity. For convenience, the above equation of state is
written as Eq. (14):

SOC (k + 1) = f (SOC(k), Pe (k)) (14)

The optimal control problem is expressed as Eq. (15):

min J (SOC, Pe (k)) =
N−1∑
k=1

Fuel (Pe (k))

s.t.

SOC (k + 1) = SOC (k) −
(

Preq (k) − Pe (k)

C
+ V 2 (SOC (k))

C ∗ R (SOC (k))

)
�t

Pe_ min ≤ Pe ≤ Pe_ max

−PBatt_ max ≤ Preq − Pe ≤ PBatt_ max

SOCmin ≤ SOC ≤ SOCmax

(15)

In the formula: J is the cumulative fuel consumption and Fuel (Pe (k)) is the fuel consumption of
step k in this operating condition.
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The DP algorithm is utilized to solve the above problem. First, time is discretized in 1-second steps,
battery SOC in 1%, and generator set output power in 10 kW steps. The variable grid is obtained and
solved in two steps in the next process. For the case where the state variables are not in the grid, it is
generally solved by linear interpolation to finally obtain the optimal control manifold P∗

e and global
optimal trajectory SOC∗.

The inverse derivation process in the DP algorithm is shown below:

(1) Initialization: The state variable battery SOC is discretized over time into N steps, at each
moment into Mx stages, and the control variable Pe into Mu stages. The desired state variable SOCend at
the terminal moment is set and used to set the surrogate value J∗

N (SOC (N)) at the terminal moment N.

(2) Solve the optimization subproblem.

J∗
k−1

(
SOCk−1, P∗

e,k−1

) = min [Fuel (Pe(k − 1)) + J∗ (f (SOC (k))] (16)

(3) If k = 2, the inverse solution process is finished; otherwise let k = k–1 and go to step (2).

The forward derivation process in the DP algorithm is shown below:

(1) Initialization: Initial value of battery SOC SOC (1) is set to SOCinit, the optimal control
manifold P∗

e obtained at each stage of the inverse derivation process are loaded. The forward
cumulative generation value Jforward is set to 0 and k to 1.

(2) Apply the interpolation method to calculate the k-step optimal control variables.

Pe (k) = Interp
(
SOC, P∗

e(k), SOC (k)
)

(17)

(3) Calculate the k step forward cumulative generation value.

Jforward = Jforward + Fuel (Pe (k − 1))�t (18)

(4) Calculate the state variables at step k + 1.

SOC(k + 1) = f (SOC(k), Pe (k)) (19)

(5) If k = N-1, end the process; otherwise let k = k + 1 and go to step (2).

4.2 Implementation of the P-ECMS Stage Parameter Optimization Algorithm
This section divides the whole trip into stages and obtains the optimal EFs for each stage by

optimizing stage parameters with the optimal control manifold and the optimal reference trajectory
of the battery SOC obtained in the previous section.

In ECMS algorithm, operating condition changes can affect the EF’s optimization effects. To
adaptively adjust the EF, commonly used methods include real-time feedback based on battery
SOC, offline optimization coupled with online identification, and regulation based on predictive
information.

The cycle conditions of mining dump truck operation are relatively fixed, and the road information
is relatively unique. Therefore, typical mining cycle conditions established by condition information
collected through multiple cycle operations can be used as the real global conditions for predicting
vehicle operations. The cycle is segmented and each stage is optimized separately due to the large
variability of working conditions at different stages within the cycle.

First, the global segmentation process is performed based on the working condition information
and the segmentation points determined in the offline state, which is divided into Pstage stages. The
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target battery SOC of the current stage is determined based on the current position determined by the
Global Navigation Satellite System (GNSS) and the SOC trajectory obtained by the DP algorithm,
which will be used as a constraint for participation in the next stage of the optimization sub-problem
solution process and obtain the optimal EF. When positioning to the following stage, the EF of the
next stage is calculated again using the above method with the current SOC and the corresponding
target SOC.

The stage parameter optimization algorithm follows the steps below:

(1) Initialization: Load the map information and load the optimal control manifold Pe
∗(i, j), i =

1, . . . , Mx obtained by the DP algorithm, where mcyc is the time step under the current stage. Load
segment mileage S(k) = 1, . . . , Pstage + 1. Set cur_kstage = 1. Set the allowable deviation value of
stage target SOC δ.

(2) Coordinate transformation: Get the current coordinates (x, y, z, θ) published by the GNSS
system, calculate the corresponding Fernet coordinates (s, l) according to the map information, s is
the longitudinal displacement, l is the transverse displacement, and determine the stage identification
kstage.

(3) Stage update: If cur_kstage = kstage, then return to step (2). Otherwise, make cur_kstage =
kstage and go to step (5).

(4) Get the current battery SOC information, which is recorded as cur_SOC.

(5) Determine the stage target power. According to the result of the DP algorithm, the stage target
power SOC∗ (kstage + 1) is obtained as Eq. (20):

SOC∗ (kstage + 1) = DPforward

(
cur_SOC, P∗

e

)
(20)

(6) Solve the stage parameter optimization subproblem.

s∗ = mins

mcyc∑
i=1

min
Pe

Fuelequ (Pe, s)

s.t.
SOC (end) ∈ SOC∗ (kstage + 1) + [−δ, δ]

(21)

(7) Output the optimal EF s∗ and return to step (2).

