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ABSTRACT

Due to the depletion of conventional energy reserves, there has been a global shift towards non-conventional
energy sources. Shale oil and gas have emerged as key alternatives. These resources have dense and heterogeneous
reservoirs, which require hydraulic fracturing to extract. This process depends on identifying optimal fracturing
layers, also known as ‘sweet spots’. However, there is currently no uniform standard for locating these sweet spots.
This paper presents a new model for evaluating fracturability that aims to address the current gap in the field. The
model utilizes a hierarchical analysis approach and a mutation model, and is distinct in its use of original logging
data to generate a fracturability evaluation map. Using this paper’s shale fracturing sweet spot evaluation method
based on a two-step mutation model, four wells in different blocks of Fuling and Nanchuan Districts in China were
validated, and the results showed that the proportion of high-yielding wells on the sweet spot line could reach 97.6%,
while the proportion of low-producing wells was only 78.67%. Meanwhile, the evaluation results of the model were
compared with the microseismic data, and the matching results were consistent.
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Nomenclature

μ Shear modulus
λ Lamé’s coefficient
E Young’s modulus
�tp P-wave travel time differences
�ts S-wave travel time differences
vs S-wave velocity
ρ Density
σ Poisson’s ratio
SC Compressive strength
ST Tensile strength
IR Random consistency index
IC Consistency index
ICR Consistency ratio
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1 Introduction

The current global economic downturn and transition towards renewable energy have resulted
in historically low investment in oil and gas exploration [1]. As conventional oil and gas resources
become increasingly scarce, shale oil and gas have emerged as key areas in global energy exploration.
The United States, being the first country to exploit shale oil and gas and conduct related research,
has led the shale oil and gas revolution, achieving large-scale production of shale fields [2–5]. After
that, Canada [6–8], South Africa [9,10], Argentina [11,12], and some European countries [13] have
begun research on shale gas exploration and development. According to the statistics [14], in 2021, the
US produced 5.49 × 108 tons of crude oil, of which shale oil contributed 3.62 × 108 tons, accounting
for 65.9% of total crude oil production. Natural gas production was 9736 × 108 m3, with shale gas
contributing 7643 × 108 m3, or 78.5% of total natural gas production. China is among the countries
with the largest shale oil and gas reserves and has extensively explored and developed these resources
domestically. In 2021, China National Petroleum Corporation reported that the cumulative proven
geological reserves of shale oil reached 13.05 × 108 tons, and shale gas reserves reached 1.7 × 1012 m3.
Yet, in the same year, China’s shale oil production was just 257 × 104 tons and shale gas 128.7 × 108 m3,
constituting only 2.5% and 9.3% of its total oil and gas output, respectively. It is evident that China
is still in the initial stages of shale oil and gas exploration and development. China should learn from
countries like the United States and adapt this knowledge to its unique shale characteristics to devise
an appropriate exploitation strategy.

In recent years, China has made significant progress in shale gas development, with a national
output exceeding 200 × 108 m3 in 2021. Large-scale commercial exploitation of shale gas has been
conducted in formations within 3500 m, and significant breakthroughs have been made in deeper
formations (over 3500 m), making China the third country in the world to achieve commercial
development of shale gas. In the development of shale oil and gas, the initial step is to explore
the geochemical characteristics of the reservoir to identify high-quality reservoirs for development,
known as geological sweet spots. Subsequently, it is necessary to evaluate the physical properties of
the reservoir to ensure effective fracturing development and determine the most favorable fracturing
target window, or sweet spot, known as fracturability evaluation [15,16]. However, establishing a highly
applicable fracturability evaluation standard for shale in China is challenging due to the burial depth
of shale oil and gas, which can reach 2100–4500 m. The mechanical properties of shale are affected
by pressure, temperature, and tectonic movements, making it difficult to determine its fracturability.
Additionally, unlike conventional sandstone and carbonate rocks, fracturability for shale does not
simply refer to whether the formation can be fractured, but rather its suitability for fracturing. Frac-
turing is a prerequisite for extracting shale. Therefore, shale fracturability is evaluated to determine
if a fracture network can be effectively formed, ensuring the feasibility of volume fracturing [17,18].
Field practices suggest that the development of deep shale gas in China is still challenging due to the
extremely dense pore structure of shale, resulting in very low permeability. Evaluating ‘sweet spots’
using foreign parameters like Total Organic Carbon (TOC), pressure coefficient, gas content, and
brittleness index is not effectively applicable under the complex geological conditions of southern
China. Fracturing involves rock skeleton deformation, crack generation and extension, and fluid flow
in fractures, making it a multifield coupled complex mechanical problem. China’s shale oil and gas
have different characteristics from those in the United States, which presents greater development
challenges. Therefore, foreign fracturability evaluation methods cannot be fully adopted. Currently,
there is a lack of clear understanding regarding the initiation and extension mechanisms of fractures, as
well as the difficulty in identifying relatively frackable layers during fracturing. This leads to ambiguity
in engineering sweet spots. Based on the current state of shale oil and gas development, it is important
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to conduct a comprehensive evaluation in conjunction with geological sweet spots, rather than solely
seeking engineering sweet spots. Therefore, it is crucial to establish an accurate method for evaluating
the fracturability of shale.

