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ABSTRACT

This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.
This method integrates features including photovoltaic (PV) systems, energy storage coupling, varied energy roles,
and energy supply and demand dynamics. The system model is developed by considering energy devices as versatile
units capable of fulfilling various functionalities and playing multiple roles simultaneously. To strike a balance
between optimality and feasibility, renewable energy resources are modeled with considerations for forecasting
errors, Gaussian distribution, and penalty factors. Furthermore, this study introduces a distributed event-triggered
surplus algorithm designed to address the economic dispatch problem by minimizing production costs. Rooted
in surplus theory and finite time projection, the algorithm effectively rectifies network imbalances caused by
directed graphs and addresses local inequality constraints. The algorithm greatly reduces the communication
burden through event triggering mechanism. Finally, both theoretical proofs and numerical simulations verify the
convergence and event-triggered nature of the algorithm.
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1 Introduction

The smart grid, conceptualized as the forthcoming paradigm for electrical power systems, aspires
to realize operations that are optimally efficient, inherently flexible, profoundly secure, and consis-
tently reliable. In this context, economic dispatch, which directly affects system operating costs, has
become a problem that the smart grid needs to face, attracting considerable attention from the research
community in recent years [1]. The economic dispatch problem (EDP) focuses on the allocation
of energy generation devices or loads in a manner that minimizes system costs, while ensuring a
balance between supply and demand and adhering to local boundary constraints. In essence, the EDP
is an optimization problem which aims at maximizing the total social welfare while satisfying the
constraint condition of global and local. It involves making system-level decisions and necessitates
the development of efficient optimization algorithms.

To foster the sustainable advancement of energy and the environment, it is proposed that the
EDP transition from the smart grid paradigm to an energy internet framework [2]. Concurrently, the
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integration of substantial renewable energy sources introduces complexities into the energy system,
manifesting as uncertainties in aggregate production and multi-timescale consumption. The energy
storage capacity also increases along with the total amount of renewable energy. Literature [3] proposes
the goal of “zero”carbon electricity consumption based on building parks, and energy storage capacity
is saved by energy complementarity between building complexes. Meanwhile, literature [4] integrates
hydrogen storage equipment into the existing power system to realize the coordinated operation of
coupled units such as gas turbines and gas to power (G2P) facilities. In order to solve the multi-energy
coupling problem of energy internet, literature [5,6] solves the balanced scheduling of cogeneration and
electric-thermal integrated system using a new multicarrier energy system cogeneration optimization
planning and game theory, respectively. From the above, it can be seen that the economic scheduling
problem has received extensive attention regardless of the smart grid or energy internet.

Due to the decentralization of distributed algorithms, they play a great role in the economic
scheduling process of the smart grid. Distributed methods can leverage neighbor node information
to achieve distributed coordination among components within a network, effectively addressing
challenges posed by large-scale systems, massive data, and time-varying characteristics [7]. Drawing
from the principles of gradient descent and multi-agent consensus, scholars have introduced various
distributed optimization algorithms to address the economic dispatch challenge in smart grids. For
example, reference [8] recasts the economic dispatch issue in power systems as a convex quadratic
function optimization dilemma, employing a gradient descent algorithm for its resolution. However,
the method requires a leader to predict the degree of global supply-demand mismatch. So such
algorithms are considered as incomplete distributed optimization algorithms. Literature [9] proposes
a fully distributed optimization method, which does not rely on a leader or a cloud controller,
and the optimal solution can be obtained for any strongly connected communication topology
network. In [10], in order to address the influence of line losses in the energy transmission process,
two consistency algorithms are combined to predict the degree of global power mismatch while
obtaining the optimal Lagrange multipliers, respectively. Literature [11] considers the impact of
customer demand side and explored the problem of economic dispatch of power system from a new
perspective. To reduced convergence time and robustness of applications such as smart grid and
energy internet, researchers have proposed the distributed consensus alternating direction method
of multipliers (ADMM) algorithm [12,13]. In addition to this, there is a consensus-based approach
that focuses on building distributed Lagrangian dyadic variables and ensuring that they converge
to meet the optimality conditions. Various consensus-based algorithms have emerged in Table 1,
including distributed Newton descent [14,15], distributed neurodynamics methods [16,17] and surplus-
based optimization algorithms [18,19]. For literature [8,10,12,13,15–17], this paper uses surplus based
distributed optimization algorithms and event triggering for directed graphs and communication
cost reduction. Similarly, literature [18,19] still uses continuous communication without reducing the
communication cost. Although literature [15] also uses event triggering to reduce the communication
frequency and cost, it cannot do anything about the imbalance constraint problem caused by the
undirected graph. And the proposed algorithm in this paper considers all the above problems.

