
This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2024.047794

ARTICLE

Dynamic Economic Scheduling with Self-Adaptive Uncertainty in
Distribution Network Based on Deep Reinforcement Learning

Guanfu Wang1, Yudie Sun1, Jinling Li2,3,*, Yu Jiang1, Chunhui Li1, Huanan Yu2,3, He Wang2,3 and
Shiqiang Li2,3

1State Grid Liaoning Electric Power Co., Ltd., Liaoyang Power Supply Company, Liaoyang, 111000, China
2Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education
(Northeast Electric Power University), Jilin, 132012, China
3Jilin Northeast Electric Power University Science and Technology Development Co., Ltd., Jilin, 132012, China
*Corresponding Author: Jinling Li. Email: 15144278191@163.com

Received: 17 November 2023 Accepted: 08 January 2024 Published: 21 May 2024

ABSTRACT

Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which are
difficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamic
decisions continuously. This paper proposed a dynamic economic scheduling method for distribution networks
based on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distribution
network is established considering the action characteristics of micro-gas turbines, and the dynamic scheduling
model based on deep reinforcement learning is constructed for the new energy distribution network system with a
high proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for the
changing characteristics of source-load uncertainty, agents are trained interactively with the distributed network
in a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn the
scheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.
Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulation
system.
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Nomenclature
Abbreviations
PV Photovoltaic
WT Wind turbine
MT Micro-gas turbine
BESS Battery energy storage system
RL Reinforcement learning
DRL Deep reinforcement learning
MDP Markov decision process
PPO Proximal policy optimization
DNN Deep neural networks
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DDQN Double deep Q-Network
DDPG Deep deterministic policy gradient
PSO Particle swarm optimization

Indices

k Index of distributed generation units
t Index of each real-time point

Parameters

T Dispatching cycle
K Total number of dispatch units
λbuy (t) Time-of-use price
ak The operating cost factor of the MT unit
ρ The operating cost factor of the BESS
Vmin The minimum voltage allowed by the power system
Vmax The maximum voltage allowed by the power system
Sj,max The upper limit of the apparent power of the branch j
PMT ,up,k The maximum uphill power
PMT ,down,k The maximum downhill power
PBA,min,k The maximum values of the active power output of the k-th BESS
PBA,min,k The minimum values of the active power output of the k-th BESS
SOCmin,k The lower limit of the charged state of the k-th BESS
SOCmax,k The upper limit of the charged state of the k-th BESS
ηc,k The charging efficiency of the k-th BESS
ηd,k The discharge efficiency of the k-thBESS
EBA,k The rated capacity of the k-th BESS
γ The discount factor
−eV ,t The penalty coefficient for voltage exceeding the limit

Variables

ech,t,k The charge state of the k-th BESS at each time-step t
edis,t,k The discharge state of the k-th BESS at each time-step t
SOCk (0) The initial state of the k-th BESS
SOCk (T) The final state of the k-th BESS
PMT ,t,k The actual output of MT at each time-step t
PPV ,t,k The actual output of PV at each time-step t
PWT ,t,k The actual output of WT at each time-step t
PBA,t,k The charge or discharge power of the BESS at each time-step t

1 Introduction

Power system economic dispatch is generally modeled as a classical optimization problem. Under
the trend of large-scale renewable energy integration, the uncertainty of WT and PV, and other
intermittent power outputs brings challenges to grid scheduling and operation [1]. For example, the
traditional model-based optimal scheduling problem for distribution networks is a large-scale mixed-
integer non-convex nonlinear stochastic or robust optimization problem. In addition, the solution
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complexity increases exponentially with the increase of the distribution network topology scale and
the number of dispatchable devices, which is a non-deterministic polynomial (NP) optimization
problem with multiple objectives and constraints [2]. According to whether economic scheduling
considers the connection between different time sections, it can be categorized into static economic
scheduling [3] and dynamic economic scheduling [4]. Static economic scheduling does not consider
the relationship between scheduling periods, while dynamic economic scheduling needs to take into
account the relationship between scheduling periods, and can realize flexible scheduling in the case of
unpredictable disturbance in the scheduling environment and tasks.

Dynamic economic dispatch takes into account the uncertainty of load and renewable energy
output in different scheduling time periods before and after. For the dynamic economic dispatch
existing WT, PV, and other renewable energy output uncertainty modeling problems, reference [5]
establishes a chance-constrained optimization scheduling model taking into account the output uncer-
tainty of renewable energy based on the output characteristics of renewable energy and transforms
the random constraint function into deterministic equivalent constraints by using uncertainty theory.
Reference [6] considers that solar illumination intensity and wind speed are random variables subject
to Beta distribution and Weibull distribution. Random variables are used to describe the uncertainty
of PV and WT output, this fixed form of mathematical analysis limits the prediction accuracy of
the model. Reference [7] uses trapezoidal fuzzy numbers to represent PV and WT output, transforms
the uncertainty of intermittent power output into the uncertainty of prediction error, and performs
probabilistic modeling of prediction error. Reference [8,9] uses Beta distribution and truncated
generalized distribution to describe the stochasticity of individual PV and wind farms, respectively.
On this basis, reference [10,11] selects appropriate Copula functions to obtain the distribution of total
power of distributed PV or multi-wind farms. In addition, the load is also uncertain, and it is difficult
to accurately model the whole distribution network system which contains complex uncertain factors.

