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ABSTRACT

In the restructured electricity market, microgrid (MG), with the incorporation of smart grid technologies,
distributed energy resources (DERs), a pumped-storage-hydraulic (PSH) unit, and a demand response program
(DRP), is a smarter and more reliable electricity provider. DER consists of gas turbines and renewable energy
sources such as photovoltaic systems and wind turbines. Better bidding strategies, prepared by MG operators,
decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources
(RES). But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate. To
solve these issues, this study suggests non-dominated sorting genetic algorithm II (NSGA-II) for an optimal bidding
strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties
of renewable energy sources. The uncertainty related to solar and wind units is modeled using lognormal and
Weibull probability distributions. TOU-based DRP is used, especially considering the time of outages along with
the time of peak loads and prices, to enhance the reliability of MG and reduce costs and emissions.
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Nomenclature

PSP Pumped storage plant
FC Cost function
FE Emission function
aGi, bGi, cGi Cost coefficients of ith gas turbine
αGi, βGi, γGi Emission coefficients of ith gas turbine
URi, DRi Upper and lower ramp limits of ith gas turbine
PGit Output of ith gas turbine
Pmin

Gi , Pmax
Gi Minm and Maxm limit of generation for ith gas turbine

Pgrid,t Power procured from upstream grid at time t
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Pmax
grid Maximum power exchange between MG and upstream grid

cgridt Grid electricity price at time t
egridt Emission of grid power at time t
Pwjt Wind power available of jth wind turbine at time t
Pmin

wj , Pmax
wj Minm and Maxm generation limits for jth wind turbine

Pwrj Wind power rated of jth wind turbine
dwj Direct cost coefficient for the jth wind turbine
vin Cut- in velocity of wind
vout Cut-out velocity of wind
vr Velocity of rated wind
vwt Forecasted velocity of wind
α, β Scale and shape factors for Weibull PDFs
μLog, σLog Lognormal PDF’s standard deviation and mean
μNorm, σNorm Standard deviation of the mean and variance
PPVkt Power output from kth PV plant
Psrk Equivalent rated power output of the PV plant
G Forecast of radiation of solar
Gstd Radiation from the sun in a normal environment
Rc Specific level of radiation
dPVk Direct cost co-efficient for the kth solar PV plant
uwj, owj Penalty and reserve cost for the jth wind turbine
uPVk, oPVk Penalty and reserve cost for the kth PV plant
Pghlt Generated power of lth PSP at time t
Pphlt Pumping power of lth PSP
Pmin

ghl , Pmax
ghl Minm and maxm generation power limits of lth PSP

Pmin
phl , Pmax

phl Minm and maxm pumping power limits of lth PSP
Qghlt

(
Pghlt

)
Discharge rate of lth PSP

Qphlt

(
Pphlt

)
Pumping rate of lth PSP

Qspent,TOT ,l Total amount of water spent for generation of lth PSP
Qpump,TOT ,l Total amount of water pumped of lth PSP
Qnet,spent,l Net amount of water spent by lth pumped storage hydraulic unit during opera-

tion cycle
Vres,lt Volume of water in upper reservoir of lth PSP
V min

res,l , V max
res,l Minm and maxm limits of upper reservoir storage of lth PSP

V start
res,l , V end

res,l Specified volume of water at starting and final in upper reservoir of lth PSP
Incmax Maxm increased load at any hour (MW)
LBase,t Forecasted base load
DRt Percentage of forecasted based load participated in DRP
DRmax Limit on how much of the base load can participate in DRP
Inct Amount of increased load
Lst Shiftable load
F Failure rate (failure times/year)
FPV , Fw Wind and solar power system’s maximum failure rate (failure times/hour)
MTTR Mean time to repair
MDTi, MUTi Mean down and up time of ith gas turbine
ρ Rate of forced outage
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ρRepair, ρAging, ρWeather Forced outage rate due to repairable, aging, and weather dependent failure
ρwjt, ρPVkt At time t, forced outage rate of jth wind turbine and kth solar power plant
λ Probability of failure
Swjt ‘1’ if jth wind power unit is scheduled on at time t and otherwise ‘0’
SPVkt ‘1’ if k th Solar PV plant is scheduled at time t and otherwise ‘0’
SGjt ‘1’ if ith gas turbine is scheduled on at time t and otherwise ‘0’
Ton,i,(t−1), Toff ,i,(t−1) On and off condition of ith gas turbine before (t − 1)th time
t, T Time index and scheduling period
Tgen Set containing time intervals where PSP operate in generation mode
Tpump Set containing time intervals where PSP operate in pumping mode
N G No. of thermal generating units
N w No. of wind turbine
N PV No. of solar PV plant
N Pump No. of PSP

1 Introduction

When it comes to a smart grid, the most important component is the microgrid (MG), which
provides an efficient energy system with better power quality, reliability, and economics to grid-
independent end-user locations. As smart grid technology advances, MGs must continue to function
with a very well-pumped-storage-hydraulic (PSH) unit and increase customer engagement through
demand-side management [1,2]. Thus, MG can purchase power from upstream grid-connected,
distributed energy sources with the advantage of time-varying electricity prices to meet its demand.
When it comes to renewable energy, though, there are several issues that make it difficult for MG
operators to purchase power from day-ahead markets at variable prices so that costs and pollution
may be reduced concurrently. Hence, to bid for electricity in the day-ahead market, MG should plan
an optimal bidding strategy to buy power from the upstream grid with a demand response program
(DRP), taking into consideration the uncertainty and outages of the sources of renewable energy.