Table 1: Comparative technical features of previous researches

Reference Method Communication structure Reduced communication

[12,13] ADMM Undirected graph None
[8,10,14] Gradient descent Undirected graph None

(Continued)
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Table 1 (continued)

Reference Method Communication structure Reduced communication

[15] Newton descent Undirected graph Event trigger
[16,17] Neurodynamics Undirected graph None
[18,19] Surplus-based Directed graph None
This paper Surplus-based Directed graph Event trigger

With the advancement of distributed technologies and the extensive integration of renewable
energy sources, the conventional power system is evolving into a smart grid. This transformation has
brought new challenges for smart grid economic dispatch [20]. Firstly, communication capabilities
have been added to each power generation device, which provides the basic conditions for distributed
computing but also increases the risk of device privacy leakage. Second, renewable energy, as an
uncontrollable energy source, has a high degree of uncertainty. In order to compensate for the loss
caused by uncertainty, controllable energy sources need to cooperate with uncontrollable energy
sources. This greatly increases the difficulty of economic dispatch. Moreover, devices in the smart
grid can be both consumers and suppliers [21]. This leads to the diversification of the forms of
energy producers and consumers. Additionally, smart gird must adhere to plug-and-play principles and
account for variability in network topology. Hence, there is a need for the development of distributed
methods to solve the EMP in the smart grid. Currently, the existing distributed computing methods are
unable to meet the economic scheduling requirements of smart grids. In addition, for renewable energy
sources such as photovoltaic (PV) power generation, PV-storage is usually used in conjunction to
abate the uncertainty of PV power generation, fast system power fluctuations, and timeliness. In order
to effectively reduce the cost of PV power generation and energy storage in the scheduling process,
scholars have put forward higher requirements for PV power generation cost models, energy storage
models and distributed algorithms. So, this paper addresses the above problems and challenges with
the following main contributions:

1. We present a novel distributed event-triggered optimization algorithm specifically designed
for photovoltaic power generation and energy storage devices. Compared to integrated energy
systems involving electrical heat and cold multiple energy devices more specific, and due to
the presence of multiple photovoltaic and energy storage devices, a single device lacks full-
duplex information interaction, to the directed graph information topology of the distributed
optimization challenges. Unlike existing methods, our approach utilizes dynamics and residual
values to enable distributed optimization in directed graphs;

2. Photovoltaic power plants with volatility and unpredictability are non-dispatchable units;
therefore, the inclusion of renewable energy models in the economic dispatch problem cannot
be considered more specifically by simply treating their cost functions as quadratic. To model
renewable energy resources, factors such as forecasting errors, Gaussian distribution, and
penalty factors are taken into renewable energy cost function. By incorporating penalties for
curtailing renewable generation, a balance can be achieved between optimality and generation
feasibility, achieving dispatch ability of renewable energy devices;

3. The process of node information interaction incurs communication costs due to factors such
as communication frequency. To minimize communication costs, we propose a distributed dis-
patch approach that integrates an event-triggered communication strategy. This strategy uses
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parallel triggering to reduce the communication frequency without affecting the optimization
performance of the algorithm. Meanwhile, this paper provides a complete theoretical proof
process and digital simulation experiments.

The rest of this paper is arranged as follows. In Section 2, we present an economic dispatch
optimization model for PV-storage system. Section 3 describes the distributed surplus optimization
algorithm and the design process of the event-triggered strategy. Further, Section 4 gives simulation
experiments for the models and algorithms proposed in this paper to compare and analyze the
performance and advantages. Section 5 summarizes the main contents of this paper.

2 System Model and Problem Function

The smart grid infrastructure consists of a wide variety of distributed generation devices. Dis-
tributed generation devices can be categorized into three main groups: distributed renewable generator
(DRG), distributed fuel generator (DFG), and distributed power storage device (DPSD). Photovoltaic
power generator (PV), which are an integral part of DRG, are typically connected to DPSD and are
jointly connected to the grid. However, due to the presence of multiple PV and DPSD, individual
devices lack full-duplex information interaction. This presents a challenge when dealing with the
distributed optimization of directed graph information topology graphs.

