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ABSTRACT

Partial shading conditions (PSCs) caused by uneven illumination become one of the most common problems
in photovoltaic (PV) systems, which can make the PV power-voltage (P-V) characteristics curve show multi-
peaks. Traditional maximum power point tracking (MPPT) methods have shortcomings in tracking to the
global maximum power point (GMPP), resulting in a dramatic decrease in output power. In order to solve the
above problems, intelligent algorithms are used in MPPT. However, the existing intelligent algorithms have some
disadvantages, such as slow convergence speed and large search oscillation. Therefore, an improved whale algorithm
(IWOA) combined with the P&O (IWOA-P&O) is proposed for the MPPT of PV power generation in this paper.
Firstly, IWOA is used to track the range interval of the GMPP, and then P&O is used to accurately find the MPP in
that interval. Compared with other algorithms, simulation results show that this method has an average tracking
efficiency of 99.79% and an average tracking time of 0.16 s when tracking GMPP. Finally, experimental verification
is conducted, and the results show that the proposed algorithm has better MPPT performance compared to popular
particle swarm optimization (PSO) and PSO-P&O algorithms.
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1 Introduction

With the rapid consumption of traditional energy sources such as fossil fuels and the worsening
of environmental pollution, the human living environment has been severely damaged. Governments
around the world have called for the development and utilization of clean energy, so solar energy,
as a clean and renewable energy source, has received widespread attention from people [1]. Building
photovoltaic (PV) power generation systems by using PV cells and power electronic converters is a
common way for people to utilize solar energy. Due to the influence of illumination, temperature,
and other factors on the output current and voltage of PV cells, how to maximize the conversion of
solar energy into electrical energy and improve the actual power generation efficiency has become
a major challenge for PV power generation systems. Therefore, the study of maximum power point
tracking (MPPT) has become an essential part of PV power generation [2,3]. Currently, traditional
MPPT methods include Hill Climbing algorithm [4], Perturbation and Observation (P&O) [5,6], and
Incremental Conductance (INC) [7]. P&O and INC are the most common and effective methods.
P&O samples the output voltage or current of the PV array at regular intervals, and then applies a
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fixed disturbance step by comparing the current PV output power with the previous output power to
track MPP, which has superior performance. INC applies the step according to the slope of the P-V
curve. The slope is zero at the MPP, so it can help to determine when to complete MPPT. The main
advantage of these methods is convenience in implementation, but they only apply to power-voltage
(P-V) curves with only one peak. In actual situations, PV power generation is easy to be blocked by
clouds, trees, etc., resulting in uneven illumination, that is partial shading condition (PSC). Thus, the
P-V curve has multiple peaks, and traditional MPPT methods cannot distinguish the global maximum
power point (GMPP) among the several peaks existing in the P-V curve under PSC [8], resulting in
low system output power and increased power loss [9,10].

In order to track GMPP under PSCs, many researchers have proposed to apply intelligent
algorithms to MPPT, the most common of which is particle swarm optimization (PSO) [11]. In [12],
the fuzzy fokker planck solution was used to optimize search space, which reduced unnecessary search
time. Javed et al. [13] utilized two parameters of PSO to control speed and search space, and consumed
a maximum of 16 perturbations to locate GMPP. In reference [14], PSO was first used to search
for the global optimum, and then fuzzy control was used to eliminate oscillation. Joisher et al. [15]
proposed a differential evolution algorithm mixed with PSO, which initialized possible solutions
after several iterations to reduce the probability of convergence to the local maximum power point
(LMPP). In reference [16], the approximate optimal duty ratio was initialized by PSO to achieve
the purpose of fast convergence. Harmini et al. [17] used an adaptive neuro fuzzy inference system
to train and update data, which omitted the initialization of PSO. Gawande et al. [18] combined
PSO and INC into a new control algorithm, which avoided the drawbacks of falling into LMPP.
Makhloufi et al. [19] proposed a logarithmic PSO algorithm, which enhanced the reliability of system
design by reducing control parameters and population size. Ibrahim et al. [20] improved the speed
step function of PSO to constrain the maximum speed, which optimized the search space. In order to
reduce the impact of random variables, Hu et al. [21] controled the direction of particle velocity to be
the same as the convergence direction, so it avoided the divergence of particle trajectories which made
the search process more effective and controllable. In addition, there are other algorithms. The cuckoo
algorithm [22] was used to optimize controller parameters to reduce power oscillation. Millah et al. [23]
proposed grey wolf optimization algorithm, which used weighted average value, pop-up behavior, and
convergence factor to accelerate tracking speed. At the same time, researches on intelligent algorithms
such as ant colony optimization algorithm [24], firefly optimization algorithm [25–28], and genetic
algorithm [29–31] also further improve the efficiency of MPPT.