For the dynamic economic dispatch problem of a distribution network containing intermittent
WT and PV, reference [12] introduces the rotating reserve capacity to balance the system power
deviation caused by the fluctuation of renewable energy output, and sets a certain positive and
negative rotating reserve capacity in advance to cope with the uncertainty of source load and make
up for the shortage or excess power generation of units in the scheduling. To ensure the economy of
rescheduling when power deviation occurs in the system, the over-scheduling and under-scheduling
costs caused by the uncertainty of WT are included in the economic objective function in reference
[13]. However, although the above literature can solve the source load uncertainty by reserving rotating
in the deterministic model, this will indirectly increase the dispatch cost and violate the idea of
economic dispatch. In this regard, the scenario analysis method [14,15] and the chance-constrained
programming method [16,17] in the stochastic optimization modeling method further consider the
impact of uncertainty on scheduling, and make up for the shortcomings in the above research without
sacrificing economy. However, the optimization results of stochastic optimization methods depend
on the degree of coincidence between the assumed probability distribution and the actual random
variables. Therefore, the robust optimization method does not need to fit the probability distribution
of random variables and reduces the computation. Reference [18] constructs a two-stage robust
optimization model that takes into account the uncertainty of source load and then solves the unit
scheduling scheme with the lowest system operation cost under the worst scenario. However, robust
optimization methods tend to ignore the economy to satisfy security in the worst scenario.

Considering that the above methods rely on accurate prediction models, however, due to the
rapid increase of system variables and the prediction deviation of source load, it is difficult to
obtain an accurate solution model for many practical distribution systems. In addition, it is difficult



1674 EE, 2024, vol.121, no.6

for these methods to achieve the overall economy of the system considering the coupling between
different scheduling times. RL has been widely used in the field of power systems. It does not need
accurate physical modeling, but only realizes the maximum cumulative reward through the interactive
training between the agent and the environment, and obtains the optimal strategy [19]. Aiming at the
economic scheduling problem with WT-PV-BES and considering the continuous decision variables
of conventional generator unit output, reference [20] models the generator unit combination and
economic scheduling problem as a problem, and solves it with the distributed Q learning algorithm.
The output of a continuous unit is regarded as the action object, and the action space satisfies the
constraints such as unit start and stop, but Q learning still has limitations in the continuous action
space. In this regard, reference [21] uses an approximant-based DDPG algorithm to meet operational
constraints and achieve the optimal cost of the interior point method, but the DDPG algorithm cannot
realize asynchronous sampling, so reference [22] uses the PPO algorithm to determine the reactive
power output of BESS and WT. The PPO algorithm is an improved algorithm of DDPG and can be
updated online. The proposed model can realize real-time control, but the scheduling plan of MT units
is not considered in the scenario. However, the above studies rarely involve the uncertainty scenario
of coordinated optimization of distributed WT, PV, MT, and BESS at the same time, and the PPO
algorithm in the above studies does not consider the coupling of MT and BESS output in time and
lacks the dynamic economic scheduling considering long-term economic problems.

In response to the above problems, the research contributions of this paper are as follows:

(1) A dynamic economic scheduling method of distribution network considering adaptive uncer-
tainty based on DRL is proposed, and the time-coupling characteristics of MT and BESS are taken
into account. This method can deal with the uncertainty of WT, PV, and load, to reduce the overall
operating cost of the distribution network system and obtain the optimal scheduling strategy, and
improve the economic efficiency of the source-load interaction.

(2) To adjust parameters easily, the PPO algorithm is used for optimization, and the suitable
DNN is constructed to fit complex functional relationships and assist the algorithm implementation.
The algorithm framework can adapt to the continuous action space to deal with the time-coupled
characteristics of MT and BESS effectively and also can realize the dynamic economic scheduling
of the distribution network, which has more long-term economic benefits than static economic
scheduling. At the same time, a replay buffer containing complete training sample data is established,
and the agent can learn from the unrelated sample data from the replay buffer. This interacted mode
can shorten the scheduling decision time and improve the quality of scheduling decisions, to realize
efficient online decision scheduling.

(3) Based on MDP theory, appropriate state space, action space, and reward function are defined.
By setting corresponding input and output variables and corresponding objective functions, complex
mathematical modeling is avoided and higher-quality decisions are achieved. The constructed MDP
can transform the day-ahead multi-cycle optimal scheduling of the power system into a single-time
step optimization decision problem, thus improving the efficiency of the DRL algorithm.

2 Dynamic Economic Dispatching Optimization Problem of Distribution Network with High Proportion
of Renewable Energy
2.1 Model Building

The purpose of dynamic economic dispatching is to minimize the economic cost of distribution
network operation, while simultaneously adhering to power balance constraints, generator unit output
upper and lower limit constraints, and the adjacent time of unit climbing constraints. In this paper, the
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objective function is constructed using the power purchase cost of the main network, the operation
scheduling cost of the MT, and the operational cost of the BESS as shown in Eq. (1):

min E

(
T∑

t=1

Ct

)
= E

[
T∑

t=1

(
Cgrid (t) + CMT (t) + CBA (t)

)]
(1)

where, E (·) represents the expected value of the random variable; T is the scheduling period; Cgrid (t)
main online electricity cost; and CMT (t) is the operating cost of the MT in the scheduling period t;
CBA (t) is the operating cost of the BESS during the scheduling period t.