In order to enable distributed computation, bus nodes are treated as agents and connected to
form a distributed communication network. The communication network of the entire system is
defined as G = (V , ξ , A), where V = {1, 2, . . . , n} represents the set of information nodes, ξ ⊆
V × V is the set of communication lines within the system. The graph G is assumed to be strongly
connected without self-loops. The adjacency matrix A = [

aij

]
represents the connections between

nodes, where aij is the element in the ith row and jth column of A. If node i can receive information
from neighbor node j, there is an edge ξij and aij = 1; otherwise, aij = 0. The in-degree matrix
Din = diag

[
din

1 , din
2 , . . . , din

n

]
is defined as the diagonal matrix, where din

i = ∑n

j aij. Similarly, the out-
degree matrix Dout = diag

[
dout

1 , dout
2 , . . . , dout

n

]
is defined as the diagonal matrix, where dout

i = ∑n

j aji.
Additionally, we define the matrix L′ = Dout − A and L = D − A. Because of the unbalanced and
asymmetric nature of directed graphs, we can get L′ �= L.

2.1 PVs Model
When considering distributed renewable generators (DRGs), photovoltaics (PVs) play a crucial

role as the main energy source, with no fuel cost involved. Photovoltaic power generation utilizes
the principle of photoelectric properties of semiconductors, when there is light irradiation on the
photovoltaic cell, it will produce electric When light hits a photovoltaic cell, electron-hole pairs
are generated, and the current increases as the number of pairs increases, thus realizing the direct
conversion of light energy into electrical energy. However, it is essential to acknowledge that PVs
cannot be treated as dispatchable units due to their intermittent and unpredictable nature. In order to
add renewable energy sources to the EDP problem, we must only use forecasting techniques to obtain a
rough of the likely generation of PVs. The mean forecasting value, derived from the day-ahead forecast
curve provided by [18], is utilized as a reference for each scheduling horizon.

pPV ,f
i,t = 1

T

∫ t+T

t

pPV ,f
i,τ dτ (1)

where pPV ,f
i,t is the forecasting output of ith PV at time t; T is the forecast period. Due to the existence

of prediction errors, the true output value of PV may fluctuate up or down from the predicted
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value. Therefore, we assume that the PV power generation error obeys a Gaussian distribution [19].
Moreover, according to the zero-waste renewable energy, we assume that all PV power is consumed.
Furthermore, we set the confidence level to be 100 (1 − δ)%, where δ is the corresponding significance.

So we can get the confidence interval to
[
pPV

i,t , pPV

i,t

]
. Where pPV

i,t
= pPV

i,t − 3σ and pPV
i = pPV

i,t + 3σ . Based

on the previous discussion and the characterization of the Gaussian distribution, the cost function of
PV is modeled as:

C
(
pPV

i,t

) = aipPV
i,t − bi exp

(
ci

pPV
i,t − pPV

i,t

pPV
i,t − pPV

i,t

)
(2)

where ai, bi and ci are the non-negative constants. The first item is the operation and maintenance cost
of PV. The second item is the PV generation compensation due to the uncertainty of renewable energy.
The more inaccurate the prediction results will lead to a larger compensation term.

Remark 1: Photovoltaic power plants with volatility and unpredictability are non-dispatchable
units; therefore, the inclusion of renewable energy models in the economic dispatch problem cannot
be considered more specifically by simply treating their cost functions as quadratic. Compared to fuel
generators, the operating costs of PV are lower. However, due to the inaccuracy of PV forecasting,
it is necessary for DFG to cooperate with PV generation to realize the balance between supply and
demand of the system. This undoubtedly increases the generation cost of DFG, which needs to be
borne by PV. Therefore, we establish the PV cost function, which is not only related to the operation
and maintenance cost, but also related to the deviation between the real and predicted values. The
larger the deviation, the larger the compromise that DFG needs to make, and thus the higher the
compensation cost that PV needs to bear. And vice versa.

