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ABSTRACT

Electric vehicle (EV) is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem
in the future. However, a large number of EVs will be concentrated on charging during the valley hours leading
to new load peaks under the guidance of static time-of-use tariff. Therefore, this paper proposes a dynamic time-
of-use tariff mechanism, which redefines the peak and valley time periods according to the predicted loads using
the fuzzy C-mean (FCM) clustering algorithm, and then dynamically adjusts the peak and valley tariffs according
to the actual load of each time period. Based on the proposed tariff mechanism, an EV charging optimization
model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is
established. Then, a weight selection principle with an equal loss rate of the two objectives is proposed to transform
the multi-objective optimization problem into a single-objective optimization problem. Finally, the EV charging
load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.
The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can
better balance the benefits between charging stations and users under different numbers and proportions of EVs
connected to the grid, and can effectively reduce the grid load variance and improve the grid load curve.
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1 Introduction

In recent years, environmental issues have become increasingly prominent. According to the
statistics, the transportation industry accounts for about 27% of total energy consumption, resulting
in about 25% of the world’s carbon dioxide emissions [1]. As a kind of energy-saving and emission-
reducing transportation, the electric vehicle industry is developing rapidly to help achieve carbon
peaking and carbon neutrality goals [2]. However, the random connection of large-scale EVs to the
grid may cause peak load growth of the system, thus affecting the safety and economic operation of the
power system [3–5]. The EV charging tariff integrates each participant in the electricity market, guiding
users to choose the right time period for charging through price signals, thus ensuring the overall
balance of benefits [6]. Therefore, it is important to study and develop a reasonable charging tariff
to effectively guide users’ charging behavior and reduce the negative impact of disorderly charging
of EVs.
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The role of static time-of-use tariffs and dynamic tariffs in guiding the behavior of electric vehicles
has been studied [7]. In terms of static time-of-use tariff, reference [8] established a multi-objective
optimal scheduling model for centralized charging of EVs based on static time-of-use tariff with
minimization of charging cost and daily power loss, and maximization power delivery as objective
functions; Reference [9] proposed a game-theoretical model based on a Stackelberg formulation to
capture the interactions between the fleet operator and electric vehicle owners; Reference [10] proposed
an EV online charging scheduling strategy, which could reduce charging cost and load peak. However,
based on the static time-of-use tariff, when large-scale EVs are connected to the grid, the phenomenon
of “peak to peak” may occur due to the mismatch between peak and valley tariffs and peak and valley
loads, and what is worse, it may lead to the clustering effect of electric vehicles, which will generate
new load peaks [11,12].

In terms of dynamic tariffs, scholars have researched the dynamic optimization of peak and
valley periods and the dynamic adjustment of tariffs. Reference [13] integrated the charging navigation
strategy of EVs and the optimal time-of-use pricing of charging stations into a Stackelberg game to
maximize charging stations’ revenue; Reference [14] proposed an orderly charging approach based on
the EVs’ optimal time-of-use pricing demand response, which utilized a fuzzy clustering approach
to scientifically classify the load period; Reference [15] proposed a two-stage dynamic optimization
strategy for time-of-use tariff, which divided peak and valley hours for each vehicle individually based
on vehicle information; Reference [16] proposed a methodology for time-of-use tariff estimation to
provide optimal demand-side management using EVs with big data technology. The above studies
have proposed some dynamic optimization methods for peak and valley hours, but the charging tariff
does not adjust to load changes, which may lead to the generation of new load peaks.

References [17,18] established a dynamic tariff adjustment model that divided the tariff into a
fixed component and a variable component; Reference [19] divided dynamic pricing into punishment
pricing and incentive pricing; Reference [20] established a quarter-hourly vehicle-to-grid dynamic time-
sharing pricing model based on deep deterministic policy gradient reinforcement learning algorithm;
Reference [21] provided a detailed introduction to a dynamic electricity pricing mechanism, but the
calculation of the elasticity coefficient matrix is complex and difficult to implement in practical
application. The above literature studied the dynamic tariff adjustment mechanism, but ignored the
guiding effect of the peak and valley hours characteristics of the time-of-use tariff on the charging
behavior of EVs, and lacked the theoretical derivation of the tariff adjustment mechanism and the
basis for key parameter selection.