The electricity purchase cost of the main network is shown in Eq. (2):

Cgrid (t) =
{

λbuy (t) Pgrid (t) Pgrid (t) > 0

0 Pgrid (t) < 0
(2)

where, λbuy (t) is the price of power purchased by the distribution network from the main network
during the period t; Pgrid (t) refers to the power purchased by the distribution network from the main
network. Here, we only consider the power purchased by the distribution network from the main
network, that is, when Pgrid (t) < 0, the cost is set to 0.

In general, MT is a controllable distributed power supply, and its adjustment cost in power system
scheduling has a linear relationship with the generation power, as shown in Eq. (3):

CMT (t) =
K∑

k=1

akPk
MT ,t (3)

where, K is the number of MT units in the system; Pk
MT ,t are the output of MT unit k in the scheduling

period t; ak is the operating cost factor of MT unit k.

For the battery energy storage system, its operating cost is considered, and its cost coefficient is
defined as ρ. Then the operating cost of the battery energy storage system is shown in Eq. (4):

CBA (t) =
K∑

k=1

(
ρ|Pk

BA,t|
)

(4)

where, ρ is the operating cost factor of the battery energy storage system; Pk
BA,t is the charge and

discharge power of the battery energy storage system. When Pk
BA,t > 0, it indicates the discharge of

the battery energy storage system. When Pk
BA,t < 0, the battery energy storage system is charged.

2.2 Constraint Condition
Dynamic economic scheduling needs to meet the active power balance of power generation and

consumption in each scheduling period t, regardless of the network loss of the system. Therefore, the
power balance constraint is shown in Eq. (5):

Pgrid,t +
K∑

k=1

(
PPV ,t,k + PWT ,t,k + PMT ,t,k + PBA,t,k

) = Pload,t (5)

where, PPV ,t,k is the actual active power of PV generator set k in the scheduling period t; PWT ,t,k is the
actual active power of wind turbine k in the scheduling period t; Pload,t indicates the load output in the
scheduling period t.
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In addition, in order to ensure the safe operation of the power system and fully reflect the
feasibility and effectiveness of the dispatching scheme, it is necessary to set the corresponding safety
constraints. The system node voltage constraint is shown in Eq. (6):

Vmin ≤ Vi ≤ Vmax (6)

where, Vi is the voltage amplitude of node i; Vmin is the minimum voltage allowed by the system.Vmax

indicates the maximum voltage allowed by the system.

The line transmission power of the system should meet the transmission capacity limit constraint,
as shown in Eq. (7):√

P2
j,t + Q2

j,t ≤ Sj,max (7)

where, Pj,t is the active power transmitted by branch j in the scheduling period t; Qj,t is the reactive
power transmitted by branch j in the scheduling period t; Sj,max indicates the upper limit of the apparent
power of branch j.

Active power output constraints of distributed PV, distributed WT and MT are as follows:

PPV ,min,k ≤ PPV ,t,k ≤ PPV ,max,k (8)

PWT ,min,k ≤ PWT ,t,k ≤ PWT ,min,k (9)

PMT ,min,k ≤ PMT ,t,k ≤ PMT ,max,k (10)

where, PPV ,min,k and PPV ,max,k are respectively the minimum and maximum output values of the k-th
distributed PV set; PWT ,min,k and PPV ,max,k are the minimum and maximum output values of the k-th
distributed WT, respectively. PMT ,min,k and PMT ,max,k are respectively the minimum and maximum output
values of the k-th MT unit.

The controllable MT output in adjacent periods should also meet the hill climbing constraint,
which is the main difference between dynamic economic dispatch and static economic dispatch, as
shown in Eq. (11):{

PMT ,t,k − PMT ,t−1,k ≤ PMT ,up,k

PMT ,t−1,k − PMT ,t,k ≤ PMT ,down,k
(11)

where, PMT ,up,k and PMT ,down,k are respectively the maximum uphill power and the maximum downhill
power of the k-th controllable MT.

The active power output constraint of the distributed BESS is shown in Eq. (12):

PBA,min,k ≤ PBA,t,k ≤ PBA,max,k (12)

where, PBA,min,k and PBA,min,k respectively represent the maximum and minimum values of the active power
output of the k-th distributed BESS.

The state of charge constraint of the distributed BESS is shown in Eq. (13):

SOCmin,k ≤ SOCt,k ≤ SOCmax,k (13)

where, SOCmin,k and SOCmax,k respectively represent the lower and upper limits of the charged state of
the k-th distributed BESS; SOCt,k is the state of charge of the k-th distributed BESS in the scheduling
period t.
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The temporal coupling operation constraints of distributed BESS are shown in Eq. (14):

SOCk,t+1 = SOCk,t −
[

ech,t,k

PBA,t,kηc,k

EBA,k

+ edis,t,k

PBA,t,k

EBA,kηd,k

]
�t (14)

where, ech,t,k and edis,t,k respectively represent the distributed charge and discharge state variables of the
k-th distributed BESS in the scheduling period t, and both values are 0 or 1. ech,t,k = 1 when the
BESS is charged, ediis,t,k = 1 when the BESS is discharged, and ech,t,k = 1 when the BESS is discharged.
The charging and discharging of the BESS should not be carried out at the same time, that is, ech,t,k ·
edis,t,k = 0. ηc,k and ηd,k represent the charging efficiency and discharge efficiency of the k-th distributed
BESS, respectively. EBA,k is the rated capacity of the k-th distributed BESS; �t indicates the scheduling
interval.