Shale fracturability is influenced by various factors due to its comprehensive reflection of
geological and reservoir characteristics [19,20]. Scholars worldwide have conducted research on
evaluating the fracturability of shale reservoirs. The brittleness index is a crucial parameter for
determining whether rocks can form fractures under stress and their fracture morphology. It is
mainly classified into two types: calculated directly using well log data and empirical formulas
or determined by X-Ray Diffraction (XRD) indoor core tests to identify reservoir mineral types,
and then evaluating the brittleness index based on the content of brittle minerals. In 2007, Jarvie
et al. [21] proposed determining the brittleness index based on the proportion of quartz in the
total minerals. Subsequently, others suggested that the calculation of the brittleness index should
also include dolomite, quartz-dominated siliceous minerals, and carbonate minerals [22–24]. Later,
scholars Tao et al. [25] combined Rickman’s [26] brittleness index calculation method based on
Young’s modulus and Poisson’s ratio with indoor core experiment methods to propose a related
brittleness index evaluation method. However, numerous field data have shown that the brittleness
index is not the only indicator for evaluating shale fracturability. Using the brittleness index alone to
evaluate shale fracturability is unreasonable, incomplete, and inaccurate. Mullen et al. [27] mentioned
in their paper that factors affecting shale reservoir fracturability include not only the content of
brittle minerals but also their corresponding sedimentary structures and the development of natural
weak planes in the original strata. Chinese scholars conducted indoor experiments and mechanism
analyses on the characteristics of shale reservoirs in Yongchuan of Sichuan Basin, Baojing in Hunan
Province, and Luzhou in southern Sichuan Province. They established a shale reservoir fracturability
evaluation model that comprehensively considers the rock brittleness index, fracture toughness, and
reservoir porosity and permeability, achieving good results. However, due to the high cost of indoor
experimental analyses, the unavoidable impact of experimental data errors on evaluation results, and
the inability to continuously and completely reflect the fracturability of horizontal well sections,
there are limitations. Consequently, some scholars have considered the continuity of fracturability
evaluation and established a shale reservoir fracturability evaluation model based on well log data and
the Analytic Hierarchy Process. However, this method requires mutual independence among various
data, while in reality, the influencing factors cannot maintain their independence, thus reducing its
applicability. The process of fracturing occurs within a complex system, so changes in external factors
can lead to changes in the system’s state. This characteristic aligns well with the mutation theory
proposed by French scientist Rene Thom, which is a method based on topology, structural stability,
and singularity theory to study discontinuous changes and catastrophic phenomena. Mutation theory
has become a key mathematical tool for solving complex problems in engineering and covers a wide
range of fields, including economics, physics, biology, and psychology. However, traditional mutation
models, based on experience and existing data to determine control factors, lack scientific rigor,
making the selection of variables a challenge. Currently, common variable selection methods include
wrapper, filter, and embedded methods, each with its own limitations. For instance, methods like
wrapping and embedding can achieve good modeling results, but the selection of variable subsets
dependent on specific models greatly risks overfitting. The filtering method, although independent of
specific learning techniques and quite applicable, struggles to achieve satisfactory modeling outcomes.
The Analytic Hierarchy Process (AHP) mentioned earlier, in the process of selecting variables, not
only covers effective variable information in the fracturing process but also organizes and structures
the evaluation model efficiently. Therefore, by utilizing hierarchical analysis and mutation theory to
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compensate for each other’s deficiencies, an effective and more complete evaluation model can be
established.

This paper presents a two-step method for constructing a mutation model to establish a fractura-
bility evaluation model that meets the characteristics of Chinese shale reservoirs. Firstly, a structural
model of shale fracturability evaluation is established based on hierarchical analysis, with clear
organization and hierarchy. The evaluation parameters’ correlation and contradiction are reduced
based on the mutation theory to meet the data independence requirement of hierarchical analysis.
Then, the parameters are standardized and normalized to calculate the affiliation value of each control
variable and the total mutation of the evaluation system. Finally, the results are sorted according to
the calculation results. Finally, the evaluation model’s effectiveness and applicability are verified by
combining it with the actual fracturing effect in the field.

2 Materials and Methods

The two-step method is utilized to construct the shale fracturability evaluation method, which is a
hierarchical and organized model based on various factors of shale reservoir fracturability evaluation.
The evaluation model is divided into three layers: the objective layer, the criterion layer, and the index
layer. Firstly, a multilevel structural model is established to evaluate shale reservoir fracturability
indexes, consisting of the target layer, criterion layer, and index layer. The evaluation of fracturability
value S for mudstone and limestone reservoirs is considered the objective layer. The criteria that
determine the relationship between the indicators and the objective layer are the criterion layer, which
is divided into positive indicators A and negative indicators B. When applying mutation theory, it is
crucial to choose appropriate control variables. The selection of control variables should be systematic
and capable of influencing the system’s state while maintaining exclusivity to avoid simultaneous
changes. It is crucial that the selected control variables align with the specific objectives of the study
and are consistent with the application goals of mutation theory. The selection of positive and negative
indicators is particularly important. The selection of positive indicator A (brittleness index, brittle
mineral content, reservoir porosity, permeability, and gas content) and negative indicator B (well wall
stability and mud content) was based on the development experience of unconventional reservoirs
and the advice of fracturing site experts. The brittleness index includes Young’s modulus and Poisson’s
ratio, porosity and permeability parameters include porosity and permeability, gas content includes gas
content and TOC, and wellbore stability includes compressive strength and tensile strength. To ensure
the accuracy and continuity of evaluation parameters, well logging data is chosen as the fundamental
data for calculating these parameters.