The paper is structured into five sections. The first section is the introduction. The dynamic
time-of-use tariff model is first proposed in Section 2, including the background and meaning of
the tariff mechanism, and gives the calculation method of relevant parameters through segmental
linearization processing. Then, based on the tariff mechanism, an EV charging load optimization
model is established in Section 3. The model takes the lowest user charging cost and the smallest
variance of grid-side load as the objective functions, and a multi-objective function processing method
based on the principle of minimizing the loss rate of both objectives’ interests is proposed to solve the
model. In Section 4, the simulation results show that the tariff mechanism can effectively reduce the
grid-side load variance and balance the interests between charging stations and users, achieving a win-
win situation for the grid, charging stations, and users. Section 5 summarizes the conclusion and gives
the future prospects.
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2 Dynamic Time-of-Use Tariff Modeling

The static time-of-use tariff to guide the charging behavior of EVs may lead to a clustering effect
when the tariff is low, which may result in a new load peak, namely the “anti-peak” phenomenon.
Therefore, charging stations, as the price setters and suppliers of EV charging power, should develop
a more reasonable tariff mechanism to better guide the charging behavior of EV users and balance the
interests of users, charging stations, and the grid [22].

The dynamic time-of-use tariff includes two time scale implications: on the daily time scale, where
peak and valley hours are matched to peak and valley loads; and on the minute time scale, where peak
and valley tariffs are dynamically adjusted to real-time loads. Thus, the dynamic time-of-use tariff pd

is a binary function with respect to time t and load L:

pd = F (t, L) (1)

The dynamic time-of-use tariff modeling steps: Firstly, the load information for peak and valley
time division is obtained through load forecasting and data filtering; Then, the FCM algorithm is
used to segment the tariff to obtain new peak and valley times; Finally, the relationship between the
tariff and the load for each time period is linearized using Taylor expansions to form the final dynamic
time-of-use tariff.

2.1 Dynamic Adjustment of Peak and Valley Times
Load prediction can be divided into long-term load prediction, medium-term load prediction,

and short-term load prediction according to the length of prediction time, and the commonly used
prediction algorithms can be divided into linear regression algorithm, time series analysis algorithm,
exponential smoothing method, and artificial neural network method, etc. In this paper, the BP neural
network method is used for the short-term load prediction [23], and the predicted load Lp is obtained.
In order to avoid the local mutation data in the predicted load information has an adverse effect on the
fuzzy clustering analysis, the predicted load needs to be filtered, and in this paper, the Savitzky-Golay
smoothing filter [24] is used for the predicted load to get the filtered load Lf .

The accuracy of peak-valley times division directly affects the effect of time-of-use tariff imple-
mentation. In this paper, the fuzzy C-mean clustering algorithm (FCM) [25] is used to divide the load
Lf = {l1, l2, . . . , ln} into valley times, flat load times, and peak times, and the FCM analysis is based on
the optimization of the clustering objective function, which is:

min J (U , C) =
n∑

i=1

c∑
j=1

ug
ijd

2
ij (2)

where: U is the fuzzy division matrix; C is the cluster center matrix; uij is the affiliation degree of load
li to cluster j; g is the fuzzification degree coefficient; dij is the Euclidean distance between the load li

and cluster center cj.

uij = 1

c∑
k=1

(∥∥li − cj

∥∥
‖li − ck‖

) 2
m−1

(3)
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cj =

n∑
i=1

um
ij li

n∑
i=1

um
ij

(4)

where: m is the fuzzy weighted index and m > 1.

The process of FCM algorithm is as follows: 1© Initialize the clustering center cj, the maximum
number of iterations N, the fuzzy weighting index m and the iteration termination threshold ε, set
the iteration counter b = 0 and randomly initialize the fuzzy partition matrix U (0); 2© Calculate the
clustering center cj according to Eq. (4); 3© Calculate the affiliation degree uij according to Eq. (3) and
update the fuzzy partition matrix U (b+1); 4© Calculate the objective function according to Eq. (2); 5© If
||U (b+1) − U (b)|| ≤ ε or b = N, the algorithm ends; otherwise, make the counter b = b + 1 and repeat
steps 2© to 4©.