Although the above algorithms can realize MPPT, the principle is complex. Whale algorithm
(WOA) is a new optimization algorithm proposed by Mirjalili et al. based on the behavior of whale
prey hunting [32]. It can be used to search for the optimal target. Compared with other intelligent
algorithms, it has high universality. When WOA is applied to MPPT, the parameter setting is less and
the running speed is faster. However, WOA, like other intelligent algorithms, has some disadvantages,
such as slow convergence speed and large search oscillation. Therefore, the paper proposes an improved
whale algorithm (IWOA) combined with the P&O (IWOA-P&O). Firstly, the nonlinear convergence
factor and weight factor are introduced to accelerate the tracking speed and enhance the global search
ability, which makes the algorithm fast track to the range interval of the GMPP. Then, P&O is used
to rapidly converge to the maximum power point (MPP). Finally, the restart mechanism is added to
further enhance the tracking ability under varying illumination.

The structure of the paper is as follows. Section 2 introduces the basics of PV modeling, and
demonstrates the effect of PSCs on the functionality of the PV array. IWOA-P&O algorithm and the
corresponding MPPT process are presented in Section 3. Section 4 provides a thorough comparison
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of the proposed method with different algorithms. Section 5 provides experimental results. The paper
is concluded in Section 6.

2 Output Characteristics of PV Array

The PV array is composed of multiple PV cells in series and parallel. The equivalent model of the
PV cell is shown in Fig. 1. Iph is photogenic current; ID is diode current; Rp is the bypass resistance; RS

is the internal series resistance; Upv is the PV output voltage; Ipv is the output current.
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Figure 1: Equivalent model of photovoltaic cell

The output voltage-current characteristics of the PV cell can be expressed as:

Ipv = Iph − Io
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]
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(1)

where Io is the reverse saturation current; q is the electron charge; A is the diode ideal factor; K is the
Boltzmann’s constant; T is the temperature.

In this paper, the PV cell (A10J-M60-240) is used as the research object. The parameters of this
PV cell under a standard environment (temperature is 25°C and irradiance is 1000 W/m2) are shown
in Table 1. V oc is the open circuit voltage; I sc is the short circuit current; V m is the voltage of MPP; Im

is the current of MPP; Pmax is the maximum power.

Table 1: Parameters of the photovoltaic cell

Parameter Value Parameter Value

V oc 36.84 V Temperature coefficient of V oc(%/deg.C) −0.359
I sc 8.32 A Temperature coefficient of I sc(%/deg.C) 0.097
V m 30.72 V Pmax 240.5 W
Im 7.83 A

Due to the wide distribution of PV arrays, in actual working conditions, haze, dust, trees, or
buildings will lead to uneven illumination, resulting in PSC. The above three PV cells are connected in
series into a PV array as the simulation model. PV array is shown in Fig. 2.

In order to fully demonstrate the influence of illumination on PV output, different irradiances are
set. Detailed data on irradiances are shown in Table 2. S1, S2, and S3 respectively represent the solar
irradiance on PV1, PV2, and PV3. The power-voltage (P-V) and current-voltage (I-V) curves under
different PSCs are illustrated in Fig. 3.
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PV1 PV2 PV3

Figure 2: Structure of PV array

Table 2: Irradiance under different PSCs

Condition S1 (W/m2) S2 (W/m2) S3 (W/m2)

PSC1 1000 1000 1000
PSC2 1000 1000 800
PSC3 900 700 400

20 40 60 80 100 1200

2

4

6

8

10

C
ur

re
nt

(A
)

Voltage(V)
0

0

200

400

600

800

)
W(re

wo
P

20 40 60 80 100 120
Voltage(V)