The method for calculating the parameters is as follows:

(1) Young’s Modulus

μ = 92904ρv2
s = 92904

ρ

Δts
2

(1)

λ = 92904ρ

(
1

Δt2
p

− 2
Δt2

s

)
(2)

E = μ (3λ + 2μ)

λ + μ
(3)
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In the formula: μ, λ, and E represent the shear modulus, Lamé’s coefficient, and Young’s modulus,
respectively, in GPa; �tp and �ts are the P-wave and S-wave travel time differences, in μs/m; vs is the
S-wave velocity, in m/μs; ρ is the formation density, in g/cm3.

(2) Poisson’s Ratio

σ = λ

2 (λ + μ)
(4)

(3) Brittleness Mineral Content

XBrittle min erals = ωsapphire + ω∂carbonate

ωsapphire + ωcarbonate + ωclays + ωpyrite

(5)

(4) Brittleness Index

Ibrittleness =
(

Et − Et min

Et max − Et min

+ σt − σt max

σt min − σt max

)
/2 (6)

(5) Compressive Strength SC and Tensile Strength ST

SC = 103 × E
[
0.00816wclays + 0.00459

(
1 − wclays

)]
(7)

ST = SC
12.0

(8)

(6) Other Parameters

Other parameters involved in this model, including porosity, permeability, gas content, and TOC,
can be directly obtained from well logging data.

After calculating the above evaluation parameters, it is necessary to use the Analytic Hierarchy
Process (AHP) to score and rank these parameters, and then combine them with the mutation model
to calculate the fracturability coefficient.

2.1 Analytic Hierarchy Process (AHP)
The purpose of the Analytic Hierarchy Process (AHP) is to solve multi-objective complex

problems by combining qualitative and quantitative approaches to calculate decision weights. This
method combines quantitative and qualitative analyses, utilizing the decision-maker’s experience to
judge the relative importance of criteria for achieving various objectives and to assign reasonable
weights to each criterion for every decision option. By using these weights to determine the relative
merit of each option, AHP effectively addresses problems that are difficult to solve with purely
quantitative methods.

The principle primarily involves constructing a judgment matrix after determining the scale, as
shown in Table 1. Subsequently, the final judgment matrix is determined through expert scoring,
and the matrix is solved to obtain eigenvectors, eigenvalues, and weights. During the calculation, to
avoid logical errors in constructing the judgment matrix, a consistency check is required. The general
consistency check index is the CR value, and the matrix is considered consistent if the CR value is less
than 0.1. The specific steps are as follows:
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Table 1: Constructing the comparison matrix each scale and its meaning

Scale Hidden meaning

1 2 factors of equal importance
3 One of the 2 factors is slightly more important compared to the other
5 One of the 2 factors is clearly more important compared to the other
7 One of the 2 factors is strongly more important compared to the other
9 One of the extremes is more important compared to the 2 factors
2, 4, 6, 8 The median of the importance of the above two neighboring judgments
Reciprocal Factor i is compared to factor j, corresponding to aij, then factor j is compared to

factor i, corresponding to aji = 1/aij

(1) Establish a Judgment Matrix

AW = λmaxW (9)

In the formula: A represents the weight ratio matrix; W is the weight vector; λmax is the maximum
eigenvalue.

(2) By calculating the weight vector W using the eigenvector from the judgment matrix established
by the Analytic Hierarchy Process, one can obtain the coefficient I, which is relevant to the problem
in question.

(3) Conduct a consistency check on the judgment matrix using its eigenvalues

IC = λmax − n
n − 1

(10)

ICR = IC

IR

(11)

In the formula: n is the number of elements chosen; IR is the Random Consistency Index, IC is
the Consistency Index, whose values are given in a standard table, as shown in Table 2. ICR is the
Consistency Ratio.

Table 2: Average randomized consistency indicator values

n norm

1 2 3 4 5 6 7 8 9 10

ICR 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46 1.49

When ICR < 0.1, the consistency test is passed; otherwise, the logic in the matrix needs to be
further checked and modified.

By using the Analytic Hierarchy Process to score and rank the numerous factors affecting shale
fracturability, and considering the previously mentioned limitations of the AHP, it is necessary to apply
a mutation model to the ranked indicators.
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2.2 Two-Step Construction of a Mutation Model
The previous section introduced application scenarios of the mutation model. Mutation theory

employs mathematical models to describe the process where continuous motion is suddenly inter-
rupted, leading to a qualitative change. It is related to Chaos Theory and is now commonly considered
a part of it. The theory studies the potential function and classifies critical points based on it, thereby
investigating the discontinuous characteristics near these critical points. The model’s specific process
involves the system approaching the maximum and minimum values of the potential function under
fixed control factors until it reaches a state of equilibrium, as shown in Fig. 1.

