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ABSTRACT

Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice, which
is of immense importance in mobilizing the entire society to reduce carbon emissions. The method of calculating
node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power
grid. Therefore, it cannot provide carbon factor information beforehand. To address this issue, a prediction model
based on the graph attention network is proposed. The model uses a graph structure that is suitable for the topology
of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon
factor data. The network extracts features and transmits information more suitable for the power system and can
flexibly adjust the equivalent topology, thereby increasing the diversity of the structure. Its input and output data
are simple, without the power grid parameters. We demonstrated its effect by testing IEEE-39 bus and IEEE-118
bus systems with average error rates of 2.46% and 2.51%.
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Nomenclature

δi
p Carbon emission factors of node i, kgCO2/kWh

δi
g Carbon emission factors of generators connected to node i, kgCO2/kWh

Pi
g Active power of generators connected to node i, kW

Pj
i Active power flows of node j to node i, kW

Di The load of node i, kW
Ω1 Collection of branch nodes that flow into node i
Ω2 Collection of branch nodes of the outflow node i
A Solution coefficient matrix, kW
δ Carbon emission factors vector of all nodes in the power grid, kgCO2/kWh
Eg Injected power vector of all generators, kgCO2/h
H (A)H (l) Input feature matrix of layer l in GAT
Ni Set of nodes connected to the node i
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αij Attention correlation coefficient between node i and node j
W (l) A weight matrix of layer l in GAT
aT A weight vector can transform the two feature vectors into a one-dimensional
E The number of multi-head mechanism
W (m) Weight vector of the layer m in MLP
H (m) Input feature matrix of the layer m in MLP
B(m) Bias vector of layer m in MLP
σ Non-linear activation function
n The number of nodes in the grid
∼
yi Predicted values of the carbon emission factors at node i
yi True values of the carbon emission factors of node i

1 Introduction

The continuous development of global climate change and the greenhouse effect have been
acknowledged worldwide [1]. There is an international consensus to implement effective measures
to reduce carbon dioxide emissions, so governments around the world have been proposing the
peak of carbon emissions and the deadline for carbon neutralization [2]. In the process of reducing
carbon emissions, it is crucial to reduce the carbon emitted by fossil energy combustion [3]. In
the power industry, fossil energy is still dominant, which results in significant carbon emissions.
The statistics of carbon emissions are typically based on macro data, several studies have identified
the generational factors related to carbon emissions and have proposed carbon reduction methods
based on the generational side [4–6]. Reference [6] considers the influence of environmental oper-
ating characteristics on carbon emissions of gas turbine power plants, which will help to reduce
carbon dioxide emissions. However, these carbon emissions are counted on the production side, all
carbon costs are eventually distributed equally to all users, which cannot encourage users to reduce
carbon emissions. According to the carbon flow model [7], several demand-side-based carbon reduc-
tion methods have been proposed [8–10]. The carbon cost is distributed to each node of power grids
based on certain principles, which clarify the actual carbon responsibility between power plants, power
grids, and users.

The carbon flow model attaches the virtual carbon flow to the actual power flow to realize the
traceability of carbon responsibility, the model defines carbon emission factors of nodes in a power grid
through the weighted sum of all branch power carbon flow densities flowing into the node. However, it
requires real-time parameters of power generation, loads, and power flows of the power grid. But these
data cannot do real-time updates. Therefore, the existing method relies on past grid data to assess the
past carbon emission factors of nodes, which makes it unable to provide users with carbon emission
factors in the future.

Currently, there are few studies on predicting demand-side carbon emission factors. Load is the
initial factor that affects the carbon emission factors of each node in power grids, and load prediction
methods for power grids are relatively well-established and developed [11], including a statistical
method based on historical data [12], artificial intelligence algorithm based on machine learning and
deep learning [13–15], a combination of long-term and short-term memory [16–18] and other methods.
So, a neural network model with load as input can predict the corresponding carbon emission factors
in the future. Considering the spatial characteristics of carbon emission factors distribution of power
grid nodes, this paper proposes a prediction model based on a graph attention network (GAT) [19],
compared with a Convolutional Neural Network (CNN) [20] and Recurrent Neural Network (RNN)
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[21] which can deal with irregular graph structure data by adopting the same topology as the power
grid. Our model designs a supervised network by training the node’s loads and its corresponding
carbon emission factors data.