2.2 DFG Model
Distributed fuel generators (DFGs) use the heat from the combustion of flammable substances

to heat and pressurize liquid water into water vapor. The steam is transported by a delivery tube
to a turbine that drives a rotor to spin at a very high speed, which cuts off the magnetic field and
generates electricity. To address and explore the ramping rate constraints of distributed fuel generators,
the discrete version is typically transformed into a knapsack problem. The cost function of DFG is
represented as follows:

C
(
pfg

i

) = ai

(
pfg

i

)2 + bipfg
i + ci, (3)

pfg,min
i ≤ pfg

i ≤ pfg,max
i , (4)

− pfg,ramp
i ≤ pfg

i (t + 1) − pfg
i (t) ≤ pfg,ramp

i , (5)

where pfg
i is the power outputs of ith fuel-based generators; ai, bi and ci are the non-negative constants

as cost coefficients; pfg,min
i and pfg,max

i are the minimum and maximum generator outputs, respectively;
pfg,ramp

i is the positive constant as ramp rate constraints, indicating that the DFG needs to be within a
certain range to adjust the span of generation per unit of time.

2.3 DPSD Model
Let pps

i,t represent the store/release power, SOCps
i,t denote the stored energy of the ith distributed

power storage device (DPSD) at time t. Here, we define pps
i,t > 0 as discharging actions and pps

i,t < 0 as
charging actions. It is worth noting that the DPSD cannot be charged or discharged simultaneously.
It must adhere to the following dynamic constraints:
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− pch,max
i,t ≤ pps

i,t ≤ pds,max
i,t (6)

SOCmin
i,t ≤ SOCps

i,t ≤ SOCmax
i,t (7)

SOCps
i,t = SOCps

i,t−1 −
(

αch
i βch

i,t−1 + 1
αds

i

βds
i,t−1

)
pps

i,t−1T (8)

βch
i,t−1 + βds

i,t−1 ≤ 1 (9)

Let pch,max
i,t and pds,max

i,t represent the maximum charging and discharging value. Additionally, SOCmin
i,t

and SOCmax
i,t denote the lower and upper bounds for the allowed energy stored in the corresponding

distributed power storage device (DPSD). The charging and discharging coefficients are represented
by αch

i and αds
i , respectively. To distinguish the charging/discharging state of the DPSD, we denote

βch
i,t−1, β

ds
i,t−1 ∈ {0, 1}. βch

i,t−1 = 1 represents the charging state, while βds
i,t−1 = 1 represents the discharging

state. To maximize social welfare, DPSDs are usually charged when electricity prices are low and
discharged when prices are high. To capture these operations, the following cost function is utilized:

C
(
pps

i,t

) = ai

(
pps

i,t + bi

)2
(10)

where ai and bi are the cost coefficients.

3 Problem Formulation and Distributed Algorithm

This study primarily concentrates on the hourly economic dispatch problem (EMP) of the smart
grid, aiming to achieve coordinated planning of distributed fossil generators (DFGs), photovoltaics
(PVs), and distributed power storage devices (DPSD).

3.1 Objective Function
To simplify the notation, we use Rℵ to denote ℵ-order real numbers and R

+ to denote the positive
real numbers. The objective function represents the maximization of social welfare as well as the
minimization of the cost of generating electricity at each facility, as depicted in Eqs. (11), (12). The
objective function ensures compliance with the aforementioned inequality constraints and global
equality constraints, as illustrated in Eqs. (13)–(15).

min Obj = f (p) (11)

f (p) =
∑n

1
Ci

(
ppv

i

) +
∑m

1
Ci

(
pfg

i

) +
∑w

1
Ci

(
pps

i

)
(12)

s.t.
∑n+m+w

i=1
pi =

∑n+m+w

i=1
li (13)

pmin
i ≤ pi (t) ≤ pmax

i (14)

|pi (t + 1) − pi (t)| ≤ pramp
i (15)

where n, m, w are the number of PVs, DFGs and DPSDs. pi ∈ [
ppv

1 , . . . , ppv
n , pfg

1 , . . . , pfg
m , pps

1 , . . . , pps
w

]
is

the amount of power generated by the device, pmax
i and pmin

i denote the maximum and minimum power
generation of the device, corresponding to the boundary constraints of the device mentioned earlier.
li denotes the load of each node. Further, Eqs. (14) and (15) can be transformed into the following
general inequality:

g (pi) ≤ 0 (16)



EE, 2024, vol.121, no.9 2627

where g (pi) is an inequality that can be used instead of a boundary constraint. In other words, pi (t)
runs all the way through its range of maximum pmax

i and minimum values pmin
i , so we can defined the

range of pi (t) to be Ωi = {xi|g (xi) ≤ 0}.
According to the Lagrange multiplier method, we can obtain the Lagrange function of objective

(11)–(15) as:

L (p, λ) =
n∑

i=1

Li (pi, λ) =
n∑

i=1

fi (pi) +
n∑

i=1

λihi (xi) (17)

where hi (xi) = pi − li, λi is the Lagrange multiplier which has the physical meaning of the price of
electricity generation. We define that λ∗

i is the optimal solution of λi, p∗ = [
p∗

1, . . . , p∗
n+m+w

]
is the optimal

solution vector of pi (t). To ensure that (17) has a feasible solution, we formulate Assumption 1 such
that there exists a slater vector for (17).

