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ABSTRACT

In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance
identification method can only extract single-scale features, which leads to a lack of feature information and
weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive
Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested.
Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood
Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of
multi-scale features into the conventional CNN architecture is conducted. The multi-scale features of the signal
are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.
The attention mechanism (ATT) is introduced to adaptively allocate the extracted features, and the features are
fused and selected to obtain the new main features. The Softmax classifier is employed for the classification of
power quality disturbances. Finally, by comparing the recognition accuracy of the convolutional neural network
(CNN), the model using the attention mechanism, the bidirectional long-term and short-term memory network
(MS-Bi-LSTM), and the multi-scale convolutional neural network (MSCNN) with the attention mechanism with
the proposed method. The simulation results demonstrate that the proposed method is higher than CNN, MS-
Bi-LSTM, and MSCNN, and the overall recognition rate exceeds 99%, and the proposed method has significant
classification accuracy and robust classification performance. This achievement provides a new perspective for
further exploration in the field of power quality disturbance classification.
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1 Introduction

With China’s rapidly developing power transmission and distribution grid [1], the application of
distributed generation and nonlinear load in the power grid is becoming more and more extensive.
For example, access to a large number of solid-state switches, power electronic switches, nonlinear
loads will cause serious distortion of grid voltage and current, and the deterioration of power quality
will also increase, which will affect the stability of the power grid equipment [2]. Therefore, the power
quality disturbances in line identification and governance are of great significance. Because of this,
both local and international scholars have conducted extensive research [3].
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In the power system, electronic devices can cause electromagnetic interference and sampling errors
that affect the signal transmission, resulting in significant noise in the detected signal. To classify power
quality disturbances, it is important to first remove any noise present in the disturbance signal. Then,
process the important information in the signal to achieve the desired classification [4]. The Kalman
filter (KF) is a widely used method for linear, discrete, and finite-dimensional systems due to its
simplicity, accuracy, and good anti-noise performance. Kalman filtering is a fundamental method used
in various fields, including control, signal processing, and communication, with extensive potential
applications. It has been widely employed in harmonic detection and target tracking estimation.
This paper proposes an adaptive maximum likelihood Kalman filter algorithm to eliminate noise
interference signals [5].

Several detection and classification approaches for complex power quality disturbances have been
proposed by researchers in recent years, but most of them include two steps: eigenvalue extraction
and disturbance identification. Short-Time Fourier Transform (STFT), Continuous Wavelet Trans-
form (CWT), S-Transform (ST), Empirical Mode Decomposition (EMD), Fully Adaptive Ensemble
Empirical Mode Decomposition (CEEMDAN), and Variational Mode Decomposition(VMD) are the
main techniques used for feature extraction. Disturbance recognition is used to determine the type of
disturbance signal, and the primary techniques comprise support vector machines (SVM), artificial
neural networks (ANN), decision trees (DT), the K nearest neighbor algorithm, and so on. The ST
operation is too large to meet the real-time detection requirements of the field environment, and the
selection of the window width adjustment factor lacks a theoretical basis [6,7]. Although the improved
complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) decomposes
power quality disturbances (PQD) signals and can better deal with signals under nonlinear and non-
stationary background noise, the reconstruction error is large, and there may be pseudo modes [8].
Although the optimized empirical wavelet transform of the adaptive spectral trend can accurately
segment the spectrum and prevent the inappropriate segmentation of the original Empirical wavelet
transform (EWT), the proposed method may fail when the frequency of each disturbance element is
similar or the amplitude is close to the minimum value [9].

