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ABSTRACT

The stability problem of power grids has become increasingly serious in recent years as the size of novel power
systems increases. In order to improve and ensure the stable operation of the novel power system, this study
proposes an artificial emotional lazy Q-learning method, which combines artificial emotion, lazy learning, and
reinforcement learning for static security and stability analysis of power systems. Moreover, this study compares
the analysis results of the proposed method with those of the small disturbance method for a stand-alone power
system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,
and improve the static security stability of the new type of power system more effectively than the traditional
proportional-integral-differential control and Q-learning methods.
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Nomenclature

α Learning rate
a (t) Action value
β Probability distribution factor
ΔδH

i (t) High-frequency signal of the power angle deviation
Et Machine terminal voltage
e (t) Control error
EFMAX , EFMIN Upper and lower limits of the excitation output voltage
Eq0 Fault deviation
Gex (s) Transfer function of the AVR and the exciter
γ Discount factor
KSTAB Stabilizer gain
Kn Normalization constant
Gex (s) Transfer function of the AVR and the exciter
μ Weight factor of the action value
ωi Weight function of the distance
s (t) State value
TR Time constant of the machine terminal voltage converter
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Vref Reference voltage of the system
v1 Output of the machine terminal voltage converter

1 Introduction

To respond positively to the global zero-carbon program, countries around the world are trans-
forming and upgrading their industries in various fields [1]. In China, the government is taking the lead
in building a novel power system based on renewable energy [2]. In recent years, the wind power and
photovoltaic systems share in China has increased year by year, and hydroelectric power technology
continues to develop [3]. The development and utilization of renewable energy can reduce pollution
and save energy; however, renewable energy power generation brings volatility and strong uncertainty,
which causes hidden dangers to the security and stability of the novel power system [4].

The novel power system security stabilization problems can be further classified into static,
transient, and dynamic problems [5]. This study mainly focuses on static safety and stability control
methods. Existing static security and stability control methods for novel power systems mainly include
proportional-integral-derivative (PID) [6], PID control based on optimization algorithms [7], and
reinforcement learning methods [8]. PID controllers are characterized by a simple structure, are easy
to implement, and have fewer number of parameters.

When the control model is known, the parameters of the PID controller can be calculated
accurately according to the requirements of system safety and stability [9]. However, in actual
operation, because the parameters of the system model cannot be accurately measured and estimated,
the accurate model of the actual power system is difficult to obtain, which leads to the low availability
of the PID control parameters calculated according to the requirements of the system security and
stability [10]. Based on the PID controller, the above problem of unavailability of PID parameters can
be solved by adding the PID controller with an optimization algorithm. However, since the system
structure and internal parameters are constantly changing, PID controllers based on optimization
algorithms do not apply to systems where the parameters are constantly changing as the equipment is
aging [11]. The reinforcement learning approach can effectively deal with the problem of unavailability
of the parameters of the fluctuating system model because of the feature of not relying on the system
model [12].

Existing reinforcement learning methods can be categorized into reinforcement learning and deep
reinforcement learning methods. Compared with deep reinforcement learning methods, reinforcement
learning methods represented by Q-learning methods are simple to be trained and rapid in operation,
which can fulfill the requirements of static safe, stable, and rapid control of novel power systems [13].
Although Q-learning methods do not depend on the system model, the current Q-learning methods
mainly have the following problems: (1) the curse of dimensionality of computer memory caused
by excessively large action and state matrices [14]; (2) the problem of slow convergence and long
training time during the training process because of the impossibility of filtering the high-quality data
from the low-quality data. Existing deep reinforcement learning methods contain at least one deep
neural network inside [15]. For example, the deep Q network contains one deep neural network; the
doubled deep Q network contains two deep neural networks [16]; meanwhile, the deep deterministic
policy gradient (DDPG) contains two deep neural networks [17]. The training process of deep neural
networks has strong randomness and uncertainty. Moreover, the trained deep neural networks do not
provide completely accurate control actions [18]. Therefore, this study mainly adopts the Q-learning
method that can handle random inputs. Therefore, the deficiencies of the existing methods for the
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safety and stability control problem of the novel power system can be summarized as follows: (1) fixed-
parameter PID methods are not capable of adapting to changes in system parameters; (2) inaccurate
reinforcement learning leads to lower-performance control actions; (3) high-accuracy reinforcement
learning leads to dimensional disasters and insufficient execution time; and (4) reinforcement learning
methods that are not capable of selecting excellent actions for training lead to long convergence times
and slow convergence speed.