The best bidding strategy has been studied in the below mentioned references in order to reduce
energy prices in the deregulated electricity market and to improve the dependability of the power
system. Optimal Control of a Microgrid with Distributed Renewable Generation and Battery Energy
Storage is presented in reference [3]. Stochastic programming and two-stage stochastic programming
[4] have been used to design a bidding strategy for MG that maximizes both power scheduling and
profit maximization [5]. A bi-level programming-based energy bidding strategy for MG has been
proffered in reference [6], in which a stochastic model of uncertain renewable energy sources and loads
is considered. A integrated demand response in multi-energy microgrids using deep reinforcement
learning is presented in reference [7]. In reference [8], a day-ahead bidding strategy for grid-tied
residential MG has been proposed. A robust optimization-based day-ahead bidding approach has
been employed in reference [9] for maximizing the profit from the joint energy and spinning reserve
markets. In reference [10], DRP is introduced in the bidding operation of MG to facilitate customers
with active participation with the MG aggregator and system operator. Small-scale MGs are involved
in a DRP-assisted real-time balancing bidding process in a hierarchical market model [11]. Another
DRP-aided short-term bidding framework for MG has been represented in reference [12] as a robust
optimization-based best-cost model.

The gas turbine discharges many pollutants, like SOx, NOx, and CO2, into the atmosphere for
electric utilities. The ambiance of reducing greenhouse gases is one of the important concerns. The
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Clean Air Act of 1990 was intended to reduce greenhouse gases and acid rain. So for that, the gas
turbine must decrease its sulfur oxide (SOx) and NOx levels of emission [13]. Today’s society is looking
for a secure and reliable source of energy that is both cost-effective and environmentally friendly.

1.1 Literature Review
A variety of tactics are suggested to decrease ambient greenhouse gases [14]. Dispatching,

considering emissions, is preferable among these.

On the basis of historical data and a list, concerns about renewable energy resources (RER)
are simulated. Bidding tactics in references [10–12] include demand response programs (DRPs) to
relieve load only during times of high demand or high cost. DRP integration, on the other hand, may
significantly improve the MG’s dependability and operating costs during DER outages.

Based on economic environmental dispatch (EED) with DRP, this study proposes an efficient
bid for MG based on the outages of intermittent renewable energy sources [15,16]. Wind turbine
(WT) units use the Weibull PDF (WPDF), whereas solar photovoltaic (PV) units use the well-
established Lognormal PDF (LPDF). These PDFs are widely used to estimate renewable energy
sources’ uncertainty probabilities. Within the anticipated upper and lower limits [17], all of the
potential scenarios are mapped with repetition. To encourage MG to make precise decisions on
power generation dispatch during bidding, penalty costs for underestimates and reserve costs for
overestimations of RER outputs are included in the primary costs [16]. Forced outages are more
likely to occur due to RER facilities’ remoteness and difficult operating conditions. RER unit outage
probability also follows certain mathematical formulations or PDFs based on distinct types of failures,
such as repairable, aging, and weather-related [18–25]. References [26,27] discussed the economic
dispatch problem using different computationally intelligent techniques. Considering the uncertainty
and outage modeling of RERs, the MG operator performs the EED to settle the optimal power
dispatch schedules of generators and pumped-storage-hydraulic (PSH) units and electricity purchasing
in the day-ahead market to facilitate its bidding optimization. Here, NSGA-II is suggested to solve
the EED problem. The techno-economic evaluation of combined power-to-hydrogen technology
and hydrogen storage in an optimal bidding approach for microgrids with high penetration rates
of renewable energy units was proposed by the authors in reference [28]. A grid-connected multi-
microgrid system’s ideal heat and power energy management, taking demand response and bidding
strategy into account, was suggested by authors in reference [29] as an economic-environmental risk-
averse approach. The coordinated optimal bidding techniques of aggregated microgrids were devised
by the authors in reference [30]. In order to do this, demand-side management based on game theory
is applied in an environment where electricity is sold. A clever predict-and-optimize framework for
the bidding strategy of microgrids in a day-ahead electricity market was proposed by the authors in
reference [31]. The effect of the ideal pump storage unit size on microgrid operational costs and energy
market bidding was examined by the authors in reference [32]. The effect of the ideal pump storage
unit size on microgrid running costs and energy market bidding was examined by authors in reference
[33].