Assumption 1: In the function (17), there exists a vector p∗ ∈ p such that gπ (p∗) < 0 for all
π = 1, 2, . . . , γ .

We introduce the box projection to solve the inequality constraint (16). The principle of box pro-
jection is to find the minimum distance from a point to any point in the feasible domain, which obtains
a feasible point in the feasible domain. The projection operation of p on Ω = {p ∈ R|pmin ≤ p ≤ pmax}
comes from P� (p) = argminx∈�

‖p − x̃‖. In the latter, we introduce the sign function sign (a), which
serves to replace the value of variables using a step signal, and thus enables positive and negative
determinations. The sign function is defined as:

sign (a) =
⎧⎨⎩1 if a > 0

0 if a = 0
−1 if a < 0

3.2 Surplus-Based Algorithm
For problems (11)–(15), existing distributed optimization algorithms are deficient in handling

directed graphs and general convex optimization problems. In this section, we propose a surplus-based
fully distributed event-triggered optimization algorithm, drawing on continuous-time gradient descent
[9] and ADMM algorithms [10]. The specific form of the algorithm is as follows:

ṗi (t) = −α (t) (∇fi (pi (t)) + λi (t))

+ |−α (t) (∇fi (pi (t)) + λi (t))| · sign
(
P�i (pi (t)) − pi (t)

)
+ k1sig

(
P�i (pi (t)) − pi (t)

)u + k2sig
(
P�i (pi (t)) − pi (t)

)v
(18)

λ̇i (t) = �i (t) + εyi (t) + α (t) (pi (t) − li)

+ ∣∣�̃i (t) + εyi (t) + α (t) (pi (t) − li)
∣∣ · sign

(
P�i (λi (t)) − λi (t)

)
+ k1sig

(
P�i (λi (t)) − λi (t)

)u + k2sig
(
P�i (λi (t)) − λi (t)

)v
(19)

ẏi (t) = −dout
i yi

(
tm

i

) +
∑
j∈Ni

aijyj

(
tm

j

) − εyi (t) − Λi (t) (20)

Λi (t) =
∑
j∈Ni

aij

(
λj

(
tm

j

) − λi

(
tm

i

))
(21)
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where α (t) is a non-increasing gain parameter satisfying
∫ ∞

0
α (t) dt = ∞, and

∫ ∞
0

α2 (t) dt < ∞ i.e., we

ε can assume α (t) = 50/(10 + 3t). Where sig (a)
b = [

sign (a1) |a1|b , . . . , sign (an) |an|b
]T

, and sign (a)

is the sign function. pi (t) is the output of distributed generation which is computed locally. λi and yi

follow the neighbor information interaction as shared variables. k1 > 0, k2 > 0, 0 < μ < 1, and
v > 1 are constants. tm

i represents mth triggering time. PΩi (pi) and PΘi (λi) represent the box-projection
operation of pi and λi in the local constraint interval Ωi and set Θi, respectively.

In the proposed algorithm, Eq. (18) computes the target variable locally and is not involved
in information transfer. Eqs. (19), (20) participate in information transfer and compute the sharing
variables λi and yi through neighbor node information. During the algorithm design process, Eq. (18)
utilizes (∇f (pi (t)) + λi (t)) to calculate the gradient descent of the dual problem of (17). To handle the
inequality constraint, we employ the incentive projection, as demonstrated in the remaining terms of
the equation. To ensure convergence, the second term of (18) is included, while k1sig(P�i (pi (t))−pi(t))u

and k2sig
(
PΩi (xi (t)) − xi (t)

)v
guarantee that pi converges to the feasible region Ωi within a fixed time.