The static security stability of the novel power system is required to fulfill the requirement of
fast control, therefore the state matrix and action matrix of the Q-learning method adopted in this
study will not be too large, which can avoid the curse of dimensionality [19]. To solve the problem
that Q-learning methods cannot filter high-quality data and low-quality data, this study proposes lazy
Q-learning methods. The proposed lazy Q-learning method can filter high-quality data, which can
improve training efficiency [20]. The lazy Q-learning method can both determine the quality of the data
and characterize the data dimensions from high to low dimensionality. After dimensionality reduction
of high-quality data, intelligent agents based on this Q-learning method can provide accurate control
actions for the safety and stability of novel power systems [21]. Therefore, the main contributions of
this study can be summarized as follows:

(1) This study proposes a lazy Q-learning method to the static safety and stability control problem
of a novel power system. The lazy Q-learning method is easier to converge to the optimal control action
than the Q-learning method.

(2) This study applies lazy learning to filter and compress the data, which can characterize the
relationship from high-dimensional data to low-dimensional data and can accelerate the convergence
process of the algorithm.

(3) This study adopts the Q-learning method which can be updated online to deal with the static
security stabilization problem of novel power systems and has a simple algorithmic process, requires
less memory, and has fast computational speed.

The remaining sections of this paper are organized as follows. Section 2 analyzes the static security
stabilization problem of a new type of power system. Section 3 proposes the lazy Q-learning method.
Section 4 is the application of the proposed lazy Q-learning method to a specific problem. Section 5 is
the conclusion and outlook of the paper.

2 Static Security Stability Analysis of a Novel Power System
2.1 Framework and Components of a Novel Power System

The static security and stability problems of novel power systems dominated by renewable energy
sources are more prominent [22]. The novel power system is shown in Fig. 1.

The control block diagram of the voltage stabilization actuator is shown in Fig. 2.

The self-inductance of the rotor circuit of a conventional motor is Lffd. The derivative operator p
is replaced by the Laplace operator s as:

�ψfd = K3

1 + sT3

[
�Efd − K4�δ

]
(1)

The contents of the parentheses in Eq. (1) can be rewritten as:

ψad0 + Laqsid0 = eq0 + Raiq0 + Xqsid0 = Eq0 (2)

ψaq0 + L′
aqsiq0 = −Laqsiq0 + L′

aqsiq0 = − (
Xq − X ′

d

)
iq0 (3)
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where Eq0 is the fault deviation. The constant K1 is calculated as:

K1 = EBEq0

D
× (RT sin δ0 + XTd cos δ0) + EBiq0

D

(
Xq − X ′

d

)
× (

XTq sin δ0 − RT cos δ0

) (4)

Figure 1: Novel power systems based on renewable energy sources

Figure 2: Control block diagram of voltage stabilization actuator

Similarly, the other constants K2, K3, T3 and K4 are calculated as:

K2 = Lads

Lads + Lfd

[
RT

D
Eq0 +

(
XTq

(
Xq − X ′

d

)
D

+ 1

)
iq0

]
(5)

K3 = Lads + Lfd

Ladu

1

1 + XTq

D

(
Xq − X ′

d

) (6)

T3 = T ′
d0s

XTq(Xq−X ′
d)

D
+ 1

(7)
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K4 = Ladu

Lads

Lads + Lfd

EB

D

(
XTq sin δ0 − RT cos δ0

)
(8)

If the effect of saturation is neglected, the constant K4 can be simplified to:

K4 = EB

D

(
Xd − X ′

d

) (
XTq sin δ0 − RT cos δ0

)
(9)

2.2 Modeling of Single-Machine Infinity Systems Considering Actuators and Automatic Voltage
Regulation

The signal input to the automatic voltage actuator system is the machine terminal voltage Et. The
Et can be represented by the state variables �ωr, �δ and �ψfd. Therefore the Et can be calculated as:

E2
t = e2

d + e2
q (10)

When the system is perturbed by small disturbances, the above equation can be rewritten as:

(Et0 + �Et)
2 = (ed0 + �ed)

2 + (
eq0 + �eq

)2
(11)

When ignoring all second-order components of the perturbation signal, the above equation is
rewritten as:

Et0�Et = ed0�ed + eq0�eq (12)

therefore,

�Et = ed0

Et0

�ed + eq0

Et0

�eq (13)

When the perturbation value is considered, the stator voltage equation can be written as:

�ed = −Ra�id + Ll�iq − �ψaq (14)

�eq = −Ra�iq − Ll�id + �ψad (15)

Combining the above equations, the variation of machine terminal voltage �Et is:

�Et = K5�δ + K6�ψfd (16)

where,

K5 = ed0

�Et0

× [−Ram1 + Lln1 + Laqsn1

] + eq0

�Et0

× [−Ran1 − Llm1 − L′
adsm1

]
(17)

K6 = ed0

�Et0

× [−Ram2 + Lln2 + Laqsn2

] + eq0

�Et0

×
[
−Ran2 + Llm2 + L′

ads

(
1

Lfd

− m2

)]
(18)
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The model of the thyristor excitation system with automatic voltage regulation (AVR) is shown
in Fig. 3, where EFMAX and EFMIN are the upper and lower limits of the excitation output voltage,
respectively; TR is the time constant of the machine terminal voltage converter; Vref is the reference
voltage of the system; and v1 is the output of the machine terminal voltage converter. Thyristor
excitation systems contain only the links required for special systems and apply high-gain exciters.
The limiting and protection circuits are omitted because the limiting and protection circuits do not
affect the stability of small signals.