In recent years, new methods of PQD recognition based on deep learning have attracted more
and more attention. These methods avoid the subjectivity of traditional manual feature selection and
instead use the powerful automatic learning and feature mining capabilities of neural networks for
feature extraction, which can better adapt to the PQD recognition problems of new power systems
and thus achieve high recognition accuracy [10]. Reference [11] uses the Gram angle field method to
convert a 1-D power signal into a rectangular image, which is used as the input of Convolutional
Neural Network (CNN) for training and recognition, avoiding the difficulty of manual selection.
However, the rectangular image has lost the important information of the original sequence, such
as the amplitude, and the recognition ability of complex disturbances is limited [12]. Reference [13]
proposes an adaptive feature-enhanced packet convolutional neural network, which demonstrates
superior classification and recognition accuracy in low-noise environments, but the accuracy is still
not high in a high-noise environment. Although the improved fast independent component analysis
method and the improved random forest classifier can provide a basis for the detection of potential
PQ problems and help to control and manage signal distortion, the proposed recognition model is not
universal [14]. Although the trajectory circle image based on the improved Hilbert transform makes up
for the shortcomings of unclear time series features [15], the starting time of a single disturbance signal
is close to the end of the sequence, which accounts for a small proportion of the whole sequence, so that
it is not detected in this sequence. Moreover, under the sampling error, the existence of some serious
noises causes some trajectory circle distortion, which leads to recognition errors [16]. According to
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the characteristics of different dimensions, the corresponding adapter modules are designed based on
fully convolutional networks (FCN) and bidirectional gated recurrent unit networks, and the channel
attention mechanism of the squeeze-and-excitation network (SENet) is introduced. Although more
comprehensive feature ranges are considered, including spatial features and temporal relationship
features in the time-frequency domain, the computational cost of training and testing inevitably
increases, and the influence of strong noise in actual signals is not considered [17]. Although the
application of channel attention module based on SENet in the classification model makes full use of
the convolution channel in Convolutional Neural Network, it is easy to cause local misclassification
of sampling points when the notching is overwhelmed by strong noise [18].

Therefore, this paper presents a method to achieve accurate identification of power quality
multiple disturbances using an adaptive Kalman filter and attention mechanism multi-scale fusion
convolution network. The key elements of this paper are the following: The power quality interference
signal is denoised using the adaptive maximum likelihood Kalman filter; then, the feature information
of the power quality interference signal is extracted using the multi-scale convolutional neural network.
The attention mechanism is introduced to construct a multi-feature fusion layer to eliminate feature
redundancy information, and the local and global characteristics of the interference signal are
amplified. Finally, the Softmax layer is used for classification, and simulation validates the method’s
accuracy and effectiveness.

The rest of this paper is organized as follows: Section 2 describes the basic principle of the adaptive
maximum likelihood Kalman filter. Section 3 describes the basic principle of a multi-scale channel
attention convolutional network and combines the method of feature fusion to construct a power
quality disturbance classification model combining an adaptive Kalman filter and multi-scale channel
attention. In Section 4, the model is verified from different angles by simulation comparison. Finally,
in Section 5, the conclusion of the work is given.

2 Adaptive Maximum Likelihood Kalman Filter
2.1 Space State Model

When the power quality disturbance signal is affected by noise, its mathematical model can be
expressed as [4]

yk = A1,k cos (ωkTs + ϕ1) +
M∑

r=2

Ar,k cos (rωkTs + ϕr) + vk (1)

Among them: yk is the observation signal; ω, A1,k and ϕ1 are angular frequency, the amplitude, and
the initial phase angle of the fundamental component [15]; ϕr and Ar,k (r = 2, · · · , M) are the initial
phase angle of the rth harmonic component and the amplitude; vk is a Gaussian white noise signal
with zero mean covariance E

(
vkvT

k

) = Rk [19]; M is the maximum number of harmonics; Ts is the
sampling interval; and the sampling frequency fs can be obtained.

As Xk = [x1,k, x2,k, · · · , x2r−1,k, x2r,k, · · · , x2M−1,k, x2M,k]
T , a two-dimensional state vector is expressed

as follows:

x1,k = A1,k cos(ωkTs + ϕ1), x2,k = A1,k sin (ωkTs + ϕ1)

x2r−1,k = Ar,k cos(rωkTs + ϕr), x2r,k = Ar,k sin (rωkTs + ϕr)

x2M−1,k = AM,k cos(MωkTs + ϕM), x2M,k = AM,k sin (MωkTs + ϕM) (2)
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Thus, a discrete observation signal can be expressed in terms of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk = FXk−1 + ηk =

⎡
⎢⎢⎢⎢⎢⎣

F1 0 · · · 0 0

0
. . . 0 · · · 0

0 · · · Fr 0 0

0 · · · 0
. . . 0

0 · · · · · · 0 FM

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,k−1

x2,k−1

...
x2r−1,k−1

x2r,k−1

...
x2M−1,k−1

x2M,k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ηk, ηk ∼ N (0, Qk)

yk = HXk + vk, vk ∼ N (0, Rk)

(3)

where H and F are the observation matrix and the system matrix, respectively; vk and ηk are observation
noise and process noise, respectively; Qk is the covariance of ηk, Rk is the covariance of vk; matrix Qk,
Rk are considered to be{

Qk = diag
([

γ 2
1 , γ 2

2 , · · · , γ 2
2r−1, γ

2
2r, · · · , γ 2

2M−1, γ
2

2M

])
Rk = [ε2] (4)

In the formula, the parameters [γ1, γ2, · · · , γ2M−1, γ2M , ε] are unknown and need to be estimated
online when performing KF filtering.