Additionally, Eq. (18) is utilized for local updates of the state variable pi, and information exchange
among neighbors is facilitated through yi and λi. Sensitive information is protected while recording
system deviations. Furthermore, the λi variable acts as a Lagrangian dual variable, assisting with
equation constraint (13). Eq. (19) is employed to update λi, which consists of three components: the
consistency protocol, eigenvalue perturbation, and incentive projection. The consistency protocol Λi

drives all λi values towards a common value. This allows the auxiliary variable yi to track changes in
the dual variable λi and compensate for any unbalanced impact caused by the directed graph.

The pseudo-code of this algorithm is shown in Algorithm 1, where the current generation power
of the devices such as photovoltaic and energy storage and the parameters used in the algorithm
are first entered, where the algorithm parameters are arbitrary values. Based on the information
transfer between neighboring nodes, the values of variables p, λ and y are calculated continuously using
algorithm (18)–(21). When the algorithm converges, the value of variable p is the optimal generation
power.

Algorithm 1: Surplus-Based Distributed Optimization Algorithm
Input: Local loads di, Lagrange matrix L of communication network. Any admissible

values of pi (0), λi (0), yi (0).
While unconvergence do

Exchange data λi, yi.with neighbor nodes.
Execute surplus-based distributed optimization algorithm (18)–(21).

End
Output: The optimal output of each power devices.

Information interactions between nodes incur communication costs, i.e., the resources and costs
consumed when communicating, such as bandwidth consumption, communication frequency, etc.
So, the event triggering mechanism is introduced to reduce communication costs. Event triggering
mechanism from the system’s performance and stability, before the start of the system to set a trigger
threshold in advance, so that when the state of the system does not change much when it is not
sampling and transmission, only when the system state changes over the set threshold will carry
out the corresponding action that is, the data sampling and transmission, which greatly saves the
communication resources to reduce the burden on the network. The local processor will pay attention
to the variables a, b and c in real time. A trigger function is used to decide whether to interact with the
information or not, and whether to use the local history information or the neighbor node information
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for the next computation. The trigger function is defined as follows:

C1 (λi (ti) , yi (ti)) = a3

⎛⎝�1

∥∥λi

(
tm

i

) − λi (ti)
∥∥2 + �2

∥∥yi

(
tm

i

) − yi (ti)
∥∥2 − 1

2a1

∑
i∈Ni

aij

∥∥λi

(
tm

i

) − λi

(
tm

j

)∥∥2

⎞⎠
(22)

C2 (λi (ti)) = ∣∣λm
i (t) − λi (t)

∣∣ − α (t) e−σ t (23)

C3 (yi (ti)) = ∣∣ym
i (t) − yi (t)

∣∣ − α (t) e−σ t (24)

C = min {C1 (λi, yi) , C2 (λi) , C3 (yi)} (25)

where C1 (λi (ti) , yi (ti)), C2 (λi (ti)) and C3 (yi (ti)) are parallel trigger functions representing neighbor
information mismatch, λi mismatch and yi mismatch, respectively. �1 = [2(a1 − 1)/a1 + a2] |Ni|; �2 =
a2 |Ni|; a1, a2, a3, π , and σ are positive constants. The proposed event triggering method is a parallel
triggering mechanism. Eq. (25) is the main trigger basis. Since (25) is equal to the smallest value in
(22)–(24), the local dynamic update is considered to reach the threshold when any of (22)–(24) is a non-
positive number. The main purpose of the trigger function (22)–(24) is to ensure that the algorithm
(18)–(21) achieves large-scale asymptotic convergence and triggers information interactions when the
algorithm tends to diverge. The form of its expression and the range of threshold selection can be
justified from the convergence and optimal solution proofs in the later sections. Also, the threshold
C is time-varying because the trigger function contains λi (ti), yi (ti) variables. The communication
system will exchange the neighbor information in the next moment and the algorithm (18)–(21) will
use the new data to complete the dynamic update. Based on (22)–(25), the next triggering time is
determined as:

tm+1
i = max

{
t ≥ tm

i |C (λi (ti) , yi (ti)) ≤ 0
}

(26)

The proposed distributed algorithm increases the reliability, robustness, flexibility and privacy
preservation in the economic dispatch process of smart grid. First, the algorithm is based on the
information interaction between neighboring nodes, which reduces the impact of a single point of
failure on the system, as long as the communication network is fully connected. Second, this algorithm
operates in a fully distributed approach where any single point or channel can join the system directly,
perfectly matching the hot-plugging property of smart grids, thus enhancing the flexibility of the
system. Third, the auxiliary variables are transmitted among neighboring nodes as shared variables
and the target variables are computed locally. This dynamic update method protects the privacy of
the target variables and reduces the risk of information leakage. To minimize the communication
frequency within the network, we have incorporated an event-triggering mechanism into the surplus
optimization algorithm. Reducing the communication cost also reduces the possibility of packet loss
or information leakage.