Figure 3: Thyristor excitation system with AVR

Adding disturbances to the terminal voltage converter, the variation of the output of the machine
terminal voltage converter is calculated as:

�v1 = 1
1 + pTR

�Et (19)

therefore,

p�v1 = 1
TR

(�Et − �v1) (20)

The Eq. (20) is rewritten as:

p�v1 = K5

TR

�δ + K6

TR

�ψfd − 1
TR

�v1 (21)

The output of the system excitation voltage is:

Efd = KA

(
Vref − v1

)
(22)

The variation of excitation voltage is calculated as:

�Efd = KA (−�v1) (23)

Considering the effect of the excitation system, the equation of the excitation circuit is:

p�ψfd = −ω0Rfd

Lfd

m1L′
ads�δ − ω0Rfd

Lfd

�ψfd

×
[

1 − L′
ads

Lfd

+ m2L′
ads

]
− ω0Rfd

Ladu

KA�v1 (24)

Since the exciter is a first-order model, the order of the whole system is increased by one order
from the original one, and the newly added state variables are [23]. Since p�ωr and p�δ are not affected
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by the exciter, the entire state-space model of the power system is written in the form of the following
vector matrix:

⎡⎢⎢⎣
�ω̇r

�δ̇

�ψ̇fd

�v̇1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− KD

2H
− K1

2H
− K2

2H
0

ω0 0 0 0

0 −ω0Rfd

Lfd

m1L′
ads −ω0Rfd

Lfd

[
1 − L′

ads

Lfd

+ m2L′
ads

]
−ω0Rfd

Ladu

KA

0
K5

TR

K6

TR

− 1
TR

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

�ωr

�δ

�ψfd

�v1

⎤⎥⎥⎦+

⎡⎢⎢⎣
b1

0
0
0

⎤⎥⎥⎦�Tm

(25)

If the mechanical torque input is constant, �Tm is 0. The system control framework including
the voltage converter and AVR/exciter link is shown in Fig. 4, where Gex (s) is the transfer function of
the AVR and the exciter. The Gex (s) applies to any type of exciter and can be expressed in terms of the
constant KA as:

Gex (s) = KA (26)

The terminal voltage error signal at the input of the voltage converter is determined by the above
equation.

Figure 4: Block diagram of the control system with actuator and AVR

2.3 System Model Combining Automatic Voltage Regulation and Power System Stabilizers
Power system stabilizers (PSS), which is an additional excitation control technique for suppressing

low-frequency oscillations of synchronous generators by introducing additional feedback signals, have
been applied to improve the stability of power systems [24]. The phase compensation link appropriately
provides phase overrun characteristics to compensate for the phase lag between the exciter input and
the generator air gap torque [25]. Since the signal link is a high-pass filter with a large time constant
TW , the oscillating signal at frequency ωr does not change with the passage of the oscillating signal [26].
The stabilizer gain KSTAB determines the amount of damping generated by the PSS. The perturbation
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value is added to the signal filtering module as:

�v2 = pTw

1 + pTw

(KSTAB�ωr) (27)

p�v2 = KSTABp�ωr − 1
Tw

�v2 (28)

The component form of the state variable is adopted to express Eqs. (27) and (28) as:

p�v2 = a51�ωr + a52�δ + a53�ψfd

+ a55�v2 + KSTAB

2H
�Tm (29)

where,

a51 = KSTABa11 (30)

a52 = KSTABa12 (31)

a53 = KSTABa13 (32)

a55 = − 1
TW

(33)

Similarly, the following equations can be obtained from the phase compensation link:

�vs = �v2

(
1 + pT1

1 + pT2

)
(34)

p�vs = T1

T2

p�v2 + 1
T2

�v2 − 1
T2

�vs (35)

p�vs = a61�ωr + a62�δ + a63�ψfd + a65�v1 + a66�v2

+ a66�vs + T1

T2

KSTAB

2H
�Tm (36)

where,

a61 = T1

T2

a51 (37)

a62 = T1

T2

a52 (38)

a63 = T1

T2

a53 (39)

a65 = T1

T2

a55 + 1
T2

(40)

a66 = − 1
T2

(41)
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therefore,

�Efd = KA (�vs − �v1) (42)

With the addition of the power system stabilizer, the actuator equation is:

p�ψfd = a32�δ + a33�ψfd + a34�v1 + a36�vs (43)

where,

a36 = ω0Rfd

Ladu

KA (44)