1.2 Research Gaps
Based on the review performed in the previous section, it is concluded that the previous researchers

did not incorporate the emission constraints into the economic dispatch problem. Moreover, most of
the researchers did not consider the demand-side management response. At last, various researchers
did not consider the uncertainty and outages of renewable energy sources.
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1.3 Contribution
To address the research gaps discussed in the previous subsection, the authors have made the

following contributions to this manuscript:

1. Optimal bidding strategies for microgrids with demand-side management are presented.
2. Economic dispatch is proposed by incorporating uncertainty and outages from renewable

energy sources.
3. Emission constraints are incorporated into the economic dispatch.
4. The non-dominated sorting genetic algorithm II (NSGA-II) is utilized for economic emission

dispatch.

1.4 Organization of the Manuscript
The organization of the manuscript is as follows: Section two presents the problem formulation.

Section three presents the proposed methodology. Section four presents the results and discusses them,
followed by the conclusion.

2 Problem Formulation

The proposed MG is considered to be grid-connected and consists of gas turbines (GTs), a solar
PV plant, wind power generation units, a pumped-storage-hydraulic (PSH) unit, and loads. Day-ahead
weather data and electricity prices are assumed to be known from historical data and other factors.
The MG operator must determine the degree of energy purchase from the upstream grid and GTs,
solar PV plant, wind turbine, and PSH production in order to minimize overall cost and emissions
simultaneously while taking into account associated constraints. For the sake of problem formulation,
the following objective functions with constraints were used.

2.1 Modelling of the System
2.1.1 Arrangement of Probability of Solar Power Plant and Wind Turbine

Because of its unpredictability and intermittent nature, integrating solar power and wind turbines
into an MG is difficult. MG’s steady state security is imbalanced if demand spikes because of an
underestimation of renewable power and an overestimation of its reserve capacity buffers, which wastes
extra energy. MG’s overall production and operating costs in energy bid planning are impacted by each
of these factors. The use of probability distribution functions (PDFs), such as lognormal and Weibull,
to assess penalty costs for underestimates and reserve costs for underestimates has led to a wide range
of uncertainty models, such as beta, gumbel, and lognormal. The results of Eqs. (1) and (2) are well-
followed by lognormal or Weibull PDFs [16].

fG (G) = 1

G × σLog × √
2 × Π

× e
−

⎧⎨
⎩

−(ln G−μLog)
2

2×μLog
2

⎫⎬
⎭

for G > 0 (1)

fv (v) =
(

β

α

)
×

( v
α

)(β−1)

× e−( b
α )

β

for 0 < v < ∞ (2)

2.1.2 Model of Wind Power

At time t, the output power [18] of the jth wind turbine for a particular velocity of wind is given as
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Pwjt = 0, for vwt < vin and Pwjt = Pwrj ×
(

vwt − vin

vr − vin

)

Pwjt = Pwrj ×
(

vwt − vin

vr − vin

)
, for vi ≤ vwt ≤ vr (3)

Pwjt = Pwrj, for vr ≤ vwt ≤ vout

2.1.3 Model of Solar Power

At time t, the output power [19] from the kth PV solar plant is given as

PPVkt = Psrk ×
(

G2

GstdRc

)
, for 0 < G < Rc (4)

PPVkt = Psrk

(
G

Gstd

)
, for G ≥ Rc

2.1.4 PV Power Probabilities

The PV power probability is the same as the related solar power irradiation probability, in terms
of Eq. (5).

fPV (PPV) = fG (G) (5)

2.1.5 Wind Turbine Power Probabilities

Wind power probabilities for discrete zones, i.e., for the first and third cases of (3), may be
estimated using Eqs. (6) and (7) [15].

fw (Pw) |PW =0 = 1 − e−( vin
α )β + e−( vout

α )β (6)

fw (Pw) |PW =PWr
= −e−( vin

α )β − e−( vout
α )β (7)

As in the second situation in Eq. (3), the probability of WT power in the uninterrupted zone may
be calculated in Eq. (8).

fw (Pw) = β × (vr − vin)

αβ + Pwr

×
[

vin + Pw

Pwr

× (vr − vin)

](β−1)

× e
−

⎛
⎝ vin+ Pw

Pwr
×(vr−vin)
α

⎞
⎠β

(8)

2.2 Modelling Outage of Wind Turbine and Solar Power Plant
As a result of harsh climatic conditions, renewable energy sources are often driven out of service

owing to the deterioration of their components and the inability to repair them. For any power system,
the repairable forced outage rate is given as Eq. (9) [16].

ρRepair = F × MTTR
8760

(9)

The component aging failure model typically follows the normal PDF throughout the service
duration. The aging rate of failure is determined by Eq. (10).