To obtain the observation matrix and the system matrix, the state variables x2r−1,k+1 can be
expanded at time k + 1 to obtain

x2r−1,k+1 = Ar,k cos [rω (k + 1) Ts + ϕr] =
Ar,k cos [(rωkTs + ϕr) + rωTs] =
Ar,k cos (rωkTs + ϕr) cos rωTs − Ar,k sin (rωkTs + ϕr) sin rωTs =

[cos rωTs − sin rωTs]
[

Ar,k cos (rωkTs + ϕr)

Ar,k sin (rωkTs + ϕr)

]
=

[cos rωTs − sin rωTs]
[

x2r−1,k

x2r,k

]
(5)

Likewise, the state variable x2r−1,k+1 can be expanded at time k + 1:

x2r,k+1 = Ar,k sin [rω (k + 1) Ts + ϕr] =
Ar,k sin [(rωkTs + ϕr) + rωTs] =
Ar,k sin (rωkTs + ϕr) cos rωTs − Ar,k cos (rωkTs + ϕr) sin rωTs =

[sin rωTs − cos rωTs]
[

Ar,k cos (rωkTs + ϕr)

Ar,k sin (rωkTs + ϕr)

]
=

[sin rωTs − cos rωTs]
[

x2r−1,k

x2r,k

]
(6)
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In this way, we can obtain the matrix Fr, H, which is defined as⎧⎪⎨
⎪⎩

Fr =
[

cos (rωTs) − sin (rωTs)

sin (rωTs) cos (rωTs)

]
(r = 1, · · · M)

H = [
1 0 · · · 1 0 · · · 1 0

] (7)

Therefore, the amplitude of each of the frequency components can be calculated from the
following equation:

Ar,k =
√(

x2r−1,k

)2 + (
x2r,k

)2
(8)

In the formula, x2r−1,k and x2r,k can be an estimate of the state of the model.

2.2 Adaptive Kalman filter
In this case, the probability of the observation of the largest set of variables will be the lowest. It

is characterized by considering both in the change the innovation and the change in the innovation
covariance matrix. When the system and measurement noise variance matrices Q and R are estimated
and adjusted in real time using the maximum likelihood Kalman filter method [20], real-time
estimation and adjustment of R and Q matrices are implemented, further improving the general
efficiency of the Kalman filter algorithm [21].

1) State estimation

According to the Kalman filter theory, the prediction equation is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̂k|k−1 = E {Xk|y1: k−1} = FX̂k−1|k−1

êk = yk − HkX̂k|k−1

Sk|k−1 = E
{(

Xk − X̂k|k−1

) (
Xk − X̂k|k−1

)T
}

=
FSk−1|k−1FT + Qk

(9)

In the formula, X̂k|k−1 is a one-step predicted condition; êk is the estimate of residual (innovation);
and Sk|k−1 is the one-step predicted mean square error.

Filter correction stage:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̂k|k = E {Xk|Y1: k} = X̂k|k−1 + Kkêk

Sk|k = E
{(

Xk − X̂k|k
) (

Xk − X̂k|k
)T

}
=

[I − KkHk] Sk|k−1

�̂k = E
(
ekek

T
) = HkSk|k−1Hk

T + Rk

Kk = Sk|k−1HT�−1
k

(10)

In the formula, X̂k|k is the optimal estimate of the state of affairs; Sk|k represents the mean square
error update matrix; �̂k shows the estimated residual’s covariance matrix; and Kk is the Kalman gain
matrix.