Figure 1: Schematic diagram of cusp mutation model

The relationship of the state factor x and the control factor a with time t in the system can be
described by the expression of the dynamical system.

dx
dt

= −∂V (x, a)

∂x
(12)

Here, V(x,a) is the potential function of the system, with different mutation models composed
of various control factors and state factors. The equilibrium surface equation is obtained when its
first derivative equals zero. By differentiating the equilibrium surface equation, we can determine
the singular set of the potential function, which is known as the bifurcation set equation. The
bifurcation set equation indicates that the system will undergo a mutation when the control factors
satisfy this equation. Decomposing the bifurcation set equation in Table 3 leads to the derivation of
a normalized formula for the mutation model. This formula normalizes the different states of each
control factor into states represented by state factors. In the subsequent data processing of this article,
cusp, swallowtail, and butterfly mutation models will be used. The bifurcation set equations are as
shown in Table 3.

Table 3: Potential functions and bifurcation set equations of mutation models

Model type Potential function expression Bifurcation set equation

Cusp mutation V(x) = x4 + ux2 + vx u = −6x2, v = 8x3

Swallowtail mutation V(x) = x5 + ux3 + vx2 + wx u = −6x2, v = 8x3, w = −3x4

Butterfly mutation V(x) = x6 + ux4 + vx3 + wx2 + tx u = −6x2, v = 8x3, w = −3x4, t = x5



1928 EE, 2024, vol.121, no.7

The normalization formulas are as follows:

Cusp Mutation:

xu = u
1
2 , xv = v

1
3 (13)

Swallowtail Mutation:

xu = u
1
2 , xv = v

1
3 , xw = w

1
4 (14)

Butterfly Mutation:

xu = u
1
2 , xv = v

1
3 , xw = w

1
4 , xt = t

1
5 (15)

In the formula: The values of the system state factor (x) and control factors (u, v, w, t) range from 0
to 1. Utilizing the normalization formula, one can calculate the system mutation membership function
values that characterize the system state features. This is the fundamental calculation formula needed
for the comprehensive analysis and evaluation of fracturability in shale reservoirs.

In summary, the method of shale fracturing sweet spot analysis based on the two-step construction
of mutation models is as follows: First, use the Analytic Hierarchy Process to construct the hierarchy of
the entire evaluation system and determine the mutation model for each level. Then, standardize and
normalize the necessary data to obtain the membership values of the evaluation system. Finally, the
process of evaluating fracturability in compressible reservoirs can be summarized as follows: Initially,
decompose the evaluation system into multiple subsystems composed of various evaluation indicators,
establish a hierarchical model of evaluation indicators, and determine the corresponding mutation
model for each level. Next, standardize the basic data, decompose the bifurcation set equation to
obtain the normalization formula, calculate the corresponding x-values of each control variable within
the same system, and derive the total mutation membership function values for different evaluation
systems. Lastly, determine the final fracturability evaluation values for each subsystem from smallest to
largest, and rank them from highest to lowest, selecting the most compressible layers. The hierarchical
structure model of shale horizontal well fracturability established in this article is shown in Fig. 2:

Figure 2: A recursive hierarchical model of fracturability for horizontal mud shale wells

3 Numerical Implementation Process
3.1 Statistics of Original Data for Positive and Negative Indicators

The results of the original evaluation parameters calculated from well logging data are shown in
Appendixes A and B.
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3.2 Data Standardization
Due to the different dimensions of the evaluation parameters, it is necessary to standardize the

data based on the classification of positive and negative correlations. Eqs. (16) and (17) represent the
formulas for positive and negative correlation processing, respectively.

Y = X − Xmin

Xmax − Xmin

(16)

Y = Xmax − X
Xmax − Xmin

(17)

The processed data is shown in Table 4:

Table 4: Standardized evaluation indicator data for different well sections of well A

Layer
number

Positive correlation indicators Negative correlation
indicators

Young’s
modulus

Poisson’s
ratio

Brittle
minerals

Permeability Porosity Gas
content

TOC Compressive
strength

Tensile
strength

Mud
content

1 0.3043 0.4003 0.651 0.5 0.4706 0.4545 1 0.357 0.3579 0.9617
2 0.1 0.6003 0.8724 1 1 0.8182 0.5 0.8377 0.8368 0.8747
3 0.4391 0.4003 0.4679 0.5 0.4706 0.3636 0.5 0.4427 0.4421 0.7723
4 0.1419 0.8002 0.7118 1 1 0.8182 0.5 0.6008 0.6018 0
5 0.4739 0.3336 0.4696 0.3333 0.3529 0.2727 0.5 0.3275 0.3281 0.7909
6 0.1959 0.6003 0.7457 0.8333 0.8235 0.7273 0.6667 0.6634 0.6632 0.882
7 0.6054 0.3336 0.2717 0.3333 0.3529 0.3636 0.5 0.1595 0.1596 0.9348
8 0.2042 0.7336 0.724 0.8333 0.8235 0.7273 0.3333 0.7962 0.7965 0.9172
9 0.3467 0.467 0.5599 0.6667 0.6471 0.3636 0.5 0.5784 0.5789 0.9772
10 0 1 1 0.8333 0.8824 0.8182 0.5 1 1 0.9255
11 1 0 0 0 0 0 0 0 0 0.9648
12 0.2743 0.7336 0.572 0.6667 0.7647 0.8182 0.5 0.6493 0.6491 0.9793
13 0.5901 0.4003 0.2109 0.5 0.4706 0.5455 0.6667 0.1869 0.1877 0.9565
14 0.217 0.6669 0.7075 0.6667 0.7059 0.9091 0.6667 0.539 0.5386 0.3789
15 0.6131 0.4003 0.2474 0.5 0.5294 0.3636 0.6667 0.182 0.1825 1
16 0.2743 0.7336 0.5582 0.6667 0.7059 1 0.8333 0.4968 0.4965 0.3903