2 Calculation of Carbon Emission Factors Based on Tidal Flow Results and Carbon Flow Theory
2.1 Principle of Power Grid Carbon Flow Calculation

Existing carbon flow analysis methods include the proportional sharing model [22], complex
power tracking method, power grid distribution method, and others. Among them, the carbon flow
analysis method based on the proportional sharing method is easy and widely used to calculate.
Based on the power flow calculation results, the carbon emission factors of a node in power grids
can be defined. Energy consumption and carbon emissions in power grids are mainly related to the
active power output of generators and are slightly affected by the reactive power output of generators.
Therefore, the carbon emissions flow can be considered only affected by the system’s calculation results
[23]. Based on carbon flow analysis, the carbon emission factors can be defined as the weighted sum
of the active power of each branch flowing into the node. According to the principle of proportional
sharing [24], the carbon emission factors of the node are calculated as Eq. (1) [24]:

δi
p = Pi

g · δi
g + ∑

j∈Ω1
Pj

i · δj
p

Di + ∑
k∈Ω2

Pi
k

(1)

where δi
p and δj

p

(
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)
are carbon emission factors of nodes i and j, respectively; δi

g

(
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power of generators connected to node i;Pj
i (kW) and Pi
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node i and node i to node k, respectively, meanwhile, Ω1 is the collection of branch nodes that flow
into node i, and Ω2 is the collection of branch nodes of the outflow node i; Di (kW) is the load of
node i.

2.2 Solution of Carbon Emission Factors for Nodes
The following equation can be obtained by processing the Eq. (1):(
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The overall expression can be written based on the calculation principle by Eq. (2):

Aδ = Eg (3)
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where δ
(
kgCO2/kWh

)
is the carbon emission factors vector of all nodes in a power grid; A(kW) is

the solution coefficient matrix, A = [
Aij

] ∈ Rn×n; Eg

(
kgCO2/h

)
is the injected power vector of all

generators; n is the number of nodes in the grid. Since Eq. (2) is a nodal energy conservation equation,
Eq. (3) is the collection of n independent formulas. Eq. (3) can be changed as follows:

δ = A−1Eg (7)

From the above equations, it can be seen that the carbon emission factors of a node are only related
to the load and active power flow when generators power and their carbon emission factors are known.
Considering that the power flow calculation is highly dependent on the operation parameters of power
grids and has problems of high complexity and long time consumption, this paper takes node loads
D = (D1, D2, D3, · · · , Dd) as the input characteristics of the network model.

3 Carbon Emission Factors Prediction Based on The GAT
3.1 The GAT Principle and Its Network Design
3.1.1 Principle of GAT

The Graph Neural Network (GNN) [25] is a deep neural network model that processes structured
data. Unlike traditional neural networks, GNN considers the relationships between nodes, where the
core is the mutual aggregation of features between each node, then its surrounding nodes can form
new node features to complete information transmission. After iteration, the GNN can obtain all
the structural information of the graph. Graph Attention Network (GAT) is an important branch of
GNN that considers the topological relationships between nodes in the graph and applies attention to
updating feature vectors.

3.1.2 Design for GAT

1) Topological structure of a power grid

Our model adapts topological structure same as a power grid, A graph is a representation of
entities through nodes, edges, and their connections. It is comprised of three elements, namely, nodes,
edges, and global information. The global information is based on nodes and edges according to a
certain topological structure. Power grids are an entity consisting of transmission lines between user
nodes, so their composition may correspond entirely to the graph structure. Therefore, we set the same
number of nodes in the model as the power grid, then set the edges between nodes according to the
distribution of power lines in the power grid. In this way, nodes can aggregate the information of
neighboring nodes to fit power flows in the power grid. The carbon emission factors of the power
grid are essentially the power flow of nodes, which represents the information transmission between
nodes. This makes GAT suitable for structures of power grids and enables it to properly reflect the
transmission characteristics of power grids.