0

PSC2
PSC3

PSC1

PSC2
PSC3

PSC1

Figure 3: P-V and I-V characteristics curves under different PSCs

As is shown in Fig. 3, when the irradiance of three PV cells in the PV array is 1000 W/m2 (PSC1),
the P-V curve of the PV array has only one peak, and the I-V curve is a single-knee shape. In the
other two cases, the irradiance of the three PV cells in the array is uneven. In PSC2, three PV cells are
exposed to two irradiances (1000 W/m2 for S1 and S2, 800 W/m2 for S3), and the P-V curve has two
peaks, and the I-V curve turns into double-knee shape. In PSC3 (900 W/m2 for S1, 700 W/m2 for S2,
400 W/m2 for S3), the P-V curve has three peaks, and the I-V curve turns into three-knee shape.

3 The Proposed Algorithm
3.1 WOA Algorithm

When WOA is applied to the MPPT, the position of each whale corresponds to the output voltage.
The minimum voltage of the PV array corresponds to the lower bound of the whale’s hunting range,
and the maximum voltage corresponds to the upper bound of the whale’s hunting range. The whales
in the search range will change their positions according to equations until the position of MPP is
found, and then the search will stop after the voltage is output. It consists of three modes: encircling
prey, bubble-net hunting technique, and random searching for prey [33].
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3.1.1 Encircling Prey

During this phase, the position of the whale corresponding to the voltage will locally move
according to the following equation:

D = ∣∣CX ∗
best (t) − X (t)

∣∣ (2)

X (t + 1) = X ∗
best (t) − AD (3)

where, D is the distance between the current individual and the optimal individual. X ∗
best (t) is the

optimal individual position in the current whale population. t is the number of iterations. A and C
are control coefficients, which can be obtained from Eq. (4).⎧⎨
⎩

A = 2a ∗ r1 − a
C = 2r2

a = 2 (1 − t/Tmax)

(4)

where, r1 and r2 are random parameters in [0,1]; Tmax is the maximum number of iterations.

3.1.2 Bubble-Net Hunting Technique

At this stage, the position of the whale corresponding to the voltage moves in a spiral toward the
optimal value. The equation for updating the position is as follows:

X (t + 1) = X ∗
best (t) + Debl cos (2π l) (5)

where, b represents the coefficient constant, and l is the random quantity between [-1, 1].

3.1.3 Random Searching for Prey

The mathematical model of this stage is as follows:

D = |CXrand (t) − X (t)| (6)

X (t + 1) = Xrand (t) − AD (7)

where, X rand(t) represents the position of random individuals in the current whale population. Accord-
ing to the difference of A in equation, there are two cases. If |A| ≥ 1, the position of the whale is
randomly selected, and the position corresponding to voltage globally moves according to Eqs. (6)
and (7). Otherwise, the algorithm enters the phase of encircling prey again.

3.2 P&O Algorithm
The P&O algorithm is a traditional MPPT algorithm. The principle of the P&O is to compare

P (k) (power after disturbance) with P (k−1) (power before disturbance) by continuously applying
a constant step-size perturbation to the voltage. Therefore, if P (k) > P (k−1), the direction of
perturbation is correct. Otherwise, if P (k) < P (k−1), the algorithm adjusts the direction of
perturbation, and finally finds the peak point through regular perturbation. Detailed steps of the P&O
are shown in Fig. 4.

3.3 IWOA-P&O Algorithm
3.3.1 IWOA Algorithm

In the actual function optimization, the change rate of a needs to be changed in real time, but the
linearly changing parameter a cannot meet the requirements. Therefore, the convergence factor a1 and
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the weight factor ω of nonlinear change are introduced in this paper. The equations are as follows:

a1 = 2
(

2 − 2
t

Tmax

)
(8)

ω = 2
π

arctan
(

1 − t − 1
Tmax

)
(9)

Figure 4: Flow chart of P&O

By using Eqs. (8) and (9), A is updated to A1, and Eqs. (3), (5) and (7) are updated as follows:

A1 = 2a1 ∗ r1 − a1 (10)

X (t + 1) = X ∗
best (t) − ωA1D (11)