2) Parameter estimation

The joint conditional probability density of ek is
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p
(
ek | yk−1, · · · , y1, θ

) = 1
2π | �k |1/2

exp
(

−1
2

ek
T�k

−1ek

)
(11)

In the formula, | �k | is the determinant. In this way, the (−2) log-likelihood function of the model
can be obtained from Eq. (11):

f (θ) = (−2) log p
(
yN , · · · , y1|θ

) =
N∑

k=1

(−2) log p
(
yN |yN−1, · · · , y1, θ

) =

N∑
k=1

(−2) log p
(
ek|yk−1, · · · , y1, θ

) =

N∑
k=1

{
log |�k| + ek

T�k
−1ek

} + N log 2π (12)

In the formula, N is the length of the sample.

On the basis of the estimate of innovation êk and the covariance Ψ̂k of the given parameter θ , the
(−2) log-likelihood function (12) is minimized to obtain the optimal parameter θ ∗, as follows:

θ ∗ = arg min
θ

N∑
k=1

{
log | �̂k (θ) | + (

êk (θ)
)T

(
�̂k (θ)

)−1 (
êk (θ)

)}

+ Nlog2π (13)

3 Attention Mechanism Fuses Multi-Scale Convolutional Network
3.1 SENet Attention Mechanism

In the presence of an intermediate feature X ∈ R
C×H×W , within a feature map possessing C channels

and size H × W , the attention weight of channel w ∈ R
C in SENet can be articulated as

w = σ (g (X)) = σ (B (W 2δ (B (W 1 (g (X)))))) (14)

Here, g (X) ∈ R
C embodies the representation of global features, while g (X) = 1

H×W

∑H

i=1

∑W

j=1 X[ : ,i,j]

encapsulates the essence of the global average pool (GAP). δ signifies the Rectified Linear Unit
(ReLU), while B represents Batch Normalization (BN). σ represents a sigmoidal curve. This is
accomplished through a bottleneck consisting of two fully connected (FC) layers: W1 ∈ R

C
r ×C denotes

the dimension reduction layer, W2 ∈ R
C
r ×C signifies the dimension increase layer, and r represents the

channel reduction ratio.

Channel attention condenses each feature map with dimensions H × W into a single scalar
value. This straightforward descriptor tends to prioritize the global distribution of larger objects,
potentially filtering out much of the image information associated with smaller objects [22]. However,
the detection of small targets has always been an important performance bottleneck in the current
network. For instance, the challenge with the dataset COCO primarily arises from the fact that the
image area occupied by most objects is less than 1%. Hence, it is imperative to acknowledge that the
global channel attention mechanism may not always constitute the optimal solution. In the attention
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model, the influence of multi-scale background information is reduced by aggregating the multi-scale
background.

3.2 Aggregate Local and Global Content
This section elaborates on the suggested Multi-Scale Channel Attention Module (MS-CAM).

Its core idea is the achievement of multi-scale channel attention through changes in the space pool
dimensions [23]. To maintain a natural style, simply incorporate local content into the global context
within the attention module while minimizing unnecessary complexity. In our approach, we opt for
pointwise convolution (PWConv) as the aggregator of the local channel context. This method exploits
only pointwise channel interactions at any spatial position [24]. To minimize parameter usage, we
compute the local channel content L (X) ∈ R

C×H×W through the following bottleneck convolution
block:

L (X) = B (PWConv2 (δ (B (PWConv1 (X))))) (15)

PWConv1 kernel size is denoted as
C
r

× C × 1 × 1 and PWConv2 kernel size is denoted as

C × C
r

× 1 × 1. In particular, L(X) is consistent with the geometry of the input features, which can

better maintain and highlight the fine features of the underlying characteristics. Considering the global
channel denoted as g(X) and the local channel L(X), the refined features X′ ∈ R

C×H×W of the MS-CAM
can be described as follows:

X ′ = X ⊗ M (X) = X ⊗ σ (L (X) ⊕ g (X)) (16)

Here, M (X) ∈ R
C×H×W signifies the attention weight produced by the MS-CAM. ⊕ represents

broadcast addition, and ⊗ represents element-by-element multiplication. The schematic diagram of
MS-CAM is shown in Fig. 1. The core concept of the Channel Attention Mechanism (CAM) lies in the
computation of channel weights within the model, assigning greater weight to channels that contribute
more effectively. In this context, SENet has been chosen as the CAM implementation module due to
its ability to efficiently capture channel correlations without imposing a significant computational
burden.
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Figure 1: Figure of the MS-CAM proposal