2.2 Dynamic Adjustment of Peak and Valley Tariff
According to the clustering results in Section 2.1, the valley times Tv, the flat load times Tf and

the peak times Tp are obtained; the benchmark tariffs corresponding to the three time periods are pb,v,
pb,f and pb,p, respectively; the benchmark loads are lv, lf and lp, i.e., the cluster centers corresponding to
the three time periods, respectively.

The dynamic time-of-use tariff pd is divided into valley tariff pv, flat load tariff pf and peak tariff
pp. The tariff of the three periods is a unitary function of the load L. The linear relationship between
peak and valley tariff and load is obtained by expanding the Taylor expansion at the corresponding
basic load of the three, ignoring the quadratic term and higher order terms:⎡
⎣pv

pf

pp

⎤
⎦ =

⎡
⎣f (L)

g (L)

h (L)

⎤
⎦ =

⎡
⎣f (lv)

g
(
lf

)
h

(
lp

)
⎤
⎦ +

⎡
⎣f ′ (lv) (L − lv)

g′ (lf

) (
L − lf

)
h′ (lp

) (
L − lp

)
⎤
⎦ (5)

where: f (L), g (L) and h (L) are the functions of the valley tariff pv, the flat load tariff pf and the peak
tariff pp with respect to the load L, respectively; f (lv), g

(
lf

)
and h

(
lp

)
are the benchmark tariffs pb,v, pb,f

and pb,p corresponding to the benchmark load at each time; f ′ (lv), g′ (lf

)
and h′ (lp

)
are the derivatives

of the tariffs at each benchmark load at each time.

In this paper, f ′ (lv) and g′ (lf

)
are determined by the base tariff and base load in the adjacent time

period, and h′ (lp

)
is determined jointly by the base tariff, base load, the maximum system load lmax and

the maximum allowable market sale tariff pmax in the peak time period, satisfying:

⎡
⎣Kv

Kf

Kp

⎤
⎦ =

⎡
⎣f ′ (lv)

g′ (lf

)
h′ (lp

)
⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

pb,f − pb,v

lf − lv
pb,p − pb,f

lp − ll
pmax − pb,p

lmax − lp

⎤
⎥⎥⎥⎥⎥⎦ (6)

where: Kv, Kf and Kp denote the tariff adjustment coefficients for each time period, the values are f ′ (lv),
g′ (lf

)
and h′ (lp

)
, respectively.
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In summary, the dynamic time-of-use tariff is:

pd (t, L) =

⎧⎪⎪⎨
⎪⎪⎩

Kv (L − lv) + pb,v t ∈ Tv

Kf

(
L − lf

) + pb,f t ∈ Tf

Kp

(
L − lp

) + pb,p t ∈ Tp

(7)

The dynamic time-of-use tariff can both guide the EVs charging load using peak and valley times
and optimize the peak and valley times based on the results of load forecasting, so that the peak
and valley tariffs correspond to the peak and valley times of the load. Moreover, there is a positive
correlation between the tariff and the load at each time slot, which can be dynamically adjusted
according to the actual load, thus better balancing the interests between the electricity consumers
and the power suppliers.

3 Charging Load Optimization Modeling
3.1 Objective Function

Considering from the user side, the lowest user charging cost is the objective function, the smaller
the user charging cost, the higher the user satisfaction and participation. The user charging cost is:

min f1 =
96∑

t=1

n∑
i=1

Pixi,tSd,tΔT (8)

where: Sd,t is the t-time EV charging tariff; Pi denotes the charging power of the vehicles; xi,t is the
charging status of the vehicle at t-time, when it is taken as 1, it means it is charging, when it is taken as
0, it means it is not charging; n is the number of electric vehicles; ΔT denotes the charging unit interval
time, it is 0.25 in this paper.

Considering the grid side, the minimum load mean squared error is the objective function, and
the smaller the load variance is, the smoother the grid operation is. The load variance is:

min f2 = 1
96

96∑
t=1

(
Lb,t +

n∑
i=1

Pixi,t − Lav

)2

(9)

Lav = 1
96

96∑
t=1

(
Lb,t +

n∑
i=1

Pixi,t

)
(10)

where: Lb,t is the system base load at t-time; Lav is the daily average system load.