2) Method of updating parameters

We use multilayer GAT to build the model, which can increase the receptive area of the network
[26] so that the information of the marginal nodes can be aggregated to the central node. The attention
mechanism specifically integrates the information of the neighboring nodes through the attention
correlation coefficient between the feature vectors. The structure of the model is shown in Fig. 1 and
the specific propagation mode between the layers is as Eqs. (8)–(12) [19].
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Figure 1: Structure of model
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where H (l+1) is the output feature matrix of layer l and H (l) is the input feature matrix of layer l, n is
the total number of nodes in the power grid; GAT update parameters are calculated point-by-point,
and Eq. (9) shows the process of this calculation, σ is the non-linear activation function with optional
ReLU, softmax, etc. Ni is the set of nodes connected to the node i, αij is the attention correlation
coefficient, which reflects the importance of each other by measuring the correlation of the feature
vectors of two nodes, that will determine the weighted value of different connections when the node
features are aggregated. W is a learnable weight matrix whose function is to convert the dimension
of the input feature vector into the output dimension; αij can be calculated by Eq. (10), aT is a weight
vector and it can transform the two feature vectors into a one-dimensional correlation coefficient
by multiplying with the splice vector Whi||Whj, then we can introduce LeakyReLu for nonlinear
activation. To compare the correlation coefficients, different correlation coefficients connected to node
i are regularized by the softmax; Eq. (11) introduces a multi-head mechanism, which adds E-1 channel
relative to Eq. (9), and the average value of all channels is taken as the final output result.

After the last graph attention layer, the full connection layer is connected to organize the output
characteristics and adjust the output dimensions for the prediction task. Eq. (12) is the mode of
propagation between the fully connected layers, H1 is the output of the input layer of the fully
connected layer and the last layer of GAT. W (m) is the weight vector of layer m, B(m) is the bias vector
of layer m, the former is a non-shared parameter while the latter is a shared parameter.
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3) Evaluating indicator

The backpropagation algorithm is a common and effective parameter updating method based on
supervised loss. Because the predicted carbon emission factors of the power grid are small, the error
value is generally less than 1, which makes the mean square error function (MSE) slow in this range.
Therefore, the mean absolute error (MAE) can be trained as a loss function, and MAPE is an indicator
to evaluate the effect of the model as follows:

MAE = 1
n

n∑
i=1

∣∣ỹi − yi

∣∣ (13)

MAPE = 100%
n

n∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (14)

where ỹi and yi indicate the predicted and true values of the carbon factors at node i, respectively, n is
the number of samples of the data set.

3.1.3 Training Method

In this paper, the gradient descent method of the small batch is used to train the prediction model.
For the convenience of training, setting the batch size of samples, and then the corresponding network
parameters updated according to the gradient descent direction of a batch can avoid the fluctuation
of the descent direction.

3.2 Procedure of Carbon Emission Factors Prediction
The prediction process can be divided into four steps which are shown in Fig. 2.

Figure 2: Procedure of carbon emission factors prediction
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• Fixed loads from the standard test system are used as means, and 30% of means as the variance
generate a random load sequence to provide the load data for power flow calculation;

• Based on the random load sequence and power generation data, power flow is analyzed, then
the theoretical carbon emission factors of each node are calculated according to the carbon
emissions flow data (regarded as the theoretical value);

• The GAN model is trained offline using the load data (input) generated in Step 1 and the carbon
emission factors data (output) calculated in Step 3. The best epoch is generated according to
the results of the test set, and then the model of the best epoch is used as the best model.

• The load to be predicted is input into the prediction model trained offline in Step 3 to realize
the online prediction of carbon emission factors in the power grid.

4 Test Analyse
4.1 Data Specification

Generator set: In this paper, four types of generator sets are used in the IEEE-39 bus and IEEE-
118 bus systems to verify the effectiveness of the proposed method. The four types of generating units
include coal-fired unit #1, coal-fired unit #2, gas unit, and hydropower unit, with carbon emissions
intensity of 1.5, 0.95, 0.5, and 0 (kg/kWh) [27], respectively.

Input data: Due to a lack of actual load data, we generated an input data set with a dimension
of 10000 × n, where 10000 is the number of samples and n is the number of nodes in the test grid.
The specific process is as follows: Taking the default load values of each node given by “case39” and
“case118” [28,29] in MATPOWER as the mean values, then generate 10000 groups of random normal
distribution sequences with 30% of the mean values as the variance. Considering that some nodes in
the power grid have no load, the columns corresponding to these nodes are supplemented with 0, so
the dimension of the load data set reaches 10000 × n. The 10000 sets of training data are randomly
divided into a training set, a validation set, and a test set according to 7:2:1.