When �Tm = 0, after adding a power system stabilizer, the state space model of the entire
system is:⎡⎢⎢⎢⎢⎢⎢⎣

�ω̇r

�δ̇

�ψ̇fd

�v̇1

�v̇2

�v̇s

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13 0 0 0
a21 0 0 0 0 0
0 a32 a33 a34 0 a36

0 a42 a43 a44 0 0
a51 a52 a53 0 a55 0
a61 a62 a63 0 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
�ωr

�δ

�ψfd

�v1

�v2

�vs

⎤⎥⎥⎥⎥⎥⎥⎦ (45)

where,

a11 = − KD

2H
(46)

a12 = − K1

2H
(47)

a13 = − K2

2H
(48)

a21 = ω0 (49)

a32 = −ω0Rfd

Lfd

m1L
′
ads (50)

a33 = −ω0Rfd

Lfd

[
1 − L′

ads

Lfd

+ m2L
′
ads

]
(51)

a42 = K5

TR

(52)

a43 = K6

TR

(53)

a44 = − 1
TR

(54)
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The control framework of the power system containing AVR and PSS is shown in Fig. 5. When
the damping windings are neglected, the generator of the simplified system model is then shown in
Fig. 6.

Figure 5: Thyristor excitation system including AVR and PSS

Figure 6: Generator model including AVR and PSS

In this study, the error integration criterion widely adopted in control science is applied as the
evaluation index of static safety and stability control performance, i.e., Integral absolute error (IAE),
Integral squared error (ISE), Integral time multiple absolute error (ITAE), Integral time multiple
square error (ITSE), Integral squared time multiple absolute error (ISTAE), Integral squared time
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absolute error (ISTAE) and Integral squared time squared error (ISTSE). The specific expression is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IAE = ∫ T

0
|e (t)| dt

ISE = ∫ T

0
e2 (t) dt

ITAE = ∫ T

0
t |e (t)| dt

ITSE = ∫ T

0
te2 (t) dt

ISTAE = ∫ T

0
t2 |e (t)| dt

ISTSE = ∫ T

0
t2e2 (t) dt

(55)

where e (t) is the control error. The smaller the value of the six control performance evaluation indexes
in the error integration criterion, the smaller the error of the control process and the higher the control
accuracy.

3 Artificial Emotional Lazy Q-Learning

The artificial emotional lazy Q-learning method proposed in this study consists of artificial
emotion, lazy learning, and Q-learning.

The Q-learning algorithm has been almost synonymous with reinforcement algorithms since the
first release of the Q-learning algorithm in 1989 by Chien et al. [27]. Q-learning belongs to the category
of single-agent reinforcement learning algorithms, in which the agents validate the knowledge gained
and update the optimal policy by searching for the optimal value in accordance with the environment
online [28]. In the framework of Q-learning-based algorithms, the agent updates the value function
according to the value of the reward function, which for Q-learning algorithms is the Q-function.
Typically, the agent records and updates the Q-function in the form of a lookup table. Q-learning
obtains reward values by continuously trying various action values in the environment and iterates the
Q-function in the lookup table online according to the reward values [29]. Eventually, Q-learning will
converge to the optimal policy. Based on Bellman’s equation, the updated formula for the Q (s (t), a (t))
matrix is:

Q (s (t), a (t)) ← Q (s (t), a (t)) + α (r (t + 1)

+γ max
a∈A

Q (s (t + 1), a (t)) − Q (s (t), a (t))
)

(56)

where Q (s (t), a (t)) is the Q-value of the execution action value a (t) in state s (t), Q (s (t), a (t)) is a
matrix of size S × A, typically realized through a Lookup table; s (t) and a (t) are the current state
value and action value of the system, respectively; s (t + 1) is the next moment state; A is the set of
actions, and the number of elements within A is finite to ensure that the Q-learning algorithm has a
solution; α is the learning rate, taking values in the range 0 < α < 1, and α measures the level of
trust between the retained part and the updated part; γ is the discount factor, which takes values in
the range 0 < γ < 1, and γ reflects how much the Q-learning algorithm cares between the current
reward value and the future reward value.

The Q-learning algorithm generally selects the optimal action value based on a greedy strategy
[30], which means that the action value which can obtain the highest Q-value in the state s (t) at the
current moment will always be selected. The specific formula is:

π ∗ (s (t)) = arg max
a∈A

Q (s (t), a (t)) (57)
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where π ∗ (s (t)) is the optimal policy for the Q-learning algorithm. While the greedy strategy improves
the convergence speed, after a certain number of iterations the agents in Q-learning may follow the
same path to select the same action values and subsequently may miss the opportunity to select the
better action values. Therefore, a probability updating strategy is required to be introduced to judge
which action value is more likely to be selected in different states, and the probability updating formula
is:

P (s (t), a (t)) ←
{

P (s (t), a (t)) − β (1 − P (s (t), a (t))), a (t + 1) = a (t)
P (s (t), a (t)) (1 − β), a (t + 1) �= a (t)

(58)

where P (s (t), a (t)) is the probability of selecting the action value a (t) in the state s (t); β is the
probability distribution factor, which takes values in the range 0 < β < 1, and β can control the
speed of action value search. While the matrix Q (s (t), a (t)) is being updated, the matrix P (s (t), a (t))
is updated simultaneously according to Eq. (58). As the number of iterations increases, the probability
that an action value with a higher Q-value will be selected rises. Since the probability of other action
values is always non-zero, the Q-learning algorithm can jump out of the local optimum.