X (t + 1) = X ∗
best (t) + ωDebl cos (2π l) (12)

X (t + 1) = Xrand (t) − ωA1D (13)

The variable A has the greatest influence on whale search, which determines the accuracy of the
WOA global search and local search. In the mathematical model of the WOA, when |A| > 1, the whale
population expands its search range and begins to search for the optimal value. The algorithm focuses
on accuracy within the global range. When |A| < 1, the whale population searches within a small
solution range to complete convergence of the optimal value. The algorithm focuses on precision
within the local range. The variable A is determined by the parameter a. When the value of the
parameter a changes from 2 to 0, the value of A varies within the [−a, a]. As is shown in Fig. 5, it
can be seen that the parameter a of WOA decreases linearly from 2 to 0. In multimodal function
optimization problems, it is difficult to ensure the accuracy of the search by the linearly changing
parameter a because of the arbitrary shape of the multimodal function and the uncertainty of the
iterative convergence process. Therefore, a1 with nonlinear change is adopted. According to Fig. 5, the
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value of the parameter a1 in IWOA has a significant rate of change in the early stages of iteration,
resulting in the algorithm having the largest search range and changing the search step size within a
larger range. The IWOA ensures global search ability while also considering search speed. The value
of the parameter a1 decreases rapidly with the number of iterations in the later stage, and the search
range of IWOA becomes smaller. Whale individuals converge around the optimal value. Finally, the
IWOA obtains the optimal value with a small range of fluctuations.
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Figure 5: Convergence factor iteration curve

At the end of the algorithm, the variance of the position (corresponding to voltage) of the
whale population and setting the variance threshold are used to determine whether the whale is
close to the maximum power point (MPP). When the variance of the location of the the whale
population is less than variance threshold, the whale is located near the MPP. The threshold affects
the tracking performance of the algorithm. If the threshold is too large, the algorithm will prematurely
converge to other local maximum power point (LMPP), resulting in the algorithm tracking the wrong
value. Otherwise, if the threshold is too small, the number of iterations will increase and the rate of
convergence will decrease. Finally, the voltage corresponding to the position of the optimal whale is
taken as the initial point of P&O to finely track the MPP of the PV array. The discriminant near the
MPP is as follows:

σ 2 = 1
N

N∑
i

(
Ui − U

)2 ≤ f (14)

where, σ 2 is the variance of the position of whale population. N is the number of whales. Ui is the
voltage corresponding to the position of the ith whale. U is the average voltage. f is the variance
threshold.

3.3.2 Restarting Algorithm

If the external illumination changes, the MPP of the PV array will change. At this point, the
algorithm needs to be restarted to track the MPP of the PV array in real time. The restart condition is
as follows:

�P =
∣∣∣∣P − P′

P

∣∣∣∣ ≥ 0.15 (15)

where, �P represents the change rate of the power at this moment compared with the power at the
previous moment. P represents the current output power. P′ indicates the output power at the previous
time. If �P is greater than 0.15, the algorithm restarts.
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3.4 MPPT Based on IWOA-P&O
The specific MPPT process of IWOA-P&O is as follows:

(1) Firstly, the maximum iteration number Tmax, the population number N, the random positions
of whales (voltage), the variance threshold f and other parameters are initialized.

(2) Secondly, the voltage and current of PV array are collected, and the power calculation formula
is set as the objective function. The MPP is the target that the whale finally seeks.

(3) Then the convergence factor a1 and the control parameter A1 are updated according to Eqs. (8)
and (9), respectively. Then, based on the probability P, the movement mode of the whale is determined.
The voltages corresponding to all whale positions are updated according to Eqs. (11)–(13).

(4) At the same time, the output power corresponding to each whale position is calculated, and
the optimal individual power is taken as the historical global optimal value. If the current population
optimum value is greater than the historical global optimal value, the current population optimum is
regarded as the new optimum, and the historical global optimum is updated. Otherwise, the historical
optimal value is retained, and then the voltage corresponding to the position of the whale is updated
continuously.

(5) On this basis, when Eq. (14) is satisfied or the maximum number of iterations is reached, it
means that the whale is close to the MPP.