3.2 Constraints
3.2.1 Tariff Constraints

According to the dynamic time-of-use tariff model presented in Section 2, the relationship between
the tariff and EVs charging power should satisfy:
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Sd,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Kv

(
Lb,t +

n∑
i=1

Pixi,t − lv

)
+ pb,v t ∈ Tv

Kf

(
Lb,t +

n∑
i=1

Pixi,t − lf

)
+ pb,f t ∈ Tf

Kp

(
Lb,t +

n∑
i=1

Pixi,t − lp

)
+ pb,p t ∈ Tp

(11)

Considering the operating costs of charging stations and the acceptability of charging costs for
users, the range of EV charging tariff is:

Sd,min ≤ Sd,t ≤ Sd,max (12)

where: Sd,max and Sd,min is the maximum and minimum value of EV charging tariff, respectively.

3.2.2 Electric Vehicle Charging Demand Constraints

Considering from a long-term perspective, the daily charging demand of EVs is determined by the
daily driving mileage, so the daily charging amount should satisfy:

96∑
t=1

Pixi,tΔT = E100,i · Di

100ηi

(13)

where: E100,i is the 100 km power consumption of the vehicle; Di is the daily mileage of the vehicle; ηi

is the charging efficiency of the vehicle.

3.2.3 Electric Vehicle Charging Time Constraints

For different types of EVs, due to the different nature of work, travel habits and other factors, and
thus their rechargeable time period is different, under the premise of meeting the charging needs of
EVs:

xi,t =
{

0 or 1 t ∈ Ta,i

0 t /∈ Ta,i

(14)

where: Ta,i denotes the rechargeable time period of the i-vehicle.

If an EV cannot meet the minimum daily charging demand during the rechargeable time period,
it does not participate in charging optimization scheduling, i.e., it is always in charging mode during
the rechargeable time period.

3.2.4 The Number of Charging Piles Constraints

The number of charging posts in charging stations is limited and it is difficult to satisfy all EVs
charging at the same time, so the number of EVs charging at t-moment should satisfy:

0 ≤
n∑

i=1

xi,t ≤ Nmax (15)

where: Nmax is the maximum number of EVs allowed to be charged at the charging station.
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3.3 Multi-Objective Function Processing
The objective functions f1 and f2 are normalized and transformed into a single objective function

using a linear weighting method as:

min F = λF1 + (1 − λ) F2 (16)

F1 = f1 − f1 min

f1 max − f1 min

(17)

F1 = f1 − f1 min

f1 max − f1 min

(18)

where: F1 and F2 are the interest loss rates of charging stations and the grid, respectively, which are the
results of normalizing the objective function f1 and f2; The f1 min and f2 min are the minimum charging
cost and the minimum load variance corresponding to the optimization with single objective function
f1 and f2, respectively; The f1 max and f2 max is the charging cost and load variance when EVs are randomly
connected to the grid, respectively; λ ∈ [0, 1], which denotes the weight of user charging cost.

The values of objective functions F1 and F2 are related to the value of λ. The larger the value of
λ, the lower the user charging cost and the larger the grid-side load variance. Thus, it is necessary to
choose a suitable value of λ to balance the interests of the user side and the grid side. In this paper,
the principle of choosing λ value is F1 = F2, because when the target optimum is reached, the loss rate
of grid-side and user-side interest is basically equal, and there will not be a situation where one side is
willing to be high and the other side’s interest is seriously damaged. The process of finding λ value by
dichotomous method is shown in Fig. 1.