In this study, the combined reward function is designed based on the high-frequency signal of the
power angle deviation ΔδH

i (t) and the integral of the power angle deviation
∫

ΔδH
i (t):

r (t) = −Kn (1 − w)
(
ΔδH

i (t)
)2 − w

(
200 −

∫
ΔδH

i (t)
)2

(59)

where Kn is a normalization constant which uniformly scales the values of ΔδH
i (t) and

∫
ΔδH

i (t) to
avoid large differences in magnitude. In this study, Kn = 20000; (1 − w) and w reflect the weights of
ΔδH

i (t) and
∫

ΔδH
i (t) in R (t), respectively.

In this study, the system power angle deviation is selected as the state value of the Q-learning
algorithm:

s (t) ∈ {(−∞, −0.1] , (−0.1, −0.0818] , . . . , [0.1, +∞)}︸ ︷︷ ︸
13

(60)

For the Q-learning algorithm, the magnitude of the power angle deviation corresponds to the state
value s (t), and the adjustment command corresponds to the action value a (t) in the action set A. The
size and range of the values s (t) significantly affect the setting of the action set A. The finite number
of action values a (t) in the action set A are arranged in descending order:

A = {a1 (t), a2 (t), · · · , ak (t)} (61)

where k is the number of action values.

When the number of action values a (t) is certain, a larger interval range of the action set A means
that the probability of selecting the optimal action value will be reduced, which may result in over-
or under-adjustment at a certain time. On the contrary, if the interval range of the action set A is too
small, the agent will not traverse most of the state values s (t) of the power system, and the agent will be
restricted in selecting the action values. However, if the state values input to the Q-learning algorithm
are always stabilized within a small range, the range of the action set can be narrowed down and the
accuracy of the action values can be improved.

After the interval range of the action set A is determined, the number of action values a (t) is
required to be set. Generally, the number of action values in the action set A should not be set too
high, because excessive action values will lead to a sharp increase in the number of elements in the
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matrix Q (s (t), a (t)) and P (s (t), a (t)) and result in the curse of dimensionality; On the contrary, too
few action values will expand the degree of discretization of the action set A, which will weaken the
ability of the agent to adapt to the random changes of the complex system. To reconcile this problem,
inspired by the artificial emotional mechanism for continuous processing of action values, this study
adopts the artificial emotional method to act on the action value output, i.e., summing the action value
of the previous moment with the action value selected by the intelligent body at this moment to update
the action value output at the current moment:

a (t) ← a (t) + μa (t − 1) (62)

where μ is the weight factor of the action value in the previous moment, which takes the value in the
range of 0 < μ ≤ 1.

After improving the action value output method, the diagram of the artificial emotional Q-
learning algorithm is shown in Fig. 7. The Q-learning method has two problems: (1) The output action
of Q-learning is discrete. For more precise control, the ideal Q-learning action matrix should be set very
large, thus exceeding the computer memory. (2) The agent chooses the action output corresponding
to the largest probability every time will result in a greedy strategy, which may lead to actions with
poor control performance being selected continuously. To avoid these two problems of the Q-learning
method, the proposed artificial emotional lazy Q-learning adjusts the probability selection mechanism
and the action output mechanism through the addition of emotions, and can output continuous
control action values with a small number of action matrices, and can modify the probabilities based
on the emotional values obtained by the agent, thus outputting control actions with higher control
performances.

Figure 7: Artificial emotional Q-learning algorithm

The output method is to modify the action value based on the action value of the previous
moment, to obtain more output values by the limited number of action values, and to adopt the
updated action value as the output value of the Q-learning algorithm. Distinguished from the ordinary
Q-learning algorithm which directly adopts the action value selected by the intelligent body as the
output value, the improved action value output method weakens the adverse effect of randomness on
the selection of the action value and enhances the continuity of the action value output as well. This



1726 EE, 2024, vol.121, no.6

method, although simple, reduces the number of action values and improves the running speed of the
algorithm, while avoiding the problem of poor control performance because the output values are too
discretized.

The lazy learning of the proposed artificial emotional lazy Q-learning method will predict the next
system state. Therefore, the inputs of lazy learning are Δδi and

∫
Δδi. In addition, lazy learning can

predict the next state Δδ′
i,(t+1)

of the power system based on the set of actions A currently adopted by
the power system. The inputs and outputs of the proposed artificial emotional lazy Q-learning method
are shown in Table 1.