(6) Then the voltage corresponding to the position of the optimal individual in the whale
population is taken as the initial point of P&O, and the P&O is carried out in a small step size until
the steady state is reached.

(7) Finally, if Eq. (15) is satisfied, the system conditions will change, and the algorithm needs to
be restarted. Otherwise, the system reaches the steady state and outputs maximum power. The flow
chart of the MPPT method based on the IWOA-P&O is shown in Fig. 6.

4 Simulation Results
4.1 System Configuration

In order to verify the superiority of the IWOA-P&O proposed in this paper, three PV cells (A10J-
M60-240) combined with Boost circuits are used for simulation experiments. The photovoltaic (PV)
power generation system is set up as shown in Fig. 7. PV cells are connected in series after being
connected in parallel with the bypass diode. Filter capacitance C1 is 200 uF; The busbar capacitance
C2 is 180 uF; The inductance L is 2 mH; The load resistance R is 340 Ω; The switching frequency is
100 kHz. Finally, IWOA-P&O is compared with P&O, PSO, WOA, and PSO-P&O. Four cases under
different PSCs are simulated. PSC1: The illuminations received by the three PV cells are 1000, 1000,
and 1000 W/m2, respectively. PSC2: The illuminations received by the three PV cells are 1000, 1000,
and 800 W/m2, respectively. PSC3: The illuminations received by the three PV cells are 900, 700, and
400 W/m2, respectively. PSC4: The illuminations received by the three PV cells are 500, 300, and
100 W/m2, respectively. The power-voltage (P-V) curves of four cases are shown in Fig. 8.

4.2 Static PSCs
Simulations are performed under static PSCs. The MPPT results of different algorithms under

PSC1 are shown in Fig. 9. Under PSC1, the maximum power is 721.3 W, and the P-V characteristic
curve shows only one peak. The power achieved by the WOA, PSO, P&O, PSO-P&O, and IWOA-P&O
is 720, 720, 721, 721, and 721 W, with an efficiency of 99.82%, 99.82%, 99.96%, 99.96%, and 99.96%,
respectively. The tracking time is 0.23, 0.3, 0.2, 0.11 and 0.1 s for the WOA, PSO, P&O, PSO-P&O,
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and IWOA-P&O, respectively. The tracking time of IWOA-P&O is reduced by approximately 67%
compared to the PSO. During the search, the power fluctuation of IWOA-P&O is smaller than that
of WOA and PSO. All five algorithms successfully track the maximum power point.

Figure 6: MPPT process of IWOA-P&O
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PV2
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L
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Figure 7: Photovoltaic power generation system
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Figure 9: Simulation results under PSC1: (a) PV power (b) PV voltage

The MPPT results of different algorithms under PSC2 are shown in Fig. 10. Under PSC2, the
maximum power is 618.3 W and the P-V characteristic curve shows two peaks. Instead of finding the
global maximum power point (GMPP), P&O only finds the second peak value (LMPP1), which is
trapped in the LMPP. The tracking time of P&O is 0.19 s. The output power of P&O is 474.5 W, which
is 143.8 W away from GMPP, and the tracking efficiency is only 76.74%. The tracking time of WOA
algorithm is 0.29 s, and the output power is 563.4 W. Due to its weak local search ability, the search
accuracy is low, and the tracking efficiency is only 91.12%. The IWOA-P&O algorithm proposed in
this paper uses the convergence factor and weight factor to strengthen the global search ability and
improve the convergence speed. In the later stage, the P&O with a small step size is used to improve the
search accuracy. So IWOA-P&O only needs 0.18 s to track the GMPP, and the output power is 618 W,
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achieving tracking efficiency of 99.95%. Compared with PSO and PSO-P&O, IWOA-P&O reduced
tracking time by 55% and 14%, respectively.
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The MPPT results of different algorithms under PSC3 are shown in Fig. 11. Under PSC3, the
maximum power at this time is 349.6 W, and the P-V characteristic curve shows three peaks. Compared
with WOA and PSO, P&O takes less time to track the maximum power point, but it is trapped in local
optimal (LMPP2), with tracking an efficiency of 90.96% and higher power loss. The WOA, PSO, PSO-
P&O, and IWOA-P&O successfully track the MPP, and the efficiencies are 99.54%, 98.68% 99.54%,
and 99.91%, respectively. The power fluctuation of IWOA-P&O is smaller than that of PSO and WOA.
In terms of tracking time, the IWOA-P&O algorithm improves about 50%, 63%, and 36% compared
with WOA, PSO, and PSO-P&O, respectively.