Figure 1: The method of finding the value of λ

4 Case Analysis
4.1 Parameters Setting

As an example, the typical daily basic load, forecasted load, and filtered load of a region are shown
in Fig. 2, and the static time-of-use tariff is shown in Table 1.
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Figure 2: Basic load information

Table 1: Static time-of-use tariff

Times Sale tariff/($/kWh) Purchase tariff/($/kWh)

Valley times (00:00–08:00) 0.0588 0.0537
Flat load times (12:00–17:00, 21:00–24:00) 0.1765 0.1010
Peak times (08:00–12:00, 17:00–21:00) 0.2941 0.1278

The minimum value of electric vehicle charging tariff is the baseline tariff in valley times,
Sd,min = 0.0588 $/kWh, which can ensure the normal operation of charging stations; The principle
of selecting the maximum value is that the cost of using electric vehicles is lower than that of fuel
vehicles, which accelerates the replacement of fuel vehicles by electric vehicles and reduces carbon
emissions, and the maximum value of electric vehicles charging tariff is 0.5588 $/kWh obtained from
reference [26] through calculation.

Based on the base load and static time-of-use tariff of the region, the base load, base tariff and
tariff adjustment factor of the dynamic time-of-use tariff were determined, and the results are shown
in Table 2.

Table 2: Dynamic time-of-use tariff parameters

Parameters Values Parameters Values Parameters Values

pb,v 0.0588 $/kWh Kv 8.59 × 10−5 $/kW lv 1.42 × 104 kW
pb,f 0.1765 $/kWh Kf 1.15 × 10−4 $/kW lf 1.56 × 104 kW
pb,p 0.2941 $/kWh Kp 5.88 × 10−4 $/kW lp 1.66 × 104 kW

Assuming that the EVs can be divided into 3 groups after equivalence aggregation, the recharge-
able time of each group is shown in Table 3 (1 means rechargeable, 0 means non-rechargeable). Group
1 represents the ‘early departure and late return type’; Group 2 represents the ‘normal work and rest
type’; Group 3 represents the ‘night shift type’. According to the domestic electric vehicle sales data
in 2022, the top three sales models are selected as the research objects, and the main parameters of the
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three groups of electric vehicles are shown in Table 4. The driving range of electric vehicles conforms
to the log-normal distribution, and the probability density function of the daily driving range Di is:

f (Di) = 1√
2πDi

2
σd

2
exp

[
−(ln Di − μd)

2

2σd
2

]
(19)

where: σd is the standard deviation of probability density, and its value is 0.87; μd is the expectation of
probability density, and its value is 3.31.

Table 3: Rechargeable time for electric vehicles

Times Group1 Group2 Group3 Times Group1 Group2 Group3

1 1 1 0 13 0 1 1
2 1 1 0 14 0 1 1
3 1 1 0 15 0 1 1
4 1 1 0 16 0 0 1
5 1 1 0 17 0 0 1
6 1 1 0 18 0 0 1
7 0 1 0 19 0 0 1
8 0 1 1 20 0 1 1
9 0 0 1 21 0 1 0
10 0 0 1 22 1 1 0
11 0 0 1 23 1 1 0
12 0 0 1 24 1 1 0

Table 4: The main parameters of the three groups of electric vehicles

Parameters Group1 Group2 Group3

n 1000 600 400
E100,i 9.3 12.7 13.2
Pi 2.5 7.0 80
ηi 0.8 0.9 0.9

Electric vehicles charging load optimization strategies based on three different tariffs:

Strategy 1: static time-of-use tariff;

Strategy 2: peak and valley time redistribution of time-of-use tariff;

Strategy 3: dynamic time-of-use tariff proposed in this paper.

4.2 Analysis of Results
According to the parameter settings in Section 3.1, the mathematical solver GUROBI is invoked

to optimize the objective function F . The optimization results of EV charging load based on dynamic
time-of-use tariff are obtained, and the charging load of EVs under different scenarios such as static
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time-of-use tariff based and peak and valley time redistribution of time-of-use tariff are analyzed and
compared while ensuring the consistency of other simulation parameters. After superimposing the grid
base load, the charging tariffs of EVs are shown in Fig. 3, and the changes of grid-side load curves
under different scenarios are shown in Fig. 4.

Figure 3: Electric vehicles charging tariffs

Figure 4: Load curves under different charging strategies

Under the charging mode based on Strategy 1, the peak and valley hours of the tariff do not
exactly correspond to the peak and valley hours of the load, for example, during peak load hours
(around 14:00–16:00), when the static time-of-use tariff is at the flat load tariff, while the load is at the
peak hours, the tariff does not match the actual load, resulting in the phenomenon of “peak on peak”.