The dynamic economic dispatch of the distribution network is periodic. This paper specifies that
the state of charge of BESS is consistent in the initial period of scheduling and the end period of the
dispatch, as shown in Eq. (15):

SOCk (T) = SOCk (0) (15)

where, SOCk (0) represents the initial state of charge of the k-th distributed BESS; SOCk (T) represents
the state of charge of the k-th distributed BESS at the end of the entire distribution network dispatching
cycle.

The proposed optimization problem is a long-time series decision problem and a nonlinear
problem with multiple constraints. In the process of solving the problem, it is necessary to avoid
modeling complex random variables. Rational scheduling of controllable equipment in the power
system to respond to load demand and economic operation without the need to utilize WT and PV
forecast information is the next research focus.

3 An Adaptive Uncertain Dynamic Economic Scheduling Model Based on Deep Reinforcement Learning
3.1 Markov Decision Process

In order to efficiently solve the above optimization problems, RL method is used, and its
mathematical basis is MDP. MDP can be represented by the elements < S, A, P, R, γ >. S represents
a finite set of states, which are the state observations of the environment. A represents the finite set of
actions and is the decision made by the agent. P represents the transition probability of a state, which
is the probability of performing an action in a state and then moving to a new state. γ is the discount
factor, γ ∈ [0, 1], indicating how much attention the system pays to the current reward. MDP is a
cyclic process in which the agent changes state through actions, receives a reward, and interacts with
the environment. Adaptability is reflected in the adoption of model-free RL, which does not need to
know the specific nature of a certain distribution of random variables but only needs to learn from
historical data, and constantly iterate until the final scheduling decision results are consistent with the
statistical distribution characteristics of the uncertain environment.

In this paper, under the framework of RL, the MDP of the dynamic economic scheduling model
with adaptive uncertainty is established as follows:

(1) State space S

Select the MT active power output P′
MT ,t,k, PV output predicted value P′

PV ,t,k, WT power output
predicted value P′

WT ,t,k, load predicted value Pload,t, and power purchase price buy λbuy (t) of the
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distribution network as state variables, from which the state space can be established as follows:

S = {
P′

MT ,t,k, P′
PV ,t,k, P′

WT ,t,k, Pload,t, λbuy (t)
}

(16)

(2) Action space A

Considering that the output of each unit presents sequential coupling characteristics at different
time periods, the planned output of the MT unit at the current time t is set as the decision variable
PMT ,t,k as shown below. In order to determine the optimal output plan of the new energy station, the
actual output of the PV power station and WT power generation is set as the decision variables PPV ,t,k

and PWT ,t,k. At the same time, in order to fully respond to the change in TOU price to improve the
absorption rate of new energy, the charge and discharge power of the BESS is set as the decision
variable PBA,t,k. Thus, the action space of the agent is obtained as follows:

A = {
PMT ,t,k, PPV ,t,k, PWT ,t,k, PBA,t,k

}
(17)

(3) Reward function R

rt ∈ Rt is defined as the reward of the agent in each short time step t. The dispatching decision
center applies the dispatching decision scheme to the distribution network system, and the system gives
back the reward according to the current state, so as to reflect the quality of the dispatching decision
scheme and guide the update of the dispatching decision. In this paper, the objective function and
constraint conditions in the dynamic economic scheduling model are converted into corresponding
reward functions and penalty reward functions respectively, as shown in Eq. (18):

rt = −
T∑

t=1

(
Cgrid (t) + CMT (t) + CBA (t)

) − FV ,t (18)

where, rt represents the instant reward that the agent can get after selecting the action at at the state st.
FV ,t is the penalty for the system node voltage exceeding the limit, as shown in Eq. (19):

FV ,t = −eV ,t

∑
i

[
max

(
Vi,t − 1.05, 0

) + max
(
0.95 − Vi,t, 0

)]
(19)

where, −eV ,t is the penalty coefficient.

The cumulative reward function of the whole scheduling cycle T is shown in Eq. (20):

Rt =
T∑

t=1

γ t−1rt (20)

where, Rt represents the cumulative reward obtained by the agent during the period [t, T ].

3.2 Proximal Policy Optimization
According to the state space and action space are continuous spaces, this paper chooses an

algorithm based on the Actor-Critic framework. In the Actor-Critic framework algorithm, PPO is
an off-line learning algorithm that integrates dynamic step mechanism and importance sampling
technology under the Actor-Critic framework. With its characteristics of fast convergence speed,
low parameter setting difficulty, and adaptability to complex environments, PPO has achieved good
application results in the field of optimal scheduling of power systems [22]. The PPO algorithm is
modified by the trust region policy optimization (TRPO) algorithm, and its objective function is shown
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in Eq. (21):

max imize
ϕ

∧Et

[
min

(
rt (ϕ)

∧
At, clip (rt(ϕ), 1 − ε, 1 + ε)

∧
At

)]
(21)

where, ϕ is the parameter of the actor-network; rt (ϕ) is the relative probability of the old and new
strategies; Ât is the dominant function. ε is a hyperparameter between 0 and 1. The Clip function limits
the ratio between new and old policies to a small [1 − ε, 1 + ε] range, thus limiting the magnitude of
policy updates.