The MPPT results of different algorithms under PSC4 are shown in Fig. 12. Under PSC4, the
maximum power at this time is 150 W, and the P-V characteristic curve shows three peaks. P&O
converges quickly but it is trapped in the local optimal value (LMPP3), resulting in significant power
loss. The WOA algorithm converges too early, resulting in low search efficiency, which is only 76%.
Compared with WOA, the efficiency of IWOA-P&O increases by approximately 23%. The MPPT
time of the PSO algorithm is 0.4 s. However, the IWOA-P&O algorithm only takes 0.21 s to search for
the MPP. Compared with PSO-P&O, IWOA-P&O improves the speed of MPPT by 19%. Therefore,
despite the harsh illumination environment, the MPPT performance of the proposed method is still
superior. Finally, the simulation data of WOA, PSO, P&O, PSO-P&O, and IWOA-P&O under PSC1,
PSC2, PSC3, and PSC4 are shown in Table 3.
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Figure 11: Simulation results under PSC3: (a) PV power (b) PV voltage
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Table 3: Comparison of static MPPT data for four algorithms

Condition Algorithm Tracking time (s) Output power (W) Efficiency (%) GMPP tracked

WOA 0.23 720 99.82 Yes
PSO 0.3 720 99.82 Yes

PSC1 P&O 0.2 721 99.96 Yes
PSO-P&O 0.11 721 99.96 Yes
IWOA-P&O 0.1 721 99.96 Yes

WOA 0.29 563.4 91.12 No
PSO 0.4 617 99.79 Yes

PSC2 P&O 0.19 474.5 76.74 No
PSO-P&O 0.21 618 99.95 Yes
IWOA-P&O 0.18 618 99.95 Yes

WOA 0.28 348 99.54 Yes
PSO 0.38 345 98.68 Yes

PSC3 P&O 0.19 318 90.96 No
PSO-P&O 0.22 348 99.54 Yes
IWOA-P&O 0.14 349.3 99.91 Yes

WOA 0.29 114 76 No
PSO 0.4 141 94 Yes

PSC4 P&O 0.17 78 52 No
PSO-P&O 0.26 149 99.33 Yes
IWOA-P&O 0.21 149 99.33 Yes

4.3 Dynamic PSCs
The superiority of IWOA-P&O algorithm has been verified under static PSCs. However, in the

real world, illumination is not invariable and will change with time. For this reason, a variation of
PSC is performed which is changed at 0.35 and 0.7 s in the order of PSC1-PSC3-PSC2. The P-V curve
changes from a single peak to a triple peak and then to a double peak.

The MPPT results of WOA, PSO, P&O, and IWOA-P&O algorithms are shown in Fig. 13. Within
[0, 0.35 s], there is only one peak of the P-V curve, so all the five algorithms successfully track the MPP.
However, WOA, PSO, P&O, and PSO-P&O have a long convergence time, and WOA and PSO have
a large power fluctuation in the tracking process. It is clear that the tracking time of the IWOA-P&O
algorithm is reduced by over 50%. At 0.35 s, the illumination changes, and then the P-V curve has
three peaks in [0.35 s, 0.7 s]. P&O is trapped in local optima (LMPP2) with an efficiency of only
91.02%. Due to the lack of restart function, WOA, PSO, and PSO-P&O locate near LMPP2 and the
voltage remains unchanged. The output power is about 305 W, the tracking efficiency is about 87%,
and the power loss is large. Instead, IWOA-P&O is restarted and it takes 0.12 s to track to the GMPP
successfully. At 0.7 s, the illumination changes again, and the P-V curve has two peaks in [0.7 s, 1 s].
Because the MPP happens to be in the same voltage region as LMPP2, P&O successfully tracks the
MPP. The output power of WOA, PSO, and PSO-P&O are 606.5, 604, and 611 W, respectively, and
the tracking efficiency are 98.09%, 97.69%, and 98.82%, respectively, with great power fluctuation.
The tracking efficiency of IWOA-P&O reached 99.95%. As can be observed through the simulation
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results, it is easy for P&O to fall into LMPP under PSCs, resulting in high power loss. WOA, PSO,
and PSO-P&O algorithms are similar. The power fluctuates greatly in the search process, and there
is no restart function. The IWOA-P&O proposed in this paper has higher tracking efficiency, faster
convergence, less power loss, and can also restart search in the case of illumination variation. Specific
data are shown in Table 4.
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Figure 13: Simulation results for the changing partial shading: (a) PV power (b) PV voltage