In the charging mode based on Strategy 2, the peak-valley hours of the tariff correspond to
the peak-valley hours of the load, so there is no ‘peak on peak’ phenomenon. However, during the
low tariff period (00:00–02:00), the phenomenon of “reverse peaking” occurs when EVs charging is
concentrated.

Under the orderly charging mode based on Strategy 3, the peak and valley periods of the tariff
correspond to the peak and valley periods of the load, and EVs are charged when the base load on
the grid side is relatively low, which plays the role of “filling the valley” and can significantly improve
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the fluctuation of the load curve. Moreover, since the tariff of each period of the dynamic time-of-
use tariff is positively correlated with the actual load, the tariff information can be used to prevent
EVs charging at a certain period of time, thus avoiding the phenomenon of “anti-peak regulation”.
As can be seen from Fig. 4, the dynamic time-of-use tariff is positively correlated with the actual load,
and the EV charging tariff appropriately adjusts to the actual load on top of the base tariff, which
corresponds to the peak and valley hours of the load and also increases the revenue of charging stations.
For example, during the low base load hours (00:00–06:00), when a large number of electric vehicles
choose to charge, the dynamic time-of-use tariff mechanism increases the charging station revenue by
appropriately increasing the tariff according to the real-time load.

In order to quantitatively analyze the effectiveness of the dynamic time-of-use tariff pricing
strategy in guiding and scheduling EV charging behavior, the charging station profits, user charging
cost, and grid-side load variance under various charging modes were calculated, respectively, and the
results are shown in Table 5.

Table 5: Calculation results under different charging strategies

Strategies Profit of charging stations/$ User spending/$ Grid-side load variance/kW2

Strategy 1 108.38 685.59 5.77 × 105

Strategy 2 224.56 879.56 5.61 × 105

Strategy 3 880.29 1534.26 3.58 × 105

As can be seen from Table 5, in terms of users charging spending and profits of charging stations,
when the charging tariff adopts Strategy 1 and Strategy 2, at this time, the user charging spending
is cheap, but the profit of charging stations is very low, accounting for only 15.8% and 25.5% of the
user spending. When charging optimization is based on dynamic time-of-use tariff strategy, the profit
of charging station can be greatly improved, and the profit of charging station accounts for 57.4% of
the user spending, which makes the increase of user charging spending smaller, but greatly increases
the profit of charging station, so it can better balance the interests of both sides, and improve the
enthusiasm and satisfaction of charging stations and users to participate in the optimal scheduling.
In terms of improving the load fluctuation on the grid side, the dynamic time-of-use tariff strategy
proposed in this paper can significantly improve the load fluctuation and reduce the load variance of
the grid during the optimal scheduling of electric vehicles. Compared with Strategy 1 and Strategy 2,
the charging strategy based on the dynamic time-sharing tariff can reduce the load variance of the grid
to 62.0% and 63.8% of the original one, respectively, which improves the satisfaction of the grid side.

4.3 Sensitivity Analysis
To verify the universality of the dynamic time-of-use tariff strategy proposed in this paper for

guiding and scheduling the charging behavior of EVs, the optimal scheduling results under different
numbers and ratios of EVs are studied separately, while ensuring the consistency of other simulation
parameters.

4.3.1 Changing the Number of Electric Vehicles

Keeping the ratio of three types of EVs as 5:3:2 and changing the total number of EVs, set as
1000 and 4000, respectively, the comparison of optimization results based on different tariff strategies
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is shown in Fig. 5, and the calculation results of charging station profit, user spending and grid-side
load variance are shown in Table 6.