PPO agents interact with the environment to temporarily store interactive data collection in the
sample replay buffer. Since the PPO algorithm is an on-policy algorithm, the sample data collected last
time needs to be released after a policy update. The sample data is input into the actor-network and the
critic network, and the actor-network parameters are updated and the critic network parameters are
updated, respectively. Through the above interactive updates, the actor-network and the critic network
are finally more accurate, and the PPO agent training is gradually stable until convergence. Therefore,
for the update of the critic network, its loss function is first constructed, as shown in Eq. (22):

L (θ) = E
(
V t arg et

θ
(st) − Vθ (st)

)2
(22)

where, E (·) is the expectation function, and Vθ (st) is the current value function, that is, the output of
the critic network. V t arg et

θ (st) is expressed as a goal value function that evaluates the accuracy of the
output of the critic network. Based on the temporal difference algorithm, the calculation equation of
V t arg et

θ (st) can be obtained as shown in Eq. (23):

V t arg et
θ

(st) = rt + γ Vθ (st+1) (23)

According to the loss function of the critic network, the critic network is updated gradient, as
shown in Eq. (24):

θ = θ − ηθ∇L (θ) (24)

where, ηθ is the learning rate of critic network; L (θ) represents the gradient of the critic network loss
function with respect to the parameter θ .

In order to further evaluate the advantages and disadvantages of samples and improve the
convergence performance of PPO, the advantage function Ât is introduced into the training of policy
network, which represents the advantage of taking action at under the current state st over the average
performance of the following strategy π , as shown in Eq. (25):
∧

At (st, at) = Qθ (st, at) − Vθ (st) (25)

Vθ (st) = E (Rt|st = s; π) (26)

where, Qθ (st, at) represents the action value function, that is, the reward expectation of the action at
executed according to strategy π under a given state st, and the influence of changes in wind-light-
load and scheduling plan on operation economy can be quantified. In Eq. (26), Vθ (st) represents the
expected value of the objective function obtained by executing all scheduling schemes in accordance
with policy π under the current state st.

At the same time, in the process of parameter updating of the actor network, the advantage
function is also used as the loss function of the actor network, which is used to guide the actor network
to gradually improve the network performance in the interactive training between the agent and the
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environment. Thus, the parameter updating of the actor-network is obtained as shown in Eq. (27):

ϕ = ϕ − ηϕ∇
∧
A (27)

In addition, the PPO reinforcement learning algorithm based on strategy gradient incorporates
the ratio of sampling probabilities of the new and old strategies into the step size setting, and selecting
the appropriate step size can get a better training effect without training divergence. The dynamic
learning rate ηϕ of the actor network is shown in Eq. (28):

ηϕ = ηϕ,base min
(

Pϕ (at, st)

Pϕ′ (at, st)
, CLIP

(
Pϕ (at, st)

Pϕ′ (at, st)
, 1 − ε, 1 + ε

))
(28)

where, ηϕ,base represents the benchmark learning rate of the actor-network; Pϕ (st, at) and Pϕ′ (st, at)

respectively for the new and old strategy of πθ (at, st) and πθold (at, st) sampling probability.

The process of adaptive uncertainty dynamic economic scheduling based on the PPO algorithm
is shown in Table 1. PPO agent generates batch sample data by interacting with the power system
environment, and uses a gradient descent mechanism to conduct batch network training until the
maximum training period is reached and the reward function converges. At this time, the trained actor-
network can be applied online. Driven by WT,PV, and load data, MT units and strategic schemes
of new energy stations can be output in real-time to meet the dynamic economic scheduling of the
distribution network to better achieve the expected target setting.

Table 1: Deep neural network implementation of proximal policy optimization algorithm

Algorithm: Dynamic economic dispatch method based on PPO algorithm

1. Initialize actor network parameters ϕ critic network parameters θ , and power system
simulation environment
2. for day = 0 to D do

for t = 0 to 24 do
1. According to the initialization parameters, simultaneously gather the state

observations in the current power system st, select and execute actions at, obtain
immediate rewards rt and next state st+1, and calculate cumulative rewards Rt.

2. Collect sample data (st, at, rt, st+1) of the power system interacting with the agent under
the policy and store it in the replay buffer.

3. Randomly select N experience samples from the replay buffer.
4. Feed the state of the power system into the critic network and calculate the advantage

function using Eq. (25).
5. Update the actor network by maximizing the PPO objective function using Eq. (21);

update the parameters of the actor network using Eq. (27).
6. Update the critic network by minimizing the loss function, and update the parameters

of the critic network using Eq. (24).
end for

end for
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3.3 Dynamic Economic Scheduling Method of New Energy Distribution Network System Based on Deep
Reinforcement Learning

In this paper, based on the PPO algorithm, a dynamic economic scheduling framework for offline
training and online application of distribution network is established, as shown in Fig. 1.

Figure 1: The structure of dynamic economic dispatch method based on PPO

As shown in Fig. 1, the PPO algorithm can complete the algorithm goal only with the actor-
network and the critic network. The input of the actor-network and the critic network is the observed
state st of the power system. The actor-network is used to generate scheduling decision scheme. At the
input layer, normalization is used to extract different features from input data, scale and adjust them,
eliminating the dimension and difference of features, and thus speeding up the learning of strategy.
The neurons in the output layer correspond to the mean and standard deviation of the probability
distribution respectively, which can be used to form the corresponding action output distribution,
and the action at can be determined according to the probability distribution. The standard deviation
in the probability distribution can reflect the agent’s exploration ability. A large standard difference
at the initial stage of training can increase the space of action exploration and avoid falling into local
optimality during training. As the training process gradually stabilizes, the standard deviation also
gradually stabilizes at a smaller value. The actions of the agent after exploration are limited to the range
[−1,1], which can be mapped to the actual output value based on the rated capacity and parameters
of the dispatchable device.
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The critic network is used to evaluate the advantages and disadvantages of the scheduling scheme.
During the scheduling cycle, the current observed state st of the power system is taken as the input, the
decision center constantly interacts with the environment of the power system, and each sample data is
collected into the replay buffer, and the observed state value in the replay buffer is input into the critic
network, and the value function Vθ (st) of the observed state can be output. At the same time, through
this dynamic data feedback, the network parameters are updated. In Fig. 1, ϕ and θ are parameters
of the actor network and the critic network, respectively.