ρAging = 1

σNorm × √
2 × Π

× e
−(T−μNorm)

2

2×σNorm
2 (10)
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For a time period of �t, by exponential distribution as Eq. (11), the weather-dependent failure
model is modeled as follows:

ρWeather = 1 − e−λ×Δt (11)

As a result, a multi-factor independent outage occurs, and the outage rate may be estimated using
the union set idea. For any renewable unit, the forced outage rate can be given by Eq. (12).

ρ = ρRepair ∪ ρAging ∪ ρWeather = ρRepair + ρAging + ρWeather − ρRepair × ρAging − ρAging × ρWeather − ρweather × ρRepair

− ρRepair × ρAging × ρWeather (12)

2.3 Objective with Constraints
For optimal bidding, simultaneously total cost and emission are optimized considering every

operational constraint. Total cost is the sum of the energy costs purchased from the grid, the fuel
and operation costs of gas turbines, and the operation costs of solar PV plants and wind turbines
during the entire time scale. Total emissions are the sum of emissions corresponding to the purchase
of grid power and emissions from gas turbines.

2.3.1 Cost

As fuel costs rise, gas turbine output power increases quadratically. Solar PV and wind turbine
operations include reserve expenses for overestimation of direct costs and penalties for underestimat-
ing dispatchable solar electricity and wind power, respectively. The total cost is the sum of the fuel cost
of GT power, the cost of power purchased from the grid, and the operational cost of the PV solar plant
and wind turbine [28–31].

FC =
T∑

t=1

[
NG∑
i=1

{(
aGi + bGi × PGit + cGi × P2

Git

) × SGit

} + (
cgridt × Pgrid,t

)

+
Nw∑
j=1

{
dwj × Pwjt + Owjt

(
Pwjt

) + Uwjt

(
Pwjt

)} × Swjt

+
NPV∑
k=1

{dPVk × PPVkt + OPVkt (PPVkt) + UPVkt (PPVkt)} × SPVkt

]
(13)

where Swjt =
{

1, ρwjt < Fw

0, otherwise and SPVkt =
{

1, ρPVkt < FPV

0, otherwise

On dispatchable wind power, the overestimation reserve cost and the underestimation penalty cost
are modeled, respectively, in Eqs. (14) and (15).

Owjt

(
Pwjt

) = owj ×
Pwjt∫

Pmin
wjt

(
Pwjt − y

) × fw (y) dy (14)

Uwjt

(
Pwjt

) = uwj ×
Pmax

wjt∫
Pwjt

(
y − Pwjt

) × fw (y) dy (15)
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Reserve costs and penalties for underestimated dispatchable solar power costs are modeled in
Eqs. (16) and (17), respectively.

OPVkt (PPVkt) = oPVk ×
PPVkt∫

Pmin
PVkt

(PPVkt − x) × fPV (x) dx (16)

UPVkt (PPVkt) = uPVk ×
Pmax

PVkt∫
PPVkt

(x − PPVkt) × fPV (x) dx (17)

2.3.2 Emission

The ambient greenhouse gases, such as SOx, NOx, and CO2, produced by gas turbines are modeled
separately. But, for evaluation purposes, the total emission of greenhouse gases is given as the sum of
a quadratic function, while the total emission is the sum of emissions from gas turbines and emissions
of power taken from the upstream grid.

FE =
T∑

t=1

[
N G∑
i=1

{(
αGi + βGi × PGit + γGi × P2

Git

) × SGit

} + (
egridt × Pgrid,t

)]
(18)

2.3.3 Power Balance Constraint

The limit of power balance is depicted in Eqs. (19) and (20), which state that the power procured
from the grid, GTs, WTs, PVs, and PSH units will be scheduled according to the load considering DRP.
Assuming that, when load is curtailed due to DRP, at that time LSt = 0, and when load is shifted to
base load demand, at that time no load is curtailed.

Pgrid,t +
N G∑
i=1

(PGit × SGit) +
N w∑
j=1

(
Pwjt × Swjt

) +
N PV∑
k=1

(PPVkt × SPVkt) +
Npump∑

l=1

Pghlt

= (1 − DRt) × LBase,t + Lst t ∈ Tgen (19)

Pgrid,t +
N G∑
i=1

(PGit × SGit) +
N w∑
j=1

(
Pwjt × Swjt

) +
N PV∑
k=1

(PPVkt × SPVkt) −
N pump∑

l=1

Pphlt

= (1 − DRt) × LBase,t + Lstt ∈ Tpump (20)

The transfer capacity of the line that connects the MG to the main grid limits the amount of power
that can be procured from the upstream grid (Eq. (21)).