Figure 5: Load curves for changing the number of electric vehicles

Table 6: Calculation results for changing the number of electric vehicles

Number Strategies Profit of charging
stations/$

User spending/$ Grid-side load
variance/kW2

Strategy 1 95.29 430.74 7.35 × 105

1000 Strategy 2 110.0 458.82 6.68 × 105

Strategy 3 287.79 636.76 5.79 × 105

Strategy 1 426.03 1709.56 7.37 × 105

4000 Strategy 2 524.26 1870.74 4.18 × 105

Strategy 3 3054.56 4457.21 9.42 × 104

From the optimization results, it can be seen that in terms of user and charging station revenue,
the dynamic time-of-use tariff is always able to balance the interests of charging stations, users and
grid-side parties under different EVs quantities, and the proportion of charging stations profit to user
spending is 45.2% and 68.5%, respectively. In terms of improving network-side load fluctuation, the
dynamic time-of-use tariff has a significantly better effect on the charging load of different EVs than
the peak-valley optimized tariff and static time-of-use tariff, and the dynamic time-of-use tariff has a
more obvious effect on the charging load of EVs as the number of EVs increases, which is only 12.8%
and 22.5% of the network-side variance under the static time-of-use tariff and peak-valley optimized
tariff. The results show that the EV charging load optimization strategy based on dynamic time-of-use
tariff is effective under different EV numbers.

4.3.2 Changing the Ratio of Electric Vehicles

After ensuring that the total number of the three types of EVs is 2000 and changing the proportion
of each type of EVs, which are set as 2:5:3 and 3:2:5, respectively, the comparison of optimization
results is shown in Fig. 6, and the calculation results of charging station profit, user charging cost
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and grid-side load variance are shown in Table 7. Since different types of EVs have different charging
demands, charging power and time periods available for charging, the final results change accordingly
when the EV ratio changes. From the optimization results, it is clear that even when the proportion
of EVs changes, the dynamic time-of-use tariff-based charging load optimization always improves
the charging station revenue and keeps the charging station profit above 50% of the user spending;
not only that, it also always keeps the grid-side variance minimal, which is the best for improving
load fluctuation. The results show that the EV charging load optimization strategy based on dynamic
time-of-use tariff is still effective under different EVs ratios.

Figure 6: Load curves for changing the ratio of electric vehicles

Table 7: Calculation results for changing the ratio of electric vehicles

Number Strategies Profit of charging
stations/$

User spending/$ Grid-side load
variance/kW2

Strategy 1 245.88 953.68 6.52 × 105

2:5:3 Strategy 2 371.62 1159.27 5.94 × 105

Strategy 3 1070.29 1841.62 3.85 × 105

Strategy 1 483.68 1337.79 1.19 × 106

3:2:5 Strategy 2 519.12 1407.65 9.0 × 105

Strategy 3 1328.53 2212.06 6.49 × 104

5 Conclusion

To address the problem that the static time-of-use tariff cannot be dynamically adjusted with
the actual operation status of the grid and is likely to cause new load peaks due to the concentrated
charging of EVs in the valley hours, this paper proposes a dynamic time-of-use tariff pricing mecha-
nism from the supply-side perspective, establishes a multi-objective charging load optimization model
for EVs based on this mechanism, and proposes a multi-objective optimization problem processing
method. Simulation of the algorithm verifies the effectiveness of the strategy, and the conclusions
obtained are as follows:
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(1) The dynamic time-of-use tariff proposed in this paper is regarded as a binary function of time
and load, containing two meanings of daily time scale and minute time scale, which can dynamically
adjust the peak and valley hours and change the tariff according to the real-time load, thus balancing
the interests between charging stations, user side and grid side to achieve a win-win situation.

(2) In this paper, a multi-objective optimization problem processing method based on the
principle of equal benefit loss rate of two objectives is proposed, which can convert a multi-objective
optimization problem into a single-objective optimization problem. The dichotomy method is used to
find the appropriate weights of the two objectives, so as to quickly find the benefit equilibrium point
between the two objectives.

(3) The electric vehicle charging load optimization strategy based on dynamic time-of-use tariff
can improve the profit of charging stations, reduce the user spending, and the grid-side load variance,
thus achieving a win-win situation for all three parties. Moreover, it is still effective when the number
and proportion of EVs change, and with the increase in the number of EVs, it is more effective in
improving the load fluctuation of the power grid.

The EV charging tariff will affect users’ willingness to buy and drive, which will have an impact
on carbon emissions. Therefore, the quantitative relationship between electricity price and carbon
emission can be investigated in future research, and then carbon emission minimization (social benefit)
can be used as another optimization objective.
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