The dynamic economic scheduling method based on DRL can be divided into two stages: the off-
line training process and the online testing process. In the off-line training process, the actor network
and the power grid environment constantly interact to generate a batch of training samples that can
cover the whole given WT, PV, and load output interval and put them into the replay buffer for the
actor network and the critic network to learn and train. In the online model testing process, only the
actor network is used to observe the environmental state and the optimal dynamic economic scheduling
scheme is given.

4 Example Analysis
4.1 Experimental Scene Setup

An improved IEEE 33 node system is used to verify the validity and applicability of the proposed
method. According to the equipment parameters provided in the references [20–23], the network
topology of the distribution network system is shown in Fig. 2, and the equipment parameters are
shown in Table 2. The IEEE 33 node system connects MT on nodes 3, 9, 24 and 28, distributed PV on
nodes 7 and 20, distributed WT on nodes 16 and 29, and distributed BESS on nodes 12 and 32.

1 2

19 20 21 22

23 2524

26 27 28 29 3130 32 33

1817161514131211109876543 12112111
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WT

PV

2222222222222
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PV

171716116155
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MT

2323 2424

MT

WWMT

MT

Figure 2: The improved IEEE 33-Node simulation system

Table 2: Equipment parameters

Equipment Parameters Value

MT

PMT ,max,k 300 kW
PMT ,min,k 100 kW
Rup,k 50 kW/h
Rdown,k 50 kW/h

(Continued)
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Table 2 (continued)

Equipment Parameters Value

aK 0.396$/kW

BESS

PBA,max,k 250 kW
PBA,min,k −200 kW
EBA,k 450 kW•h
SOCmax,k 1.0
SOCmin,k 0.4
ρ 0.322$/kW•h
ηc,k 1
ηd,k 1

PV Total capacity 0.5 MW
WT Total capacity 0.5 MW

Hyperparameters setting according to references [22,24], the state observations of the PPO agent
are represented as 9-dimensional array vectors, and the actions are represented as 8-dimensional array
vectors. In the AC framework, the policy network has 3 hidden layers, each with 128 ReLU neurons,
and the output layer has 8 linear neurons. Critic networks and actor networks have the same network
structure. The learning rates of the critic network and the actor-network were set as ηθ = 0.001 and
ηϕ = 0.001, respectively. The parameter settings in the training process are shown in Table 3.

Table 3: Hyperparameter setting of intelligent agents

Parameters Value

Episodes 3000
Batch size 128
Replay buffer size 200000
Learning rates of the actor network 0.001
Learning rates of the critic network 0.001
Discount factor 0.995

4.2 The Results of Model Training
The simulation is based on the hardware platform Intel(R) Core (TM) i7-10510U CPU. The

single-agent model of dynamic economic dispatching of the distribution network is built on the
MATLAB/SIMULINK platform. The model was trained 3000 times, that is, 3000 episodes, which
took 10569 seconds, and achieved excellent training results. The change in reward function during
training is shown in Fig. 3.

In the process of agent training, the PPO algorithm undergoes a process of exploration followed by
gradual convergence during the training process of the agent. In the early stage of interactive training
between the agent and environment, the actions explored by the agent often violated the system
constraints because of the agent’s little understanding of the environment, and the noise interference
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introduced by the outside world leads to the unstable situation of agent training. However, the early
learning and training speed of the agent is also fast. With the increase of the interaction between
the agent and the environment, the agent gradually explores a better scheduling decision scheme,
the parameters of the neural network are constantly updated, and the reward function gradually
converges. At this time, the actions explored by the agent are constantly meeting the goal of economic
optimization in dynamic economic scheduling problems. As training progresses, the agent gradually
learns more effective strategies and behaviors, and the convergence rate may gradually accelerate. By
the late stage of training, the agent has learned the optimal scheduling strategy and can provide a
suitable scheduling scheme for different scheduling scenarios for online applications. At the same
time, there are error fluctuations in the value of the reward function, which is due to the different
fluctuations of renewable energy output and load in different scenarios, which causes the difference
of the economic cost at different moments, so the reward function will undergo a certain degree of
oscillation, which is a normal phenomenon. On the whole, the reward function in the training process
shows a trend of growth and convergence, which means that the training effect of the agent is gradually
getting better.

Figure 3: The reward of agent

4.3 The Results of Dynamic Economic Scheduling
In order to verify the effectiveness of the proposed method, typical forecast data of WT, PV and

typical load changes of a certain day in the data set according to references [20–23] were selected for
testing, as shown in Figs. 4 and 5, and the trained model was used for dynamic economic scheduling
before the day. After online testing, the scheduling results of active power obtained are shown in Fig. 6.