4.2 Test for IEEE-39 Bus System
4.2.1 Parameter Settings for IEEE-39 Bus System

The generator typesetting of the IEEE-39 bus system is shown in Table 1 and the network training
parameters are shown in Table 2.

Table 1: Generator types of IEEE-39 bus system

Node number Type of generator Node number Type of generator

30 #1 35 #2
31 #2 36 3
32 3 37 4
33 4 38 #1
34 #1 39 #2
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Table 2: Training parameters of IEEE-39 bus system

Parameter name Designate Value

Number of nodes n 39
Number of generators g 10
Number of samples / 10000
Batch size / 256
Epoch / 10000
Learning rate / 0.001
Model setting (GAT) / [1 10 1]
Model setting (FCNN) / [39 39]
Dropout / 0.2

4.2.2 Test Results of IEEE-39 Bus System

The effectiveness of GAT in predicting the node carbon emission factors is tested using the IEEE-
39 bus system. Due to the excessive number of nodes in the system, typical nodes are selected based
on their representativeness. The degree (degree represents the number of neighboring nodes) of each
node in the IEEE-39 bus system is shown in Fig. A1 of Appendix A. Node 16 has the highest degree,
indicating that it is the central node, this kind of node is a hub node in the actual power grid, and
its power flow is easily influenced by the surrounding nodes, so its carbon emission factors fluctuate
greatly. The node 39 is connected to the generator and has a large load, which makes it a complex
node. This kind of node is close to the generator in the actual power grid, when its load is greater than
the input power of the connected generator, the carbon emission factors will also be affected by the
carbon emission factors of other nodes, otherwise, the carbon emission factors of this node will be
consistent with the power generation carbon emissions intensity of the generator. Additionally, there
is a typical class of nodes (such as node 10), whose carbon emission factors do not change with the
load. Therefore, they are selected as typical nodes for analysis.

Fig. 3 presents a comparison between the predicted values and the true values (the top 50 samples
of the test set) in the dataset. The prediction error rates of nodes 39 and 10 are overall at a low level,
but that of node 16 is slightly larger. Specifically, the MAPE of the three typical nodes is 4.63%, 1.20%,
and 0.06%, respectively.

To illustrate the prediction results more intuitively, a 3D scatter plot is drawn in Fig. 4, where
blue and red scatter points are test samples and predicted carbon emission factors values, respectively.
Due to a large number of nodes, only some nodes are displayed. Fig. 5 is a violin figure that presents
the distribution of the prediction error rates for all the nodes, The wider width of the x-axis direction
represents the greater corresponding error rate, and four lines in the graph represent the maximum,
mean, median, and minimum. It shows that most node’s prediction error values are below 10%, the
maximum error rate is 17.5% and the relative average error between them is only 2.46%. In conclusion,
This model achieves an average node prediction error rate of less than 5% and a maximum node
prediction error rate of less than 20% under the dataset of this paper.
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Figure 3: Prediction of carbon emission factors of some nodes in IEEE-39 bus system

Figure 4: 3D scatter plot of partial nodes in IEEE-39 bus system
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Figure 5: Forecast radar chart of IEEE-39 bus system

4.3 Test for IEEE-118 Bus System
4.3.1 Parameter Settings for IEEE-118 Bus System

The number of generator nodes and complexity of nodes in the IEEE-118 bus system have been
greatly improved compared with the 39 system. Types and settings of generators in the system are given
in Table A1 of Appendix A. The network training parameters are shown in Table 3, and the training
parameters of the contrast algorithm are shown in parentheses.