Firstly, the input feature information is extracted by convolutional neural network (CNN) to
extract channel features, and then multi-scale information is obtained. The acquisition of multi-scale
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information can be achieved by the following three methods: 1. Space pooling operation on each
channel; 2. Change the size of the space pool at different scales; 3. The local context information is
added to the global context, such as Fig. 1. In this paper, the multi-scale information is obtained by
changing the spatial delay size at different scales, and then the point-by-point convolution operation
is carried out. The point-by-point convolution is mainly to achieve lightweight design and reduce the
computational complexity. Finally, the channel weighting is realized by multiplying the weight on the
channel and the channel feature.

3.3 Attention Feature Fusion
With the multi-scale channel module M attention as the basis, the fusion of attentional features

can be described as follows:

Z = M (X � Y) ⊗ X + (1 − M (X � Y)) ⊗ Y (17)

Here, Z ∈ R
C×H×W represents the characteristics after merging, and � corresponds to the initial

integration of the characteristics. In this paragraph, to simplify, summation by elements is chosen as the
initial integral. iAFF is shown in Fig. 2, iAFF utilizes a different attention module for the protection
of input characteristics. It is crucial to emphasize that the weight M ((X � Y)) of the fusion is made
up of real values within the range of 0 and 1, just like 1 − M ((X � Y)). This property allows the
reticulation to perform a soft choice or weighted average within the range of X and Y.

MS-CAM

MS-CAM

C H W� � C H W� �

C H W� � C H W� �

iAFF

Features

Features merging

Fully connected layer

C1 C2 C3 C16

Figure 2: Schematic representation of iAFF

In order to have a complete perception of the input feature map, the initial feature fusion also
adopts the attention fusion mechanism, that is, another attention module is used to fuse the input
features, as shown in Fig. 2. By calculating the attention weight, updating the weight, fusing the feature
information, and repeating the iteration, the final fusion feature information is obtained. Finally, the
classification of power quality disturbances is completed through the full connected layer.

Unlike the partial context-aware approach [25], the fully contextual approach inevitably faces the
challenge of effectively incorporating input features at the outset. The original quality of the fusion,
when used as input to the attentiveness module, plays a crucial role in determining the ultimate weight
of the fusion. Given that this remains a challenge for feature fusion, a straightforward approach
involves employing an additional attention unit to merge the incoming characteristics. The two-step
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approach is called iterative attention feature fusion (iAFF) and is shown in Fig. 2. Represent the
original integral X � Y in Eq. (17) as follows:

X � Y = M (X + Y) ⊗ X + (1 − M (X + Y)) ⊗ Y (18)

After analysis, this paper selects the iAFF (iterative attention feature fusion) method to better
improve the accuracy of the classification of power quality disturbance signals.

3.4 Overall Framework of the Proposed Ensemble Model
In this paper, the accuracy rate is used as the quantitative index of disturbance classification,

and the loss function value is used as the evaluation index. The evaluation model predicts the degree
of proximity between the disturbance label and the real disturbance label. Fig. 3 is the process of
classifying power quality disturbances by the model in this paper.
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Figure 3: Flow chart of adaptive Kalman filter and channel attention multi-scale convolutional
network for power quality disturbance classification

Fig. 4 is a schematic diagram of the adaptive Kalman filter and channel attention multi-scale
convolutional network structure, which is composed of an adaptive Kalman filter noise reduction
and classification module. The first part is to denoise the original disturbance signal containing
20, 30, and 40 dB using an adaptive Kalman filter to improve the extraction performance of local
disturbance features. The second part is based on CNN embedding SENet. Each CAM sub-module
is composed of a convolution module and a SENet module, which screens more effective channels
for classification and improves training efficiency. After iterative attention feature fusion, more
comprehensive disturbance feature information is obtained, and finally, disturbance classification
recognition is completed.
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4 Example Analysis

According to the relevant standards of IEEE Std1159-2019 [26] and the given mathematical
model of power quality disturbance, 7 single disturbances and 9 double disturbances, for a total of 16
disturbances (V1–V16), are generated in MATLAB. The disturbance signal’s fundamental frequency
is established at 50 Hz, with a sampling frequency of 3200 Hz. The values are arbitrarily produced
within the specified range. In the generated interference signals, 20, 30, and 40 dB white Gaussian
noise are added to simulate different real environments, and various signal-to-noise ratios generate
4800 samples, respectively, totaling 14400 samples. A random 7:3 split is used for the training and
test sets.