In this paper, the dispatch cost of renewable energy generation is assumed to be 0, and only the
purchase of power from the main network is considered. As can be seen from the figure, the low price
periods of 0:00–8:00 and 12:00–14:00 are also the low load periods. At this time, the power purchase
cost of the main network of the distribution network is lower than the joint supply cost of MT and
distributed battery energy storage system. Therefore, in order to reduce the total economic cost, the
distribution network will give priority to reducing the total economic cost under the condition that
the relevant inequality constraints are not violated. Purchase power according to the maximum power
that can be transmitted by the transmission line, and then reduce the generation power of the MT and
BESS; Thus, reducing the total economic cost; In the hours of 9:00–11:00 and 15:00–23:00, the peak
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load is also the peak period of the main network power purchase price. In order to focus on reducing
the main network power purchase cost of the distribution network, the MT and BESS respectively
output active power with the maximum transmission capacity of 300 and 250 kW to ensure the balance
of supply and demand.

Figure 4: 24-hour PV and WT output profile

Figure 5: 24-hour load demand profile

The output of the MT within 1 day is shown in Fig. 7. The MT can complement the BESS, PV,
and WT. The system preferentially meets the load through the output of PV and WT and then meets
the load through the MT and BESS when the output of PV is insufficient. During the 9:00–18:00
period, PV and WT can meet the load with the maximum generation power and reduce the operation
and scheduling costs of MT and BESS under the safety constraints of the power system. At the same
time, the BESS can store the excess scenery to promote the absorption of the scenery. In the hours of
0:00–9:00 and 18:00–24:00, the load level is greater than the output level of the wind, so the MT will
operate at 5:30 and 18:00, considering that this paper assumes that the operation scheduling cost of
the BESS is higher than that of the MT, the MT will discharge efficiently with the maximum climbing
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power of 50 kW/h to meet the load demand and complement with the BESS, and reduce the operation
scheduling cost of the BESS.

Figure 6: The result of dynamic economic dispatch

Figure 7: One-day power output curve of MT

The change of charge and discharge power of the battery energy storage system within 1 day is
shown in Fig. 8. When the power is set as positive, the battery energy storage system will discharge;
conversely, when it is negative, it will charge. Under the control of the agent, the BESS needs to
store energy as much as possible before the load peak and release energy during the peak demand
period to reduce the dispatching cost of the distribution network system. However, considering that
the operating cost of the BESS itself is higher than that of the MT, the output of the BESS will be
limited to a certain extent in order to meet the overall economy of the system.

The actual optimal scheduling results for each PV and WT are shown in Fig. 9, and the actual
output changes of PV and WT are consistent with the probability distribution of the predicted output.

Comparing the actual output power with the predicted power, during the period from 12:00 to
16:00, in order to meet the constraint that the node voltage does not exceed the limit, a part of the
active power needs to be reduced, so there will be a part of the phenomenon of PV power abandonment.
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Similarly, for wind farms, during 19:00 to 23:00 at night, due to the large wind power at night, more
power is emitted, but due to the security constraints in the power grid and the load requirements of
users, there will also be some WT power curtailment phenomenon.

Figure 8: One-day power exchange curve of BESS
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Figure 9: The actual output of PV and WT

Combined with the scheduling decision results of the above-mentioned controllable devices, when
the lowest operating cost of the distribution network is taken as the objective function, due to the
different emphasis on the three sub-items of cost that the agent pays attention to in different periods,
and in order to take into account the overall economic cost of the system, the uncertainty of the source
load and the coupling relationship between the output of the MT unit in different periods, etc. Through
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3000 episodes of interactive training learning, the agent can basically give the decision results satisfying
the economic scheduling.

4.4 Economic Evaluation
In the training process of the PPO agent, the total economic cost of the distribution network is

shown in Fig. 10. It can be seen that the total economic cost converges and decreases with the gradual
convergence of the agent reward function. In order to measure the effectiveness and economy of the
model established in this paper, the economic scheduling based on the PSO algorithm and dynamic
economic scheduling without considering randomness is taken as the control group, and the economic
cost and scheduling decision time of the three schemes are calculated and compared, as shown in
Table 4.

Figure 10: Distributed network dispatching costs

Table 4: Comparison of cost and decision time of dynamic economic scheduling under different
schemes

Different schemes Total cost/$ Decision time/s

PPO 50939 6.74
PSO 51837 120.08
Without considering randomness 52089 6.08

The comparison results show that the proposed method has the following advantages:

1) In terms of the total optimization cost of the distribution network, the optimized scheduling
cost of the proposed method is reduced by 1.73% compared with the traditional PSO algorithm, and
by 2.21% compared with the economic scheduling without considering randomness. It can be seen
that the proposed algorithm can adapt to the uncertainty of source load in the power system, and can
effectively reduce the total optimization cost.

2) In terms of decision time, although the PPO method based on deep reinforcement learning takes
10,596 s in the offline training process, the online decision time only takes 6.74 s when the uncertainty
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of source load is taken into account, which is significantly improved compared with the traditional
PSO algorithm. In the proposed method, the optimization time is borne by the offline training process,
and the online decision process is directly mapped from the input to the output based on the trained
actor-network. It can be seen that after PPO agent model training is completed, its scheduling and
decision-making efficiency has been significantly improved.