3.3 Using Mutation Theory to Calculate Fracturability Index
To facilitate the understanding of the calculation method proposed in this paper, we will use the

first layer as an example. Based on the relevant evaluation principles and following the hierarchy of
the target layer, criterion layer, and indicator layer, we will calculate the system’s mutation membership
values step by step. The specific calculation steps are as follows:

(1) Calculate the system’s mutation membership values for the indicator layer

Based on the hierarchical relationship previously presented, A11 and A12 constitute the cusp
mutation model. Calculate the brittleness index A1 using Eq. (13):

XA1 = XA11

1
2 + XA12

1
3

2
= 0.3043

1
2 + 0.4003

1
3

2
= 0.6444
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The remaining constituent functions of the indicator layer’s mutation functions can be calculated using
the formulas mentioned above.

(2) Calculating the system’s mutation membership functions for the criteria layer

The process of calculating the mutation membership functions for the criteria layer’s positive
indicator A and brittleness index A1, as well as brittleness mineral content A2, reservoir porosity
and permeability parameters A3, and gas content A4, which form the butterfly model, is as follows
according to Eq. (15):

XA = X + X + X + X
4

= 0.8907

The calculation of the negative indicator B for the criteria layer, along with rock wellbore stability
B1 and clay mineral content B2, which constitute the cusp mutation model, can be obtained using
Eq. (13):

XB1 = B11

1
2 + B12

1
3

2
= 0.6537

XB2 = 0.9617

XB = XB1

1
2 + XB2

1
3

2
= 0.8978

(3) Calculate the final fracturability evaluation factor

The calculation of the system’s catastrophic change membership function value for the target layer
S can be obtained by considering S along with the positive indicator A and negative indicator B, which
constitute the cusp mutation model. Based on the principles of interplay between criteria layers and the
complementary relationship between criteria layers and the target layer, as outlined in the evaluation
criteria, we can derive the first layer comprehensive fracturability assessment value S:

XS = XA

1
2 + XB

1
3

2
= 0.95424

In the established model, the principles of the mutation model are satisfied between upper and
lower levels. Therefore, the same method can be used to calculate the positive and negative evaluation
indicators between different layers and the comprehensive fracturing coefficient evaluation values
following the steps. The final results of the calculations are shown in Tables 5 to 7.

Table 5: Positive fracturability index and influencing factors for each layer in well A

Layer
number

Positive correlation indicators Positive
correlation
indicator
evaluation
value

Young’s
modulus

Poisson’s
ratio

Brittle
minerals

Permeability Porosity Gas
content

TOC

1 0.3043 0.4003 0.651 0.5 0.4706 0.4545 1 0.8907
2 0.1 0.6003 0.8724 1 1 0.8182 0.5 0.9212

(Continued)
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Table 5 (continued)

Layer
number

Positive correlation indicators Positive
correlation
indicator
evaluation
value

Young’s
modulus

Poisson’s
ratio

Brittle
minerals

Permeability Porosity Gas
content

TOC

3 0.4391 0.4003 0.4679 0.5 0.4706 0.3636 0.5 0.8644
4 0.1419 0.8002 0.7118 1 1 0.8182 0.5 0.9172
5 0.4739 0.3336 0.4696 0.3333 0.3529 0.2727 0.5 0.8508
6 0.1959 0.6003 0.7457 0.8333 0.8235 0.7273 0.6667 0.9142
7 0.6054 0.3336 0.2717 0.3333 0.3529 0.3636 0.5 0.8278
8 0.2042 0.7336 0.724 0.8333 0.8235 0.7273 0.3333 0.9118
9 0.3467 0.467 0.5599 0.6667 0.6471 0.3636 0.5 0.8825
10 0 1 1 0.8333 0.8824 0.8182 0.5 0.914
11 1 0 0 0 0 0 0 0.1768
12 0.2743 0.7336 0.572 0.6667 0.7647 0.8182 0.5 0.9003
13 0.5901 0.4003 0.2109 0.5 0.4706 0.5455 0.6667 0.8336
14 0.217 0.6669 0.7075 0.6667 0.7059 0.9091 0.6667 0.9114
15 0.6131 0.4003 0.2474 0.5 0.5294 0.3636 0.6667 0.8403
16 0.2743 0.7336 0.5582 0.6667 0.7059 1 0.8333 0.904

Table 6: Negative fracturability index and influencing factors for each layer in well A

Layer
number

Negative correlation
indicators

Negative
correlation
index

Layer
number

Negative correlation
indicators

Negative
correlation
index

Well wall
stability

Mud
content

Well wall
stability

Mud
content

1 0.6537 0.9617 0.8978 9 0.797 0.9772 0.9425
2 0.9288 0.8747 0.9601 10 1 0.9255 0.9873
3 0.7136 0.7723 0.8811 11 0 0.9648 0.4941
4 0.8097 0 0.4499 12 0.8358 0.9793 0.9536
5 0.631 0.7909 0.8596 13 0.5025 0.9565 0.8471
6 0.8433 0.882 0.9386 14 0.7739 0.3789 0.8017
7 0.4709 0.9348 0.832 15 0.4969 1 0.8525
8 0.9096 0.9172 0.9627 16 0.7484 0.3903 0.7979
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Table 7: Normalized fracturability index evaluation values and comprehensive fracturability evalua-
tion results for each layer in well A