Table 1: Input and output of artificial emotional lazy Q-learning method

Lazy learning Artificial emotional
Q-learning

Artificial emotional
lazy Q-learning

Inputs Δδi,
∫

Δδi, A Δδ′
i,(t+1)

Δδi,
∫

Δδi

Outputs Δδ′
i,(t+1)

ΔPi,j, i = 1, 2, . . . , Ji ΔPi,j, i = 1, 2, . . . , Ji

where the initial action set A is described as follows:

A =

⎡⎢⎢⎣
a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

...
...

. . .
...

aJi ,1 aJi ,2 · · · aJi ,k

⎤⎥⎥⎦ (63)

where A has k-columns and each column of matrix A is a set of action vectors of regulation commands
for the PSS. The predictions for the next state similarly have k-columns and each column corresponds
to a prediction for each action vector. Therefore, Δδ′

i,(t+1)
is a k-column prediction matrix based on the

predictions of all k-column action vectors.

Estimating the value of an unknown function employing the lazy learning method is similar to
mapping g : 	m → 	. The inputs and outputs of the lazy learning method can be obtained from the
matrix 	, described as follows:{

(ϕ1, y1), (ϕ2, y2), · · · ,
(
ϕNlazy

, yNlazy

)}
(64)

where ϕ i is the matrix of size N lazy × k, i = 1, 2, · · ·, Nlazy; yi is a vector of size N lazy × 1. The predicted
value for the q-th query point can be calculated by the following equation:

ŷq = ϕT
q

(
ZTZ

)−1
ZTv (65)

where Z = Wφ; v = Wy. W is a diagonal matrix. Wii = ωi, where ωi is the weight function of the
distance d

(
ϕi, ϕq

)
from the query point ϕq to the point ϕi. Thereby,

(
ZTZ

)
β = ZT · v can be modeled

as a locally weighted regression.

The selection process in the artificial emotional lazy Q-learning method can select the optimal
state

(
the smallest

∣∣Δδ′
i,(t+1)

∣∣) from the next state
(
Δδ′

i,(t+1)

)
.

The artificial emotional lazy Q-learning method in the artificial emotional Q-learning method
can compute the total conditioning commands ΔPi, and assign ΔPi,j to the PSS in the i-th region,
ΔPi = ∑Ji

j=1 ΔPi,j. Q-learning is a model-free control algorithm. The controller based on Q-learning
can update the control strategy online according to the environmental variations.
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The relaxation operator of the artificial emotional lazy Q-learning method is similar to an operator
performing constraint control on the output of a reinforcement network. Therefore, the constraints
of the relaxation operator can be expressed as follows:

�Pi,j ←
[
�Pi,j

]
Ji∑

j=1

([
�Pi,j

])
Ji∑

j=1

(
�Pi,j

)
(66)

where
[
�Pi,j

]
is the constraint function with the following expression:

max
{
Pj,(t−1) − Pdown

j , Pmin
j

} ≤ �Pi,j ≤ min
{
Pj,(t−1) + Pup

j , Pmax
j

}
(67)

Traditional learning algorithms learn from all data acquired through parallel systems. However,
employing such data for learning does not necessarily result in better control performance than the
current real system. Therefore, the artificial emotional lazy Q-learning method approach proposed in
this paper will filter those better data for learning. Specifically, when the state st at the time t is better
than the state s′

(t+�t),1 at the time t + �t and worse than the state s′
(t+�t),2 at time t + �t, the algorithm

will exclude the change process data from st to s′
(t+�t),1, and will keep the change process data from st to

s′
(t+�t),2 for offline training.

Fig. 8 illustrates the steps of controller operation for the artificial emotional lazy Q-learning
method under a parallel system. The environment and the agents adopt the artificial emotional lazy
Q-learning method to find the optimal control strategy through interaction, and the fast control of
the static security and stability of the novel power system is realized by updating the parameters of the
system model.

Figure 8: Flowchart of the artificial emotional lazy Q-learning algorithm in parallel systems
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To quickly obtain accurate generation scheduling and control actions, numerous parallel safety
stabilization systems are established in this paper as shown in Fig. 9. In the parallel power angle system,
multiple virtual security stabilization systems are employed to continuously simulate the real security
stabilization system. When the control effect of the virtual control power angle system is better than
the real safety stabilization system, significant data of their power system stabilizers are exchanged
between them. The virtual safety stabilizer system transfers important controller parameters to the real
safety stabilizer system, while the real power angle system feeds the updated system model parameters
back into the virtual safety stabilizer system. The social system in Figs. 8 and 9 mainly considers human
and social characteristics, including human cognitive behavior, intention, and group perception. For
the safety and stability control system of novel power systems in this study, the social system is the
group of safety and stability control experts. These safety and stability control experts are equivalent
to the human-in-the-loop control system. These fairly experienced safety and stability control experts
continuously adjust the parameters of the virtual and actual systems, such as adjusting the learning
rate and the emotion factor.