In this paper, the Kalman filtering process for disturbed signals is implemented based on
MATLAB, and the multi-scale channel attention mechanism fusion convolution is built based on
Tensorflow and Keras in Python. The specific versions and models are shown in Table 1.

Table 1: Hardware version and operating environment

Type of hardware and software Version/model Type of hardware and software Version/model

OS Windows11(64) Python 3.7
CPU Inteli5-8265U tensorflow 2.10.0
RAM 16 GB keras 2.10.0
GPU RTX3090 Matlab 2020a

4.1 Adaptive Maximum Likelihood Kalman Filter Denoising
The MATLAB simulation software is employed to generate the initial signal, which is subse-

quently subjected to denoising using the approach introduced in this paper. This denoising procedure is
executed through the adaptive maximum likelihood Kalman filter method proposed in this research.

The initial value of the state variable in this article is set to
[

x̂1,k

x̂2,k

]
=

[
1
0.03

]
, the initial difference

between cooperative formulas is Ŝ (0) =
[

10−5 0
0 10−5

]
, Q = diag [10−5, 10−5], R = [2.5 × 10−5].
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Taking a single disturbance signal V1 (harmonic) and a composite disturbance signal V12 (voltage
sag + transient oscillation) with fusion noise as an example, Fig. 5 shows the original waveform with
20 dB Gaussian white noise, the waveform after adding noise, and the waveform after denoising. The
results prove the effectiveness of the algorithm.
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Figure 5: V1 (harmonic) and complex disturbance signal V12 (voltage dip + transient oscillation)
before and after noise reduction

4.2 Result Analysis
The constructed data set was used to verify the model, and 20, 30, and 40 dB white Gaussian noise

were added to the data set, respectively. Throughout the learning period, the figures displayed below
illustrate the accuracy curve and the loss curve. During the whole training stage, the accuracy curve
did not fluctuate significantly and tended to stabilize as the number of iterations increased. The loss
rate curve drops rapidly. After 16 iterations, the loss value is close to 0. The accuracy curve and loss
curve clearly indicate a satisfactory training outcome, with no signs of overfitting.

It can be shown from Fig. 6 that when the SNR is 20 dB, the accuracy rate is always above 99.69%,
while in the case of Hamming loss, when the epoch reaches 16 in 20 dB, certain mutations occur due
to excessive noise, thus affecting the loss accuracy. As the count of iterations increases, the Hamming
loss also almost tends to 0.
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Figure 6: 20 dB noise accuracy curve and loss curve

To validate the efficacy of adaptive Kalman filter denoising and the multi-scale convolutional
module with channel attention fusion, this study conducts comparative experiments across various
noise conditions. These experiments encompass convolutional neural networks (CNN), models utiliz-
ing attention mechanisms, bidirectional long short-term memory networks (MS-Bi-LSTM) [27], and
multi-scale convolutional neural networks (MSCNN) with attention mechanisms. The results obtained
when comparing the three different cases are shown in Table 2.

Table 2: Identification accuracy under different methods

Under different noise environments Identification accuracy (%)

20 dB 30 dB 40 dB

CNN 98.75 97.88 98.38
MS-Bi-LSTM 96.30 97.22 98.70
MSCNN 97.72 98.90 99.75
this method 99.69 100 100

As indicated in Table 2, the overall classification recognition rate of the approach used in this paper
can still be maintained above 99% in a strong noise environment with SNRs of 20, 30 and 40 dB [28].