0 ≤ Pgrid,t ≤ Pmax
grid (21)

2.3.4 Pumped-Storage-Hydraulic (PSH) Unit Constraints

Vres,l(t+1) = Vres,lt + Qphlt

(
Pphlt

)
, l ∈ N pump, t ∈ Tpump (22)

Vres,l(t+1) = Vres,lt − Qghlt

(
Pghlt

)
, l ∈ N pump, t ∈ Tgen (23)

Pmin
ghl ≤ Pghlt ≤ Pmax

ghl l ∈ N pump, t ∈ Tgen (24)
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Pmin
phl ≤ Pphlt ≤ Pmax

phl l ∈ N pump, t ∈ Tpump (25)

V min
res,l ≤ Vres,lt ≤ V max

res,l l ∈ N pump, t ∈ T (26)

At the beginning and end, the volume of water in the top reservoir of the PSH unit is taken, and
the net amount used by the PSH unit is equal to zero.

Vres,l0 = Vres,lT = V start
res,l = V end

res,l (27)

Qnet,spent,l = Qspent,TOT ,l − Qpump,TOT ,l =
∑

t∈Tgen

Qghlt

(
Pghlt

) −
∑

t∈Tpump

Qphlt

(
Pphlt

) = 0 (28)

2.3.5 Generation Limits of Gas Turbine

Pmin
Gi ≤ PGit ≤ Pmax

Gi i ∈ N G, t ∈ T (29)

2.3.6 Ramp Rate Limits of Gas Turbine

PGit − PGi(t−1) ≤ URi, i ∈ N G, t ∈ T

PGi(t−1) − PGit ≤ DRi, i ∈ N G, t ∈ T (30){(
Ton,i,(t−1) − MUTi

) × (
SGi(t−1) − SGit

) ≥ 0, i ∈ N G, t ∈ T(
TOff ,i,(t−1) − MDTi

) × (
SGit − SGi(t−1)

) ≥ 0, i ∈ N G, t ∈ T
(31)

3 Demand Side Management

Demand-side management (DSM) programs have numerous advantages, such as improving the
power system’s security, reducing costs, and so on. Strategic conservation, demand response, and so
on are some of the types of programs. The DSM is modeled using time-of-use (TOU) software [21],
which fixes the net load demand. Off-peak or less expensive times are used to shift some demand away
from peak times. Consequently, the load curve flattens, and the probable operating costs fall. Using
Eq. (32) as a starting point, the TOU program numerical model is restricted by Eqs. (33)–(36).

Lt = (1 − DRt) × LBase + Lst (32)
T∑

t=1

Lst =
T∑

t=1

DRt × LBase,t (33)

LInct = Inct × LBase,t (34)

DRt ≤ DRmax, t ∈ T (35)

Inct ≤ Incmax, t ∈ T (36)

4 Non-Dominated Sorting Genetic Algorithm-II

The non-dominated sorting genetic algorithm (NSGA) was developed by Deb et al. [23] to cope
with multi-objective optimization algorithms. Non-domination is used to grade solutions, while fitness
distribution is used to control diversity. Srinivas et al. [24] pioneered the non-dominated sorting genetic
algorithm II, which gives a more effective solution in terms of fitness distribution parameters than its
predecessor. Because of space restrictions, NSGA-complete II’s description is not provided here. The
flow chart of NSGA-II is demonstrated in Fig. 1.
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Figure 1: Flowchart of NSGA-II
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5 Simulation Results

The proposed NSGA-II-based day-ahead optimal bidding strategy for MG based on economic
environmental dispatch (EED) with DRP considering outages of intermittent renewable energy
sources is performed using numerical simulation. Simulation outcomes of the test system are used to
match the efficacy of the suggested NSGA-II with strength pareto evolutionary algorithm 2 (SPEA 2)
[25]. Tables A1–A3 in Appendix A present the data for the grid-connected MG model’s three gas
turbines, one solar PV unit, one wind turbine, and one PSH unit. Table A4 shows the predicted loads
and prices of power for the next 24 h, a day in advance. As a result of DSM, 15% of the load of the
16th and 17th h and 20% of the 19th h load were moved. The emission of grid electricity is assumed to
be 50 kg per MWh. The following features describe the PSH plant: Generating mode: Qght is positive
when generating, Pght is positive and 0 ≤ Pght ≤ 6 MW, Qght(Pght) = 4 + 2Pght acre-ft/hr.

Pumping mode: Qpht is negative when pumping; Ppht is negative and −6 < Ppht ≤ 0 MW, Qpht (Ppht)
= −12 acre-ft/h with Ppht = −6 MW.

Operating limitations: During pumping, the pumped hydro plant will be allowed to operate at a
maximum power level of around 6 megawatts. During the first 24 h, the reservoir must be 160 acre-feet
deep. Without taking spillage into account, the water inflow rate is ignored.

Figs. 2i and 2ii show the upper and lower projected limits for solar irradiation and wind velocity,
respectively. Fig. 2 shows a rapid variation in the velocity of the wind at 16 o’clock (Fig. 2ii). High
winds cause turbulent weather, which in turn causes renewable energy units to fail. As shown in Fig. 2,
weather-dependent historical data may be used to estimate the failure rates of PV and WT units.
Fig. 2iv depicts the comparable forced outage rates for those units. There are large failure rates for
PV systems in the 16th and 17th h, as can be shown in Fig. 2iv. The WT unit has high failure rates in
the 16th to 18th h. For PV and WT unit repairmen, the 17th or 18th h is necessary.