Table 4: Comparison of dynamic MPPT data for four algorithms

Stage Algorithm Tracking time (s) Output power (W) Efficiency (%) GMPP tracked

WOA 0.23 721 99.96 Yes
PSO 0.32 720 99.82 Yes

[0, 0.35 s] P&O 0.2 721 99.96 Yes
PSO-P&O 0.12 721 99.96 Yes
IWOA-P&O 0.1 721 99.96 Yes

WOA 0.05 304.3 87.04 No
PSO 0.05 304 86.96 No

[0.35 s, 0.7 s] P&O 0.25 318.2 91.02 No
PSO-P&O 0.04 307 87.8 No
IWOA-P&O 0.12 349.3 99.91 Yes

WOA 0.05 606.5 98.09 No
PSO 0.06 604 97.69 No

[0.7 s, 1 s] P&O 0.21 618 99.95 Yes
PSO-P&O 0.01 611 98.82 Yes
IWOA-P&O 0.17 618 99.95 Yes
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4.4 Multiple Photovoltaic Cells
To verify the MPPT performance of the proposed method in series and parallel connection of

multiple photoelectric cells, nine PV cells are connected, as shown in Fig. 14a. The illumination
received by PV1, PV2 and PV3 is 1000 W/m2. The illumination received by PV4, PV5 and PV6 is
800 W/m2. The illumination received by PV7, PV8 and PV9 is 600 W/m2. The P-V curve of the PV
array is shown in Fig. 14b. It has three peaks with a maximum power of 1374 W. The simulation
results of IWOA-P&O are shown in Fig. 15. IWOA-P&O successfully tracks the MPP. The tracking
time is 0.2 s and efficiency is 99.93%. Although the structure of the PV array has changed, IWOA-P&O
still has excellent MPPT performance.
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4.5 Continuously Changing Irradiance and Temperature
The continuously varying irradiance and temperature are simulated to verify the MPPT perfor-

mance of the proposed method. As shown in Fig. 16a, the irradiance decreases continuously from
1000 W/m2 at 0.2 s and reaches the lowest point of 600 W/m2 at 0.4 s. Then irradiance rises and returns
to 1000 W/m2 at 0.9 s. The theoretical MPP of the PV array and results of IWOA-P&O MPPT are
shown in Fig. 16b. IWOA-P&O tracks the maximum power of 721 W at 0.12 s when irradiance remains
constant. Irradiance changes continuously within [0.2 s, 0.9 s], and the theoretical MPP also changes
continuously. Because the change of the power is continuous, the IWOA-P&O algorithm utilizes the
characteristics of P&O to track the MPP in real time. IWOA-P&O successfully follows the MPP
of 429 W at 0.4 s and returns to the initial MPP at 0.9 s. Similarly, for the continuously changing
temperature, IWOA-P&O can still track the maximum power in real time. As shown in Fig. 17, the
temperature continuously decreases from 45°C at 0.2 s and reaches its lowest point of 5°C at 0.4 s.
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Then it rises and returns to 45°C at 0.9 s. IWOA-P&O successfully tracks the maximum power of 679
W at 0.11 s. Then IWOA-P&O follows the change of the MPP and tracks to the MPP of 774 W at 0.4
s. Finally, it returns to the initial power point at 0.9 s. Therefore, regardless of continuously changing
irradiance or temperature, the MPPT performance of the proposed method is still very superior.