Layer
number

Positive
correlation
index

Normalized
value

Negative
correlation
index

Normalized
value

Fracturability
evaluation
value

Rankings

1 0.8907 0.9438 0.8978 0.9647 0.9542 7
2 0.9212 0.9598 0.9601 0.9865 0.9732 2
3 0.8644 0.9297 0.8811 0.9587 0.9442 8
4 0.9172 0.9577 0.4499 0.7663 0.862 15
5 0.8508 0.9224 0.8596 0.9508 0.9366 11
6 0.9142 0.9561 0.9386 0.9791 0.9676 4
7 0.8278 0.9099 0.832 0.9405 0.9252 14
8 0.9118 0.9549 0.9627 0.9874 0.9712 3
9 0.8825 0.9394 0.9494 0.9805 0.9599 6
10 0.914 0.956 0.9873 0.9957 0.9759 1
11 0.1768 0.4204 0.4941 0.7905 0.6055 16
12 0.9003 0.9489 0.9536 0.9843 0.9666 5
13 0.8336 0.913 0.8471 0.9462 0.9296 13
14 0.9114 0.9547 0.8017 0.929 0.9418 9
15 0.8403 0.9167 0.8525 0.9482 0.9324 12
16 0.904 0.9508 0.7979 0.9275 0.9391 10

4 Modeling Results and Discussion
4.1 Comparison and Verification of Model Computation Results with Logging Interpretation by the
Construction Party

Since the well is currently only in the logging phase and has not been put into production, it is
not possible to compare production with calculation results. Therefore, we compared the ranking of
the calculated fracturability evaluation values with the actual interpretation results obtained by the
construction party during logging. It can be seen that the top 5 ranked intervals are all interpreted
as gas reservoirs with a reservoir type of Class II. In contrast, among the intervals ranked from
6th onwards, 5 intervals are interpreted as gas-bearing layers with a reservoir type of Class III. The
verification results confirm the accuracy and applicability of this method. The specific data is shown
in Table 8.

Table 8: Comparison of fracturability evaluation values and actual interpretation results for each layer
of well A

Layer
number

Well section
(m)

Fracturability
evaluation value

Fracturability
ordering

Construction unit
explains conclusions

Reservoir
type

1 1345.9–1439.9 0.9542 7 Gas-bearing III
2 1439.9–1498.2 0.9736 2 Gas II
3 1498.2–1530.4 0.9444 8 Gas-bearing III

(Continued)
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Table 8 (continued)

Layer
number

Well section
(m)

Fracturability
evaluation value

Fracturability
ordering

Construction unit
explains conclusions

Reservoir
type

4 1530.4–1580.7 0.8623 15 Gas II
5 1580.7–1688.4 0.9368 11 Gas-bearing III
6 1688.4–1702.3 0.9679 4 Gas II
7 1702.3–1811.5 0.9254 14 Gas-bearing III
8 1811.5–1865.4 0.9714 3 Gas II
9 1865.4–2061.7 0.9602 6 Gas-bearing III
10 2061.7–2287.2 0.9759 1 Gas II
11 2287.2–2347.3 0.6055 16 Gas-bearing III
12 2347.3–2379.1 0.9668 5 Gas II
13 2379.1–2403.5 0.9298 13 Gas-bearing III
14 2403.5–2427.5 0.9421 9 Gas II
15 2427.5–2471 0.9326 12 Gas-bearing III
16 2471–2498 0.9394 10 Gas II

From the final calculation results, it can be observed that layers 10, 2, 8, 6, and 12 exhibit
higher fracturability levels. Referring to Appendix A, it can be noted that these thinner layers have
a brittle mineral content of ≥55%, clay content of <10%, tensile strength ≤330 MPa, gas content
≥1.5%, porosity ≥3.1%, and permeability ≥0.1 mD. However, it is worth noting that the commonly
used criterion for evaluating brittleness, Young’s modulus, does not necessarily exhibit the highest
values when comparing these layers. This suggests that the fracturability of reservoirs cannot be solely
evaluated based on the brittleness index, and establishing a model that includes both positive and
negative influencing factors provides a more accurate assessment of reservoir fracturability.

As delineated in Fig. 3, a degree of association is evident between the model’s computational
results and the positive indicators, namely Young’s modulus, Poisson’s ratio, and the brittleness index.
However, it is noteworthy that the coefficient of determination (R2) values associated with these
correlations are not particularly robust.