4.3 Application of the ECMS Algorithm for Real-Time Control
This section utilizes the optimum EF, which was obtained from the stage parameter optimization

algorithm discussed earlier, to implement the ECMS algorithm. The aim is to achieve the best power
distribution between the genset and the batteries and to obtain optimal fuel economy.

The objective function of the series hybrid system when applying the ECMS algorithm can be
expressed as Eq. (22):

J∗ (
P∗

e

) = min
Pe

Δmecms (Pe, PBatt, s) (22)

In the formula: Δmecms is the equivalent fuel consumption, defined as Eq. (23):

Δmecms = Δmeng (Pe) + ΔmBatt (PBatt, s) (23)
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In the formula: PBatt is the battery pack output power, defined as Eq. (24) and �mBatt is defined as
Eq. (25):

PBatt = Preq − Pe

ηBatt

(24)

ΔmBatt =
(

γ
1

ηBatt

+ (1 − γ ) ηBatt

)
s · PBatt

DHL

(25)

In the formula: γ is the battery pack operating mode, 1 represents discharging, and 0 represents
charging.

The EF determines the performance of the ECMS algorithm. By applying the optimal EF s∗ to
the ECMS algorithm through the above stage parameter optimization process, the reasonable power
distribution between the generator set and the battery can be obtained, and the desired fuel economy
can be achieved while realizing real-time control.

5 Simulation Results and Discussions
5.1 Driving Conditions Analysis

In this paper, an open-pit mining was selected as the test site, and the line-cycle test method
was chosen for geographic data collection, considering the cost, cycle time, test conditions, and
representativeness of geographic information. During the test, the driver was required to drive skillfully
along a pre-planned test route, following the traffic flow during the working day for data collection
and driving smoothly without overtaking or deliberately slowing down.

The driving condition of a mining dump truck in a mining are relatively fixed. After loading in
the mining area, it travels uphill at a slower speed, then during the unloading area at a higher speed
on flat roads, and finally returns empty to complete a cycle. In summary, the driving conditions of a
mining dump truck mainly consist of four processes: full-load uphill, full-load flat road, empty-load
downhill, and empty-load flat road. Fig. 4 is an illustration of the flow of a mining dump truck through
a work cycle. The collected data is filtered, converted into appropriate units, and slope calculations are
performed to obtain the actual circulation data of the mining, as shown in Fig. 5.

Figure 4: Mining cycle working conditions diagram
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Figure 5: Actual cycle conditions of the mining

5.2 Analysis of Simulation Results
To verify the proposed P-ECMS, using the above cycle conditions, simulations were conducted

using ADVISOR and Matlab based on the system model established in Chapter 2. Taking into account
the realities of the mine site, the SOCinit is 0.58, and the desired SOCend is 0.58, the mining dump truck
operates in Charge-Sustaining (CS) mode. The CDCS strategy results are shown in Fig. 6.

Figure 6: The CDCS strategy simulation results

The diagram shows that during the empty-load flat road phase before the downhill phase, the
truck operates in the electric mode, and the generator set is inactive. During the empty-load downhill
phase, the generator set remains off, the truck recovers braking energy, and the traction motor reverses
to recharge the battery pack. After the downhill stage, the truck is loaded, and in the full-load flat
road phase, it is again driven in the electric mode, only the battery pack providing power to the
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traction motor. As the truck enters the full-load uphill phase, the power demand increases and the
generator set is activated. During this stage, the generator set provides power to the traction motor
and charges the battery pack. After the climb, the truck’s power demand decreases, and it is driven
in the electric mode during the full-load flat road phase. During the full-load uphill phase, the engine
cannot operate efficiently for long periods, as seen from the generator set output, resulting in more
fuel being consumed.

For the cycle conditions of the mining, the DP strategy results are shown in Fig. 7. Unlike the
CDCS strategy, in the DP strategy, the generator set charges the battery pack during the empty-load
flat road phase before the downhill phase when the engine power is also lower due to the lower power
demand. During the empty-load downhill phase, the truck recovers braking energy, and the generator
set does not operate. During the next full-load flat road phase, the generator set is activated to power
the truck and simultaneously charge the battery pack, increasing the battery SOC. Fig. 7 shows that
during full load operation, the engine is continuously running in its high efficiency zone.

Figure 7: The DP strategy simulation results

The DP results show that the battery SOC should be high before the mining truck goes uphill. This
allows the engine operating point to be adjusted to work in the high efficiency zone while meeting the
power demand, thus reducing fuel consumption.

Based on information about working conditions, such as mining site slope changes, vehicle load
changes, and vehicle speed, the working conditions can be divided into 16 stages. Simulation results
under the P-ECMS strategy when operating in CS mode are shown in Fig. 8.