Figure 2: (i) Forecast limits of solar irradiation. (ii) Upper and lower forecast limits of wind speed. (iii)
Failure probabilities (λ) for PV and WT. (iv) Forced outage rates of PV and WT units
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The two opposing criteria are the total cost and the total amount of emissions. Each goal function,
such as total cost and total emission, is reduced using a real-coded evolutionary algorithm in order
to explain the relationships between the objective functions (RCGA). Using these parameters, the
population size, the maximum number of iterations, the crossover, and the mutation probabilities are
all set to 100, 200, 0.9, and 0.02.

NSGA-II has been used to simultaneously optimize both the total cost and the total emission
goals. SPEA 2 has helped as a reference point in resolving this issue.

SPEA 2 and NSGA-II have a population size of 20, 30, 0.9, and 0.2, respectively, for crossover
and mutation probabilities.

Electricity generated from gas turbines, wind, solar, and pumped storage, as well as power
obtained from the upstream grid, is summarized in Table 1. In addition, Table 2 presents the hourly
generation (MW) schedule acquired from emission dispatch. Data on the generation of gas turbine,
wind, solar, and pumped storage, as well as electricity obtained from the upstream grid through
economic emission dispatch, are presented in Tables 3 and 4 accordingly. Economic dispatch, emission
dispatch, and economic emission dispatch all contribute to the overall cost and total emissions in
Table 5. Figs. 3i and 3ii show the convergence characteristics of costs and emissions. Fig. 3iii shows,
for instance, the distribution of the 20 non-dominated solutions obtained by NSGA-II and SPEA2 in
their most recent iteration, which was derived by occurring as the result of cost and emission objectives.

Table 1: Hourly generation (MW) schedule acquired from economic dispatch

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

1 0.6298 0 1.5639 5.8212 0 −6.0000 12.9852
2 0.8553 3.0453 0.7363 3.7275 0 −6.0000 14.6356
3 0.3991 1.0051 0.8399 6.0000 0 −6.0000 16.7560
4 0.6081 1.3772 1.6879 6.0000 0 −6.0000 19.3268
5 0.4880 0.2047 1.9993 6.0000 0.1923 −6.0000 28.8158
6 1.9216 0.7481 2.7325 6.0000 0.8348 −6.0000 24.3881
7 1.5856 0.3667 0 6.0000 2.3992 −6.0000 24.6485
8 0.1625 1.9725 0.3555 5.7430 3.4953 −6.0000 22.2711
9 0.5190 1.1200 3.3573 2.9220 3.9706 2.3230 20.2882
10 0.8907 2.6495 1.5506 4.0779 4.5148 5.3246 8.9919
11 0.0170 1.4556 0.5235 2.9853 5.3980 5.2082 13.4123
12 0 0.0240 4.2554 3.2272 5.1496 1.2458 20.0979
13 0.3012 0 0.2509 3.6931 4.1066 3.3795 17.7686
14 2.2093 1.0051 0.9918 3.6435 3.4621 5.7353 26.9530
15 1.6945 1.4396 0.1913 2.0145 2.9754 2.2626 20.9221
16 0.3881 0.7093 2.4411 0 0 6.0000 22.7616
17 0.7696 1.8868 1.4992 0 0 3.1149 24.6046
18 2.2199 2.6392 1.0943 0 0.7651 6.0000 29.2816
19 3.1803 2.0358 3.7213 3.5852 0.0101 2.7308 22.7366
20 1.6180 2.9112 4.3674 3.6505 0 4.6711 26.7818
21 2.2493 3.4694 4.8920 2.5150 0 −6.0000 29.8743
22 1.2593 2.3805 0.3604 3.8269 0 −6.0000 22.1729

(Continued)
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Table 1 (continued)

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

23 1.6118 2.5635 0.8152 4.0647 0 −6.0000 24.9448
24 0.3996 0.4968 2.5094 3.3909 0 −6.0000 23.7034