To further investigate the model’s recognition of power quality disturbance signals, the confusion
matrix is introduced to analyze the fault diagnosis results in detail. The examination of the confusion
matrix reveals that only a few samples are misclassified, with the majority of samples being accurately
identified. In summary, the model has superior recognition ability and high diagnostic accuracy for
power quality disturbance signals.
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Based on the information provided in Fig. 7 and Table 2, it is evident that the performance of the
suggested approach is nearly on par with that of other approaches when subjected to low-intensity
noise conditions (40 dB noise). However, at higher noise levels (such as 30 and 20 dB), the suggested
approach exhibits superior performance compared to the other three approaches. Comparative tests
indicate that the suggested procedure has strong robustness to noise in the background of strong noise.
Even with the addition of more disturbances, the method is highly accurate, with V8∼V15 achieving
100% classification accuracy in all cases, and V2 and V4 achieving 98% accuracy in the worst cases,
which indicates that the proposed method incorporates more disturbances and has a small impact on
accuracy. When more perturbations are incorporated, the error is greatly reduced. This observation
may be attributed to the ability of KF-ML to effectively eliminate noise from the initially corrupted
power quality (PQ) signals. while the multi-scale channel attention mechanism fusion convolution
structure has a high ability to detect multifaceted nonlinear features for various interferences [4].
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Figure 7: Confusion matrix diagram under different noises
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4.3 Feature Visualization Analysis
To obtain a more intuitive understanding of the impact of the model proposed in this study on

feature differentiation, t-SNE dimensionality reduction technology was adopted in this paper to reduce
the features extracted by the sub-model and the feature visualization graphs that have been classified
into two dimensions and visualized.

Fig. 8 is the feature visualization diagram of the sub-model, and Fig. 9 is the feature visualization
diagram. Comparing the two graphs above, we can see that during the fusion of these features, the
overlap decreases and the distance between different types increases. This shows that after the use of
feature fusion, the expression of features is enhanced, and the separability of features is improved [29].

input layer

Figure 8: Sub-model feature visualization diagram

classified results

Figure 9: Feature visualization
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4.4 Analysis with Real-World Dataset
In this part, IEEE PES databases for PQD are adopted to verify the effectiveness of AKF-MS-

CAM [30]. The signal provided in this dataset exhibits a sampling rate of 256 points per cycle, with
each signal possessing a length of 1536 points. The database encompasses a total of 13 distinct types
of three-phase fault signals. For training purposes, simulation databases with a signal-to-noise ratio
(SNR) of 20 dB are employed, while the verification set comprises 39 sets of measured data. Table 3
displays the comparative results of the proposed algorithm and a traditional algorithm on power
quality disturbances (PQD) within the IEEE database, showcasing their classification effectiveness.

Table 3: Performance comparison based on experimental platform dataset

Method Accuracy (%)

FFT+ANN [31] 76.9
WT+SVM [32] 79.5
SAE [33] 84.6
LSTM 87.2
AKF-MSCAM 89.9

It can be seen from Table 3 that the classification accuracy of all algorithms is reduced for the
IEEE database, but AKF-MSCAM still has good accuracy in the classification of complex PQD. So
the proposed method still has good performance under actual grid disturbance signals.

5 Conclusions

To address the limitation of current deep neural networks, which can only withdraw single-scale
characteristics, leading to the loss of feature information and weak anti-noise performance, this
paper adopts an algorithm based on an adaptive Kalman filter and multi-scale channel attention
fusion convolutional network to identify and classify, and uses an adaptive Kalman filter to filter the
original disturbed signal to enhance the anti-noise performance. Then different convolution kernels
are used to construct different scales to realize complex disturbance identification with strong anti-
noise performance and high precision. Finally, this paper draws the following conclusions through
Matlab and Python simulation experiments:

1) To solve the problem of poor noise resistance in complex disturbances, an adaptive Kalman
filter is proposed. This method has been effectively applied in power quality disturbance signal filtering
and can effectively distinguish power quality disturbance signals from noise signals so that multi-scale
channel attention convolution can better extract features.

2) In response to the bottleneck in initial feature fusion, an iterative attention feature fusion
module is introduced. This module effectively solves the challenges of feature fusion at various levels
while expanding the resolution space for perturbations.

3) To address the limitation of current perturbation feature extraction methods, which can
only extract single-scale features, we propose a multi-scale channel attention fusion convolutional
network model. This model exhibits exceptionally high accuracy in disturbance recognition, even
under conditions of strong noise. This approach ensures robust noise resistance in the network and
achieves high classification accuracy.
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However, the creation of an appropriate dataset is a common challenge for deep learning-based
methods. The model proposed in this study has been trained using a synthetic dataset that conforms to
the IEEE STD 1159-2019 standard, which may limit its ability to detect certain real-world PQDs that
deviate from the standard. Future work will incorporate a hybrid dataset that includes a significant
number of synthetic signals and a limited number of real signals to broaden the applicability of the
proposed model.
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