4.5 The Comparison of Different DRL Algorithms
In order to fully demonstrate the applicability and superiority of the PPO algorithm in this paper,

we compare the performance of several different DRL algorithms. Therefore, choosing the DDQN
[20] algorithm, which is a DRL algorithm based on deep learning and Q-learning, and an improved
version of the classic DQN algorithm. DDQN is based on replay buffer learning. At the same time, this
paper also chooses the classical DDPG [21] algorithm, which belongs to the off-line DRL algorithm,
which is based on the replay buffer feedback and is also applicable to the continuous state-action space
learning method. The PPO algorithm in this paper is an improved algorithm of the DDPG algorithm.
In this paper, the performance of different DRL algorithms is compared and analyzed.

As shown in Fig. 11, it is obvious that compared with the three DRL algorithms, the PPO
algorithm applied in this paper has the fastest convergence speed, a very stable training process, and
the maximum convergence reward value, thus showing superior scheduling decisions. Secondly, the
training effect of the DDPG algorithm is relatively stable, and it is extremely sensitive to the setting
of hyperparameters, and it is an off-line learning mode, so that it does not show good performance in
terms of convergence speed, stationarity, and convergence degree. Because the DDQN algorithm is not
suitable for continuous action space, and is relatively sensitive to hyperparameters, the training process
is very unstable, so the DDQN algorithm has the worst performance among the three reinforcement
learning algorithms. The PPO used is superior to other reinforcement learning algorithms in terms of
average reward, strategy stability, and convergence speed.

Figure 11: Comparison of convergence of different DRL algorithms

Compared with DDPG and DDQN, PPO convergence speed and convergence process are stable,
because PPO is a method based on policy gradient, which directly optimizes policies and PPO has
higher sampling efficiency, while DDPG is a DRL algorithm based on value function and needs to
constantly perform experience feedback and update the target Q network. At the same time, the PPO
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algorithm will cut the strategy gradient to reduce the size of batch update data to avoid instability.
Therefore, for the distribution network system with large-scale access to distributed power supply,
reinforcement learning can first learn the optimal scheduling policy through offline training, so as to
adapt to more distribution network scenarios, and then apply the trained agent online to adapt to the
dynamic changes of the model and parameters.

As shown in Table 5, comparing the training and execution time of several coordination strategies.
The PPO algorithm applied is superior to other reinforcement learning algorithms in terms of
training time and execution time. Despite the complex power system, all three reinforcement learning
algorithms can complete scheduling decisions and execute them in a few seconds, which indicates that
real-time control is feasible compared with model-based methods.

Table 5: Performance of different DRL algorithms

Methods Training time/s Decision time/s

PPO 12223 6.74
DDPG 14685 7.47
DDQN 15134 8.06

4.6 The Influence of Hyperparameters on PPO Algorithm
In order to find the optimal PPO algorithm hyperparameter, different hyperparameters are set in

the analysis of simulation example analysis, and obtains the PPO algorithm hyperparameters suitable
for this research scenario are through the references [22,24] and simulation examples. In the simulation
experiment, when analyzing the influence of learning rate on the reward value of the agent, it is
necessary to keep the value of batch size unchanged. Similarly, when analyzing the influence of batch
size on the reward value, it is necessary to keep the learning rate unchanged.

As shown in Figs. 12 and 13, with the increase of the value of the hyperparameter, the reward
fluctuation within a certain range, but they have little impact on the final experimental results. Besides,
since hyperparameter is not the focus of this paper, if the subsequent research involves the study of the
influence of hyperparameters on optimal scheduling decision-making, the author will also follow up
on the relevant research at any time.
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Figure 12: Reward change with different learning rates
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Figure 13: Reward change with different batch size

5 Conclusion

In this paper, a multi-stage dynamic economic dispatch decision-making method based on DRL
is proposed for the dynamic economic dispatch problem of the power system with a high proportion
of renewable energy. Considering the uncertainty of WT and PV output and load changes, a multi-
stage dynamic economic scheduling decision-making method based on deep reinforcement learning is
proposed, which has the following advantages:

1) Taking into account the internal relationship of time points, a sequential decision model of
dynamic economic scheduling based on MDP is constructed for the distribution network, and then
DNN is built to realize the optimal scheduling decision based on the PPO algorithm. Compared with
the optimization method based on a physical model, the proposed method can adapt to the uncertainty
of source load, and effectively solve the modeling problem of highly nonlinear and complex large-scale
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systems by using a data-driven approach. Moreover, the PPO algorithm has a strong adaptability to
the changes in the power grid, ensuring the efficiency and economy of scheduling decision schemes.

2) Applying the DRL framework of offline training-online execution for distributed power supply
cooperative optimization, the intelligent body avoids the local optimum by finding the approximate
optimal solution through offline learning to achieve the global optimality and stability of the
scheduling decision. In the online execution process, the trained agent quickly outputs the scheduling
decision result only by the observed state, which effectively reduces the decision-making time, improves
the control efficiency, and realizes the real-time dynamic economic scheduling of the distribution
network.

3) Finally, the results of the numerical analysis show that the proposed multi-stage dynamic
economic scheduling decision-making method based on DRL is suitable for the dynamic economic
scheduling problem of power systems considering the uncertainty of renewable energy. Compared with
the traditional methods, the most important feature of this method is that it can learn the probability
distribution of WT and load from the historical data, so as to give the optimal dynamic economic
scheduling strategy from the perspective of expectation. The proposed method only takes 6.74 s to
formulate the dynamic economic dispatch scheme for 24 time periods, which is 94.39% faster than the
120.08 s of the traditional PSO algorithm, which is fully feasible in practice.
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