Figure 9: Parallel safety and stability control system

Because of the massive amount of data acquired through the parallel system, the training of the
control algorithm learning will take much time if the traditional learning method is adopted. Therefore,
a more efficient learning algorithm is required to learn the massive data as shown in Fig. 10. The
artificial emotional lazy Q-learning method consists of four parts: lazy learning, selection operator,
artificial emotional Q-learning, and relaxation operator. The proposed artificial emotion lazy Q-
learning method can be designed as a secure and stable controller. In the proposed artificial emotional
lazy Q-learning, the reinforcement network can output multiple power generation commands at the
same time; the relaxation operation ensures that the output power generation commands will not
exceed the upper and lower limits of the generator; and the lazy learning ensures that the states
corresponding to sufficiently good control commands can be learned by the reinforcement network.
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The combination of the four modules in the proposed artificial emotional lazy Q-learning guarantees
that the proposed method can output high-performance power generation control instructions that
ensure system safety.

Figure 10: Secure and stable controller based on artificial emotional lazy Q-learning method

4 Case Studies

The experiments in this study are run on a Lenovo R900p2021h model computer (4.1 GHz CPU
with 32 GB RAM) on MATLAB 2020B software.

In accordance with the single-machine infinity model presented in this study, three different input
scenarios (Fig. 11) are designed to test the comparison algorithms. For a system, the voltage deviation
must be maintained within a certain range; for example, the voltage deviation in China is required
to be maintained within plus or minus 5%. Therefore, the voltage deviation close to 20% used in
this study is employed to simulate the operation of the algorithm under extreme conditions. If the
proposed method works well under extreme conditions, the proposed method has a very high safety
and stability performances in the real system. For a fair comparison, this study adopted the same
parameters for Q-learning and artificial emotional lazy Q-learning. The PID parameters in Table 2 are
derived from the particle swarm algorithm seeking optimization with a population size and iteration
number of 200. The comparison algorithms tested are the PID controller, the Q-learning controller,
and the controller of the proposed artificial emotional lazy Q-learning method. The parameters of the
comparison algorithms are shown in Table 2.

In the PID method, the larger the gain of the proportional part, the faster the system responds to
the deviation, but too large a gain may cause the system to produce an excessive amount of overshoot.
The larger the gain of the integral part, the stronger the ability of the system to eliminate the steady
state error, but too large a gain may cause the system to generate too large an overshoot. The larger
the gain of the differential part, the more sensitive the system is to changes in the input signal and the
faster it responds, but too large a gain may cause the system to produce too large an overshoot.

In the Q-learning method, if the learning rate is set too large, Q-value updates may be too drastic,
which may make the strategy unstable; if the learning rate is set too small, Q-value updates may be
too slow, which makes the strategy learning time longer. If the discount factor is set small, then future
rewards will have a greater impact on the strategy, which may make the strategy more cautious; if the
discount factor is set large, then current rewards will have a greater impact on the strategy, which may
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make the strategy riskier. If the reward factor is set large, then rewards will have a greater impact on
the strategy, which may make the strategy more inclined to adopt behaviors that will result in greater
rewards; if the penalty factor is set large, then penalties will have a greater impact on the strategy, which
may make the strategy more inclined to adopt behaviors that will result in avoiding penalties.

Figure 11: The three designed disturbance inputs: (a) Sudden voltage disturbance input; (b) Voltage
sine disturbance input; (c) Voltage random step disturbance input

Table 2: Comparison of algorithm parameters

Algorithm Parameters Values

PID Kp, Ki, Kd 0.71, 3.87, 0.03
Q-learning α, β, γ 0.01, 0.9, 0.05
Q(λ) learning α, β, γ , λ 0.01, 0.9, 0.05, 0.001
Artificial emotional lazy Q-learning α, β, γ , k, μ 0.01, 0.9, 0.05, 13, 1
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In the Q(λ) learning method, the larger the eligibility trace λ is set to indicate that the agent is
more enabled to consider the effects from historical Q-values; however, a slow updating of Q-values
can result if too large an eligibility trace is set.

The results obtained by the comparison algorithm in 3 different scenarios are shown in
Figs. 12–14. The curves in Figs. 11–14 are plotted as data points obtained by sampling every 0.1 s.