0 0.2 0.4 0.6 0.8 10

300

600

900

1200

I
ecnaidarr

m /
W(

2 )

Time(s)

(a)

0.4s

0.9s0.2s

0 0.2 0.4 0.6 0.8 10

200

400

600

800

Po
w

er
(W

)

Time(s)

T: 0.12s
P: 721W

(b)

T: 0.4s
P: 429W

T: 0.9s
P: 721W

actual value
theoretical value

Figure 16: Simulation results under continuously changing irradiance
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In addition, in order to verify the MPPT performance of the proposed method, the simulation
results of the dynamic process under continuously changing PSCs are shown in Fig. 18. The PV
power-voltage characteristics curve under PSC3 and PSC4 are shown in Fig. 18a. In Fig. 18b, within
[0, 0.2 s], the PV array is under PSC3, and the theoretical maximum power is 349.6 W. The IWOA-
P&O algorithm proposed in this paper successfully tracks the MPP in 0.14 s. After 0.8 s, the PV array is
under PSC4, and the theoretical maximum power is 150 W. Within [0.2 s 0.8 s], PSC3 begins to slowly
change towards PSC4. At the same time, the theoretical MPP of the PV array changes with the PSC.
The proposed IWOA-P&O algorithm still successfully tracks to the MPP and has good performance
during the change of PSCs.

5 Experimental Results

To validate the proposed MPPT method, a boost circuit experimental platform is built in the lab.
The photo of the platform is shown in Fig. 19. The experimental platform mainly consists of the PV
simulator, the boost circuit, the control board, the gate driver circuit board, the differential transceiver
board, voltage probe, current probe and the oscilloscope. The PV simulator is used to simulate the
output of single or multiple peaks under different illuminations. The control board is used to execute
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the MPPT algorithm. The differential transceiver board and the gate driver board are used to provide
sufficient driving capability. Finally, the output curves are monitored by the voltage probe, current
probe and oscilloscope.
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Figure 19: Experimental platform

Three different P-V curves are set up in the experiment to validate different algorithms, which are
shown in Fig. 20. In csae1, the P-V curve has only one peak, with a maximum power of 130 W. In case2,
the P-V curve has two peaks, with a maximum power of 120 W. In case3, the P-V curve has three peaks,
with a maximum power of 110 W. The experimental results in case1 are shown in Fig. 21. The pink
and blue lines represent the output power and the voltage of the PV array, respectively. The MPPT
algorithm is executed after the end of soft start. The PSO algorithm completes the tracking process in
7 s, with an efficiency of 95.38%. The MPPT time of the PSO-P&O algorithm is 4.8 s, and its efficiency
is only 93.08%. However, the IWOA-P&O only takes 2.8 s to track to the MPP. Compared with PSO-
P&O, its efficiency of MPPT improves by 5.38%. In case1, IWOA-P&O has a 60% improvement in
tracking speed compared to the PSO algorithm. Similarly, in case2 and case3, the MPPT performance
of the proposed method is still very superior. As is shown in Fig. 22, the tracking efficiency of the
proposed method is 97.5%, which is still the highest among the three algorithms. Compared with the
PSO-P&O, the power oscillation of the proposed algorithm is also smaller because it adopts a small
step size in the later stage. In case3, compared to the PSO, the proposed method improves tracking
speed by nearly 74%, which is shown in Fig. 23. Therefore, whether it has single peak, two peaks, or
three peaks, the MPPT performance of the proposed method is the best among the three algorithms.
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6 Conclusion

Aiming at the multi-peak characteristics of PV systems under PSCs, IWOA-P&O is proposed
in this paper to realize MPPT. The convergence factor and weight factor are introduced in IWOA-
P&O, and combined with P&O of strong local search ability, so the convergence accuracy and speed
of MPPT can be effectively improved. The simulations of the PV power generation system are built
in MATLAB/Simulink. Simulation results show that Compared with WOA, PSO, P&O, and PSO-
P&O, the convergence time of IWOA-P&O is all within 0.21 s, the average convergence time is reduced
by more than 50%, and the average efficiency of MPPT reaches 99.79%. In addition, in the case
of illumination variation, IWOA-P&O can restart, the convergence speed is faster, and the tracking
efficiency is higher. Finally, experimental verification is conducted. Experimental results show that the
proposed method is feasible, avoids the disadvantage of falling into the LMPP, reduces power loss, and
has good stability.
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