This observation lends credence to the assertion that relying solely on conventional geological
or engineering indices to ascertain the fracturability sweet spot is insufficient. The nuanced nature of
these relationships underscores the complexity inherent in accurately predicting fracturability sweet
spots. For example, there is an outlier in Fig. 3, a section with a Young’s modulus of 56.3 GPa and
a gas content of only 0.7 m3/t, which is ranked last in the calculations. Consequently, this reinforces
the need for a more comprehensive and integrated approach, such as that offered by our model, which
goes beyond traditional indicators to enhance the precision and reliability of fracturability assessments
in unconventional reservoirs.
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Figure 3: Correlation of some evaluation metrics with model calculations, (a) Young’s modulus, (b)
Poisson’s ratio, (c) compressive strength, (d) brittleness index

The two-step mutation model utilized to calculate factors affecting fracturability and create
a comprehensive fracturability index enables the plotting of evaluation parameter variations with
depth, as depicted in Fig. 4. This figure clearly illustrates horizontal and vertical comparisons
between different layers. The analysis indicates that layers with lower rankings in the comprehensive
fracturability index correspond to lower values in their curves when integrating selection results with
evaluation parameter trends.

Between 2287.2 and 2347.3 m, the low values of gas content, TOC, and horizontal principal
stress difference hinder fracturing operations, despite the high Young’s modulus and low clay mineral
content. Similarly, between 1530.4 and 1580.7 m, fracturing operations are impeded by the low
Young’s modulus, natural gamma, and high clay mineral content, despite the high TOC and horizontal
principal stress difference. In the interval from 1811.5 to 1865.4 m, Young’s modulus and TOC
exhibit medium to high values, while natural gamma and Poisson’s ratio exhibit relatively low values.
These indicators align well with the preferred criteria for fracturability, indicating a high level of
fracturability.

Based on the assessment of the comprehensive fracturability coefficient for the entire interval, a
threshold of 0.91 is set as the benchmark for the optimal fracturing interval (as shown by the dashed
line in Fig. 4). According to this standard, it is recommended that the optimal fracturing intervals
are from 1811.5 to 2287.2 m (first priority) and from 1439.9 to 1702.3 m (second priority). It is not
recommended to perform fracturing in the intervals from 1530.4 to 1580.7 m, 1702.3 to 1811.5 m,
2287.2 to 2347.3 m, and 2379.1 to 2471.0 m.
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Figure 4: Parameter map of fracturability evaluation indices for well A in the fuling area
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4.2 Validation of the Model in Other Developed Shale Gas Wells
To verify the non-uniqueness of this model, we selected other shale gas wells that have already

been developed in different work areas. The selected blocks are located in the southern part of China,
specifically in the Nanchuan work area, which consists of three blocks: PQ South Block, JY 10 Block,
and DS Block. We chose one well from each of these three blocks to validate the results of the model
proposed in this paper, as shown in Figs. 5 to 7.

Density,

g/cm3

2.4-2.8

Acoustic time
lag, µs/m
290-470

Poisson's ratio
0.27-0.32

Young's
modulus,  GPa

30-85

Brittleness
index
0-1

TOC
0-7

Mud content,
100%
0-80

Tensile
Strengths,  MPa

5-17

Fracturability
factor

0.85-0.95

Well depth,m

Figure 5: Fracturability evaluation index parameter map for well B in PQ block

Due to the fact that these three wells are located in different blocks within the same region, the
evaluation model provides a targeted assessment of its accuracy. According to the model calculations,
the percentage of wells B, C, and D with comprehensive fracturing coefficients greater than or equal to
0.91 (sweet spots) is 97.6% (1477 m/1514 m), 78.67% (1180 m/1500 m), and 89.71% (1020 m/1137 m),
respectively. By comparing the production test results of the three wells (as shown in Table 9), it can be
observed that well B achieved a production test rate of 15.31 × 104 m3/d, higher than wells C and D.
Well D, with a fracturing sweet spot length representing only 78.67% of the testing interval length, had
the lowest production test rate. Additionally, it is evident that the majority of the highest-producing
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well crosses the 3© small layer. Therefore, the fracturing sweet spot evaluation model proposed in this
paper demonstrates wide applicability in different blocks and production areas.
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Poisson's ratio
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5-17

Fracturability
factor

0.85-0.95

Well depth,m

Figure 6: Fracturability evaluation index parameter map for well C in JY 10 block

Furthermore, this study extends its analysis to the practical application of the proposed model,
with a specific focus on Well C, for which production profile data were comprehensively analyzed. Well
C features a horizontal section measuring 1500 m in length, and it underwent a total of 14 hydraulic
fracturing stages. The data, illustrated in Fig. 8, reveal a noteworthy congruence between the integrated
fracturability coefficient and the production data from each individual fracturing section.

This correlation serves as a robust validation of the model’s accuracy. The alignment of the model’s
predictions with the actual production data from Well C not only demonstrates the model’s practical
utility but also reinforces its potential as a reliable tool in optimizing hydraulic fracturing operations.
The ability to accurately predict production outcomes based on geological and mechanical parameters
is a significant advancement, offering a more data-driven approach to enhance the efficiency and
effectiveness of unconventional energy extraction methods.
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Figure 7: Fracturability evaluation index parameter map for well D in DS block

Table 9: Verification well test production and percentage of small layers traversed

Separate block PQ JY10 DS

Well number B C D
Length of dessert area, m 1477 1180 1020
Total length of test, m 1514 1500 1137
Percentage of dessert area, % 97.6 78.67 89.71

Percentage of layers traversed, %

Ling Xiang Group
1© 45.40 41.02
2© 4.43 6.90 6.16
3© 95.57 47.70 52.82
4©
5©
6©– 9©