Table 2: Hourly generation (MW) schedule acquired from emission dispatch

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

1 7.0000 8.0000 1.1149 4.2348 0 −6.0000 0.6503
2 6.1038 4.2514 4.4232 3.9685 0 −6.0000 4.2530
3 7.0000 4.8154 6.0059 6.0000 0 −6.0000 1.1788
4 3.9615 5.5252 10.0000 6.0000 0 −6.0000 3.5133
5 7.0000 8.0000 8.3917 6.0000 0.2820 −6.0000 8.0263
6 4.1579 7.7078 6.9339 6.0000 1.1555 −6.0000 10.6700
7 7.0000 8.0000 10.0000 6.0000 2.1760 −6.0000 1.8240
8 3.3406 4.4722 7.9446 6.0000 3.2179 −6.0000 9.0247
9 0 4.4199 6.4004 5.3569 3.9839 6.0000 8.3390
10 3.6391 8.0000 10.0000 1.7040 4.5179 0 0.1390
11 0 5.7708 8.2316 2.9397 5.4283 6.0000 0.6297
12 3.3376 8.0000 10.0000 0.1225 5.2158 6.0000 1.3240
13 5.0748 5.4475 8.7944 3.2667 4.2871 0 2.6295
14 3.3861 8.0000 10.0000 3.7343 3.6557 0 15.2239
15 7.0000 6.7643 7.0934 3.1759 2.9030 0 4.5635
16 5.1998 8.0000 10.0000 0 0 6.0000 3.1002
17 7.0000 4.2384 6.1245 0 0 6.0000 8.5121
18 6.7873 8.0000 10.0000 0 0.7848 6.0000 10.4279
19 7.0000 7.1155 7.6116 1.6464 0.0193 6.0000 8.6072
20 4.4799 8.0000 4.3326 4.3861 0 6.0000 16.8014
21 7.0000 5.7954 6.5600 3.0305 0 −6.0000 20.6140
22 5.9080 8.0000 10.0000 3.6751 0 −6.0000 2.4168
23 7.0000 4.8374 9.8673 1.3874 0 −6.0000 10.9079
24 5.4220 8.0000 9.8645 4.4821 0 −6.0000 2.7314

Table 3: Hourly generation (MW) schedule acquired from EED using NSGA-II

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

1 2.9849 3.3890 6.0376 5.3880 0 −6.0000 3.2004
2 4.3916 4.8276 4.7287 6.0000 0 −6.0000 3.0521
3 5.5260 4.2543 5.5066 6.0000 0 −6.0000 3.7130

(Continued)
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Table 3 (continued)

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

4 3.7725 1.6378 4.6157 5.7529 0 −6.0000 13.2211
5 5.3743 2.1891 3.8308 6.0000 0.5194 −6.0000 19.7865
6 5.7943 5.9921 7.5277 6.0000 1.4583 −6.0000 9.8526
7 4.6254 6.0212 8.6737 6.0000 2.1887 −6.0000 7.4911
8 3.3167 3.9214 4.1157 6.0000 3.4748 −6.0000 13.1714
9 3.7432 5.6613 4.8407 3.9216 3.9872 2.9205 9.4256
10 1.1587 5.1351 1.8917 3.1512 4.1462 2.0266 10.4904
11 4.2170 4.1247 3.0509 2.6654 5.3866 4.0886 5.4669
12 3.3202 5.7683 6.3407 1.8956 5.1213 4.0920 7.4619
13 1.9101 5.0711 3.8029 1.1529 4.4227 5.3794 7.7608
14 4.9169 4.0195 6.3225 4.5013 3.3649 5.7586 15.1164
15 2.7623 5.6823 5.1959 1.9308 3.2481 6.0000 6.6806
16 2.1534 3.6187 6.2732 0 0 0.8184 19.4364
17 4.2556 3.8879 5.5650 0 0 5.7746 12.3919
18 4.5558 5.1500 6.5900 0 0.9406 6.0000 18.7636
19 2.7147 3.1687 5.5892 6.0000 0.1918 2.5038 17.8318
20 2.7607 4.2326 5.5113 1.8022 0 2.6334 27.0598
21 5.1978 2.3587 7.0244 1.8975 0 −6.0000 26.5216
22 2.5099 2.6826 8.4443 4.1604 0 −6.0000 12.2028
23 1.6348 6.1588 6.7497 3.8893 0 −6.0000 15.5674
24 2.6016 4.9480 5.6753 2.3559 0 −6.0000 14.9193

Table 4: Hourly generation (MW) schedule acquired from EED using SPEA 2

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

1 2.5427 2.4507 6.7079 5.7131 0 −6.0000 3.5856
2 2.3406 1.9487 7.5644 4.2689 0 −6.0000 6.8774
3 3.6110 5.5991 7.3003 6.0000 0 −6.0000 2.4896
4 5.6085 6.2597 2.8790 6.0000 0 −6.0000 8.2528
5 1.8660 4.9910 6.7697 6.0000 0.0015 −6.0000 18.0719
6 3.7170 2.3154 2.3735 6.0000 0.8573 −6.0000 21.3618
7 3.2606 3.4488 2.3018 6.0000 2.5002 −6.0000 17.4885
8 1.7427 3.0117 6.5092 4.7685 3.6194 −6.0000 14.3486
9 1.9691 5.7996 5.8071 2.1872 3.8808 3.2319 11.6242
10 4.1763 2.8650 3.5324 3.1975 4.6041 5.6938 3.9310
11 3.1729 2.3437 2.6837 2.1978 5.4940 3.1735 9.9344
12 3.3695 2.3701 6.5418 1.8983 5.2217 4.8002 9.7984
13 5.3372 5.0548 4.4428 3.7490 4.6394 1.9723 4.3045
14 2.9497 2.6122 6.3042 3.9209 3.5155 4.8144 19.8830
15 2.3080 3.0905 6.2872 3.6466 2.8986 0.3914 12.8777