The EF for each stage is obtained using the stage parameter optimization algorithm. Combined
with the change of this factor and considering the whole power demand, the truck can reach the
desired target SOC as much as possible when operating in different stages, achieving optimal power
allocation in each stage. For the whole range of conditions, the truck operation mode under the P-
ECMS strategy is similar to that under the DP strategy, the generator set operating during the empty-
load flat road phase and the full-load flat road phase to maintain a higher battery SOC enables the
battery pack to provide sufficient power during uphill. However, compared to the DP strategy, during
uphill operation, the generator set output power is lower, and the battery pack output power is higher,
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the engine operating time in the high efficiency zone is shorter compared to the operating time in the
DP strategy, resulting in slightly higher fuel consumption.

Figure 8: The P-ECMS strategy simulation results in CS mode

When sufficient charging time is available, the plug-in hybrid mining dump trucks can operate in
Charge-Depleting (CD) mode for improved fuel economy. Assuming a 12-hour operation in CD mode,
we set the initial SOC at 0.8 and the minimum SOC throughout the operation at 0.3. The changes in
fuel consumption and battery SOC during the operation under the P-ECMS strategy are shown in
Fig. 9. After the CD mode concluded, the mining dump truck can continue to work before recharging
and maintain the battery SOC near 0.3.

Figure 9: The P-ECMS strategy simulation results in CD mode
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5.3 Comparison of Simulation Results
The results of the CDCS strategy, the DP strategy, and the P-ECMS strategy are shown in Table 7.

Table 7: Comparison of simulation results

Parameter CDCS DP P-ECMS (CS) P-ECMS (CD)

Battery SOC at the moment of start moment 0.58 0.58 0.58 0.8
Battery SOC at the moment of termination 0.561 0.582 0.582 0.3
Fuel consumption (average) (L/100 km) 168.7 150.1 150.9 143
Equivalent fuel consumption (L/100 km) 169.3 150 150.8 –

Although both in the DP strategy and in the P-ECMS strategy, the generator set operates during
the empty-load flat road phase and the full-load flat road phase, the fuel consumption results are
lower than those of the electric mode under the CDCS strategy. Under the P-ECMS strategy, the
equivalent fuel consumption is 150.8 L/100 km, 10.9% lower than the CDCS strategy (169.3 L/100 km)
and 0.53% higher than the DP strategy(150 L/100 km). The battery SOC of the P-ECMS strategy
under typical mining cycle conditions compared to the DP strategy is shown in Fig. 10. The SOC
trajectory of the P-ECMS strategy is more consistent with the globally optimized SOC trajectory of
the DP strategy, demonstrating good follow-through. When operating in CD mode under the P-ECMS
strategy control, the average fuel consumption is 143 L/100 km, representing a 5.2% reduction
compared to CS mode.

Figure 10: Battery SOC comparison

In summary, the P-ECMS strategy designed in this paper can more reasonably allocate power
between the generator set and battery pack through real-time control, enabling the engine to operate
more efficiently and reduce fuel consumption. It also has good power maintenance characteristics,
reducing the frequency of stopping and charging for hybrid mining dump trucks, which improves
transportation efficiency.

6 Conclusion

This paper proposes a predictive equivalent consumption minimization strategy based on the
DP optimization results, P-ECMS. Based on a 100-ton conventional mining dump truck, a series
hybrid system is constructed. Then, the collected driving data can be used to create typical cycle
working conditions. We use the DP algorithm offline to perform global planning for the mining site
cycle working conditions to obtain the optimal control manifold and the SOC reference trajectory.
The SOC reference trajectory is then applied to guide the battery SOC in the subsequent real-time
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stage parameter optimization process to obtain the EF in the current stage and applied to the ECMS
algorithm, the realization of real-time control based on this optimal EF.

(1) The CDCS strategy prioritizes driving the truck in electric mode, which results in a lower
battery SOC when the mining truck is driving uphill. This increases the power output of the generator
set. In contrast, although the engine block of the mining dump truck under the P-ECMS strategy
is always in operation during the empty-load flat road phase and the full-load flat road phase, the
output power is lower, and it keeps the battery SOC higher when starting to uphill, which the battery
can provide enough power to regulate the engine operating range, reduce fuel consumption.

(2) Compared to the DP strategy, the P-ECMS strategy achieves near-optimal fuel economy. It
also has the capability of real-time online control.

(3) Under mining conditions, the equivalent fuel consumption of the P-ECMS strategy is
150.8 L/100 km, which is 10.9% lower than the CDCS strategy (169.3 L/100 km). It is 99.47% of
the fuel-saving effect of the DP strategy (150 L/100 km), achieving near-optimal fuel savings.

(4) The DP and P-ECMS strategies can distribute the power of the generator set and the power
battery more rationally than the CDCS strategy, so the engine works more in its high efficiency zone
and reduces fuel consumption.

(5) The P-ECMS strategy can enhance the fuel economy of plug-in hybrid mining dump trucks
when running in CD mode, but only if there is sufficient time for charging and adequate charging
equipment.

In view of the effectiveness of the P-ECMS strategy, the following research focuses on considering
robustness, e.g., changes in gradient, temperature, etc., to improve the fuel economy of the strategy
further.
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