Figure 12: Power angle deviations obtained by the three methods in scenario 1: (a) PID; (b) Q-learning;
(c) Artificial emotional lazy Q-learning

Figs. 12–14a show that the PID control changes more significantly with the disturbance and
can track the input of the disturbance significantly quickly. Plots (b) of Figs. 12–14 show that the
simple Q-learning algorithm is more randomized and less capable of tracking the perturbation
completely. However, after a long period of time, the Q-learning algorithm can slowly achieve similar
results as the PID control. At the same time, in Figs. 12–14b, the intermediate process is very jittery
because all the Q-values in the initial condition are waiting to be updated, and the updating process
relies on the probability matrix with randomized selection; although the probability matrix with
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randomized characteristics can increase the global optimization ability of the Q-learning method, but
simultaneously brings a long training time, a slow convergence process, and a strong jittery result in
the intermediate process. Figs. 12–14c show that the artificial emotional lazy Q-learning can predict in
advance, and although the resulting power angle deviation curve is not as smooth as that of the PID
method and has a similar jitter as the Q-learning algorithm, the overall value of the resulting power
angle deviation curve is lower. First, Figs. 12–14 correspond to the results obtained in Figs. 11a–11c,
respectively. All three figures simulate the case of successive drastic variations of the reference voltage;
that is to say, Fig. 11 gives the performance of the control performance of these compared algorithms
under harsh conditions.

Figure 13: Power angle deviations obtained by the three methods in scenario 1: (a) PID; (b) Q-learning;
(c) Artificial emotional lazy Q-learning
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Figure 14: Power angle deviations obtained by the three methods in scenario 1: (a) PID; (b) Q-learning;
(c) Artificial emotional lazy Q-learning

The artificial emotion in the artificial emotional lazy Q-learning is still not as smooth as the PID
control although the values of the actions given by the Q-learning are corrected. The results in Figs. 12–
14 also serve to illustrate that the proposed artificial emotional lazy Q-learning method gives actions
that, although with discrete characteristics, are still suitable for complex continuous control systems.
Although the rotor deviation obtained by the PID method is smooth, the rotor deviation is still very
large. Q-learning due to the presence of stochasticity leads to drastic variations that are not even as
small as the rotor deviation obtained by the PID method. The proposed method can obtain smaller
values of rotor deviation because of the incorporation of artificial emotion and lazy learning.

To verify the generalization of the control performance of the proposed method, this study further
tests the proposed artificial emotional lazy Q-learning method with the existing related techniques in
the step response case. The parameters of the compared algorithms are still shown in Table 2. The step
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input is shown in Fig. 15a. The response curves obtained from all the compared algorithms are shown
in Fig. 15b.

Figure 15: System inputs and outputs: (a) system inputs; (b) system outputs; (c) Q-value curves

Fig. 15b clearly illustrates that the proposed artificial emotional lazy Q-learning method has
superior control performances and faster convergence speed. Since the reward value is set to a negative
value, the Q-value is continuously reduced from the initialized state of zero; the faster the Q-value
decreases indicates the faster update and convergence; therefore, the proposed method converges the
fastest (Fig. 15c).
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Although the proposed artificial emotional lazy Q-learning method can obtain better control
performance metrics than the PID control and Q-learning methods, the artificial emotional lazy Q-
learning method still suffers from the following deficiencies.

(1) While artificial emotions can improve the discrete characterization of actions given by Q
learning to some extent, the gap still exists compared to continuous actions.

(2) Although lazy learning characterizes the information from high to low dimensions and filters
high-quality data for Q-learning to learn, Q-learning methods may not understand how to give actions
in non-high-quality cases of the system, and how to balance the comprehensive learning capability and
high-quality learning capability of Q-learning methods still requires investigation.

(3) This study has fully considered the single-machine infinity system of the novel power system;
however, the joint control problem of the security and stability control of the multi-region novel power
system with multi-intelligence synergy has not been considered yet.

5 Conclusion and Prospect

For the problems of static safety and stability analysis of novel power systems, this study proposes
an artificial emotional lazy Q-learning method with accelerated optimization search in parallel
systems. The proposed method combines artificial emotion, lazy learning, and Q-learning. Compared
with other methods, the proposed artificial emotional lazy Q-learning method can obtain better
control performance in single-machine power systems with small disturbances. The main features of
this study can be summarized as follows:

(1) Since lazy learning can simplify and filter the amount of data, the proposed artificial emotional
lazy Q-learning method can quickly filter, sift, and learn the data of varying quality. Thereby, the
proposed lazy Q-learning method can quickly learn numerous samples of a novel power system.

(2) Since the Q-learning method is a kind of reinforcement learning, which can control the system
without a model online and can cope with the system that changes at any time, the proposed artificial
emotional lazy Q-learning method can intelligently respond to the changes occurring in the system
and give the optimal control strategy.

(3) In this study, a parallel system is adopted to construct multiple virtual novel power system
static security analysis systems at the same time, and the proposed artificial emotional lazy Q-learning
method is applied to search for the optimization at the same time. The adopted parallel system can
prevent the emergence of the power system, further accelerate the convergence of the system, and
quickly ensure the secure and stable operation of the novel power system.
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