Table 3: Training parameters of GAT for IEEE-118 bus system

Parameter name Designate Value

Number of nodes n 118
Number of generators g 54
Number of samples / 10000
Batch size / 256
Epoch / 10000
Learning rate / 0.0005

4.3.2 Test Results of IEEE-118 Bus System

To objectively evaluate the effectiveness of the proposed method, Table 4 statistics the MAPE of
MLP, GCN [30,31], and GAT with the same dataset. We can see that using the GAT model yielded a
minimum MAPE of 2%, The largest is the MLP model whose value reaches 4.63%.
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Table 4: Comparison of the prediction MAPE for the different models

Models Structure of models MAPE (%)

GAT [1 10 1]/[118 118]/nhead = 2 2.51
GCN [1 10 1]/[118 118] 3.06
MLP
CNN

[118 500 118]
[kernel1_size = 5]/[kernel2_size = 8]

4.63
6.89

Similar to the IEEE-39 bus system, the degrees of each node in the IEEE-118 bus system are shown
in Fig. A2 of Appendix A. The selected typical nodes are 59 (complex node), 49 (central node), and
62 (carbon emission factors constant node). MAPE of the three typical nodes is 0.55%, 0.20%, and
1.82%, respectively, The prediction results of each typical node are similar to those in the IEEE-39 bus
system, as shown in Fig. 6, the scatter plots of some nodes are shown in Fig. 7.

Figure 6: Prediction of carbon emission factors of some nodes in the IEEE-118 bus system
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Figure 7: 3D scatter plot of partial nodes in IEEE-118 bus system

Fig. 8 shows that the prediction error values of most nodes are below 10%, the maximum error
rate is 30% and the relative average error between them is only 2.51%, which indicates that the GAT
is still effective in large-scale node systems.

Figure 8: Forecast radar chart of IEEE-118 bus system

4.4 Practical Implications
The carbon responsibility allocation system with carbon emission factors as the core can activate

the demand-side carbon reduction power. Put the future load data of each node into the forecasting
model, and output the carbon emission factors data of each node in the future, which can give users a
reference for carbon reduction, when the carbon emission factors are low at a certain moment, users
can move the peak of electricity consumption to this period to reduce the overall carbon emissions. At
present, this paper has only done preliminary work on the prediction method of load-carbon emission
factors, which is still far from practical application. The possible application steps that the author
thinks are as follows: First, the parameters for theoretical calculation should be accurate and complete,
such as power grid operation parameters, generator power data, and load data, all the parameters
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needed for database processing are established to ensure the timeliness of data; Secondly, different
models are trained to cope with different system topologies caused by different operating scenarios;
Predicting the load data in the future is the key link in practical application; The prediction accuracy
of the model should be evaluated, which gives a reference for the adjustment of model parameters.

5 Conclusion

Because of the current power carbon emission factors calculation methods have serious assessment
characteristics, which make it impossible to provide power grid and users with prospective guidance.
This paper proposes a node carbon emission factors prediction method based on GAT, which puts the
grid topology into the neural network to build a supervised prediction model. Based on the example
analysis of the IEEE-39 bus and IEEE-118 bus systems, the following conclusions can be obtained:

GAT integrated into the topology information of a power grid can effectively extract the feature
information of nodes, and then learn the interrelationship between nodes. Lastly, it achieves better
prediction results than MLP, GCN, and CNN.

The prediction method based on GAT achieves similar prediction results and performance in
IEEE-39 bus and IEEE-118 bus systems, which shows that the model is scalable and easy to migrate.

It must be pointed out that the load data used in this model are randomly generated according
to the normal distribution, and the actual load distribution law has not been taken into account. The
setting of carbon emissions intensity of generators in the test system is relatively traditional. In future
work, we will improve the quality of the load data set and consider introducing a high proportion of
new energy generators.
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Appendix A

Figure A1: Degrees of nodes in IEEE-39 bus system
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Figure A2: Degrees of nodes in IEEE-118 bus system

Table A1: Generator types of IEEE-118 bus system

Node number Type of
generator

Node number Type of
generator

Node number Type of
generator

1 #1 42 3 80 #1
4 #2 46 4 85 #2
6 3 49 #1 87 3
8 4 54 #2 89 4
10 #1 55 3 90 #1
12 #2 56 4 91 #2
15 3 59 #1 92 3
18 4 61 #2 99 4
19 #1 62 3 100 #1
24 #2 65 4 103 #2
25 3 66 #1 104 3
26 4 69 #2 105 4
27 #1 70 3 107 #1
31 #2 72 4 110 #2
32 3 73 #1 111 3

(Continued)
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Table A1 (continued)

Node number Type of
generator

Node number Type of
generator

Node number Type of
generator

34 4 74 #2 112 4
36 #1 76 3 113 #1
40 #2 77 4 116 #2
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