Test Yield, 104m3/d 15.31 8.97 13.21
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Figure 8: Relationship between integrated fracturability coefficient XS and production profile data

Microseismic monitoring is currently the most credible method for assessing fracturing effects
in field operations. This study incorporates and verifies the microseismic approach. Fig. 9 illustrates
the morphology of the fracture networks post-fracturing as monitored by microseismic techniques. It
is noteworthy that the network displayed in Fig. 9c is the smallest among them. The complexity of
the fracture networks, particularly in sections 8, 9, and 12 of Fig. 9 is evident. The proposed model
was utilized to calculate data that quantifies the complexity of the fracture networks. The integrated
fracturability coefficients for sections 1, 8, 9, and 12 were found to be 0.875, 0.914, 0.929, and 0.928,
respectively. These results suggest that a higher integrated fracturability coefficient corresponds to
increased complexity in the fracture network.

Figure 9: Fracture patterns monitored by microseismic
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5 Conclusions

(1) This paper proposes a shale fracturability evaluation method based on the AHP and mutation
model, which accurately identifies the sweet spot regions in shale reservoirs. The unique aspect of this
method is that it identifies not only engineering or geological sweet spots but also dual sweet spots
that align with post-fracturing production goals. This definition of sweet spots is more practical and
aligns better with the true concept of sweet spots.

(2) Most existing fracturability evaluation methods are often tailored to specific reservoir blocks
and lack general applicability. This paper validates the proposed two-step mutation model-based shale
fracturing sweet spot evaluation method by comparing it to four wells in two different regions with
different blocks. The results show high compatibility and strong applicability. Therefore, the method
presented in this paper can be applied in different blocks, making it versatile and widely applicable.

(3) Using the improved mutation model based on the AHP proposed in this paper, it is still
applicable in the absence of some evaluation parameters. In the evaluation of three different blocks
in the Nanchuan area in this paper, due to the lack of porosity and permeability in this model in
the region, the positive indicator A3 in the original model is removed. The calculation method of
the positive indicator A in the criterion layer is changed from the butterfly mutation model to the
swallowtail mutation model, and the evaluation results are still accurate.
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Appendix

Appendix A: Statistics of original data for positive indicators

Layer
number

Well section
(m)

Positive correlation indicators

Young’s
modulus
(GPa)

Poisson’s
ratio

Brittle
minerals
(%)

Permeability
(mD)

Porosity
(%)

Gas
content
(m3/t)

TOC
(%)

1 1345.9–1439.9 40.3 0.29239 56.38 0.09 2.6 1.2 1.3
2 1439.9–1498.2 35.6 0.29671 58.93 0.12 3.5 1.6 1
3 1498.2–1530.4 43.4 0.29239 54.27 0.09 2.6 1.1 1
4 1530.4–1580.7 36.6 0.30104 57.08 0.12 3.5 1.6 1
5 1580.7–1688.4 44.2 0.29095 54.29 0.08 2.4 1 1
6 1688.4–1702.3 37.8 0.29671 57.47 0.11 3.2 1.5 1.1
7 1702.3–1811.5 47.2 0.29095 52.01 0.08 2.4 1.1 1
8 1811.5–1865.4 38 0.2996 57.22 0.11 3.2 1.5 0.9
9 1865.4–2061.7 41.3 0.29383 55.33 0.1 2.9 1.1 1
10 2061.7–2287.2 33.3 0.30535 60.4 0.11 3.3 1.6 1
11 2287.2–2347.3 56.3 0.28374 48.88 0.06 1.8 0.7 0.7
12 2347.3–2379.1 39.6 0.2996 55.47 0.1 3.1 1.6 1
13 2379.1–2403.5 46.9 0.29239 51.31 0.09 2.6 1.3 1.1
14 2403.5–2427.5 38.3 0.29816 57.03 0.1 3 1.7 1.1
15 2427.5–2471 47.4 0.29239 51.73 0.09 2.7 1.1 1.1
16 2471–2498 39.6 0.2996 55.31 0.1 3 1.8 1.2

Appendix B: Statistics of original data for negative indicators

Layer number Well section (m) Negative correlation indicators
Compressive strength
(MPa)

Tensile strength
(MPa)

Mud content (%)

1 1345.9–1439.9 371.6 14.86 7.99
2 1439.9–1498.2 303.2 12.13 8.83
3 1498.2–1530.4 359.4 14.38 9.82

(Continued)
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(continued)

Layer number Well section (m) Negative correlation indicators
Compressive strength
(MPa)

Tensile strength
(MPa)

Mud content (%)

4 1530.4–1580.7 336.9 13.47 17.28
5 1580.7–1688.4 375.8 15.03 9.64
6 1688.4–1702.3 328 13.12 8.76
7 1702.3–1811.5 399.7 15.99 8.25
8 1811.5–1865.4 309.1 12.36 8.42
9 1865.4–2061.7 340.1 13.6 7.84
10 2061.7–2287.2 280.1 11.2 8.34
11 2287.2–2347.3 422.4 16.9 7.96
12 2347.3–2379.1 330 13.2 7.82
13 2379.1–2403.5 395.8 15.83 8.04
14 2403.5–2427.5 345.7 13.83 13.62
15 2427.5–2471 396.5 15.86 7.62
16 2471–2498 351.7 14.07 13.51
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