(Continued)
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Table 4 (continued)

Hour PG1 PG2 PG3 Pw PPV Pgh Pgrid

16 5.2098 4.5483 5.9327 0 0 6.0000 10.6092
17 2.3849 6.6198 7.9512 0 0 2.6639 12.2552
18 2.2529 7.4168 7.7712 0 0.8893 4.4687 19.2011
19 4.1608 5.2687 6.5545 3.5303 0.0175 5.6991 12.7692
20 4.4487 6.6452 7.5509 2.5236 0 5.0874 17.7442
21 2.3126 3.4898 7.9173 2.0801 0 −6.0000 27.2002
22 5.0339 5.1311 7.5146 3.8693 0 −6.0000 8.4510
23 2.8586 2.4976 8.0536 3.7064 0 −6.0000 16.8838
24 1.8391 3.8461 6.1609 4.2228 0 −6.0000 14.4311

Table 5: Comparison of performance

Type of problem
and technique

Cost ($) Emission (Kg)

Economic dispatch 63538 26394

Emission dispatch 217006 8910

EED NSGA-II 130407 16098
SPEA 2 131451 16286

Figure 3: (i) Cost convergence characteristic. (ii) Emission convergence characteristic. (iii) Pareto-
optimal front acquired from the last iteration

After analyzing the results and comparing the performances of NSGA-II with SPEA 2, it was
found that the proposed NSGA-II method provides a better result in terms of cost and emissions
compared to SPEA 2.

6 Conclusion

An NSGA-II-based day-ahead optimal bidding strategy for MG based on economic environmen-
tal dispatch is proposed with consideration of DRP under outage conditions and uncertainties about
renewable energy sources. The uncertainty related to solar and wind units is modeled using lognormal
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and Weibull probability distributions. TOU-based DRP is used, especially considering the time of
outages along with the time of peak loads and prices, to enhance the reliability of MG and reduce
costs and emissions. The cost obtained by using NSGA-II was 130407 US dollars, whereas for SPEA
2, it was 131451 US dollars. The emission obtained using NSGA-II was 16098 kg, whereas for SPEA
2, it was 16286 kg.
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Appendix A

Table A1: Data of gas turbine

Parameter 1st GT 2nd GT 3rd GT Unit

Pmax
Gi 7 8 10 MW

Pmin
Gi 0 0 0 MW

MUTi 2 2 2 h
MDTi 2 2 2 h
URi 4 4 5 MW
DRi 4 4 5 MW
SGi 1 1 1 –
aGi 10.193 2.035 1.1825 $/h
bGi 105.18 60.28 65.34 $/MWh
cGi 62.56 44 44 $/MW2h
αGi 2.655 15.443 29.038 Kg/h
βGi −0.1618 −0.6415 −0.8969 Kg/MWh
γ Gi 0.0705 0.1304 0.0622 Kg/MW2h

Table A2: Data of PV unit

Parameter Value Unit Parameter Value Unit

PPVk 6 MW Life span 15 Years
Irradiance at STC 1000 W/m2 T 5 Years
Temperature at STC 25 °C μNorm 13 –
NOCT 44 °C σ Norm 3 –
μlog 5.2 – FPV 0.5 0.5
σ log 0.6 – dPVk 6 $/MWh
F 33 Failure times/year oPVk 17 $/MWh
MTTR 63 Days uPVk 5 $/MWh
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Table A3: Data of wind turbine unit

Parameter Value Unit Parameter Value Unit

Pwrj 6 MW Life span 20 Years
vin 3 m/s T 5 Years
vr 14 m/s μNorm 17 –
vout 25 m/s σ Norm 4 –
α 9 – Fw 0.5 –
β 2 – dwj 7 $/MWh
F 54 Failure times/year owj 16 $/MWh
MTTR 96 Days uwj 5 $/MWh

Table A4: Day-ahead forecasted loads and forecasted grid price for consecutive 24 h

Hour LBase cgrid Hour LBase cgrid

1 11.0 43.5 13 25.5 54.0
2 13.0 67.0 14 40.0 81.5
3 15.0 59.0 15 27.5 76.5
4 19.0 68.0 16 34.0 92.0
5 22.0 70.0 17 33.5 97.0
6 21.0 77.5 18 38.0 113.0
7 25.0 85.0 19 43.5 100.0
8 24.0 98.0 20 40.0 115.0
9 21.0 90.0 21 33.0 101.0
10 24.0 71.0 22 20.0 105.0
11 25.0 64.0 23 24.0 77.0
12 30.0 56.5 24 20.5 79.0
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