3.3 Optimality and Convergence Analysis
In this subsection, we demonstrate the convergence and optimality of the algorithm using

Lyapunov functions, linearized scaling, and finite-time projection. To eliminate the effect of inequality
constraints on the optimization algorithm we first introduce Lemma 1, which demonstrates the
convergence of the algorithm within a fixed time. This convergence is achieved through the utilization
of symbolic functions and projection operations, as outlined below:
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Lemma 1: Suppose that the f (pi) function is both strongly convex and Lipschitz continuous. In a
fixed time, the variables pi and λi converge to Ωi and Θi, respectively.

Proof: Defined the Lyapunove function is V1 = (pi − PΩ (pi))
2. We can get Lie derivative of V1 as

follows:

V̇1 ≤ −k1 |PΩ (pi) − pi|u+1 − k2 |PΩ (pi) − pi|v+1

≤ −k1V1

u+1
2 − k2V1

v+1
2 ≤ 0 (27)

Based on Lemma 1 in [17], the equation above indicates that V1 can converge to 0 when t =
{t ≥ T1|T1 ≤ 1/k1 (1 − u) + 1/k2 (1 − v)}. Consequently, we can deduce that pi (t) = PΩ (pi (t)) holds
true for t ≥ T1, ∀i. Similarly, by selecting the Lyapunov function as V2 = (

λi − PΘi (λi)
)2

, we can get
λi = PΘi (λi). This completes the proof.

By Lemma 1, we can get pi (t) = PΩ (pi (t)) and λi = PΘi (λi) when the fixed time projection is
completed. After the moment T1, algorithm (18)–(21) can be transformed as follows:

ṗi (t) = −α (t) (∇fi (pi (t)) + λi (t))

λ̇i (t) = Λi (t) + εyi (t) + α (t) (pi (t) − li)

ẏi (t) = −dout
i yi

(
tm

i

) +
∑
j∈Ni

aijyj

(
tm

j

) − εyi (t) − Λi (t) (28)

In other words, both pi and λi are within the boundaries Ωi and Θi when t ≥ T1. The inequality
constraint (14) has been solved. Meanwhile, since the renewable energy uncertainty is transformed

into the operational boundary constraint
[
pPV

i,t , pPV

i,t

]
, the boundary problem is solved implying that the

renewable energy uncertainty is eliminated when t ≥ T1. This specific fixed-time projection eliminates
inequality constraints while harmonizing the incompatibility of uncertainty, compensation cost, power
and cost in the same objective function. By algorithm (28), we can conclude that as t → ∞, Lλ → 0
and yi (t) → 0 for all i. Let us denote the equilibrium point of (11)–(15) as

(
p∗

i , λ
∗
i , y∗

i

)
. To further

facilitate the analysis, we introduce three auxiliary variables as follows:

Π (t) = (p (t) − p∗) , η (t) = (λ (t) − λ∗)

Ξ (t) = (y (t) − y∗) , e (t) = η (tm) − η (t)

z (t) = Ξ (tm) − Ξ (t) (29)

where p∗, λ∗, and y∗ are the compact forms of p∗
i , λ∗

i , and y∗
i , respectively. Next, the following Lemma

2 illustrates the convergence and optimality of the proposed algorithm (11)–(15):

Lemma 2: Assuming that the directed graph G is connected, algorithm (28) will asymptotically
converge to

(
p∗

i , λ
∗
i , y∗

i

)
. Furthermore, p∗ represents the optimal solution of problem (11)–(15).

Proof: we define the Lyapunov function as follows:

V3 (t) = 1
2

(‖Π (t)‖2 + ‖η (t)‖2 + ‖Ξ (t)‖2
)

(30)
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Based on (28)–(29), the Li derivatives of Lyapunov function (30) is as follows:

V̇3 (t) = ΠT (t) Π̇ (t) + ηT (t) η̇ (t) + ΞT (t) Ξ̇ (t)

= ηT (t) (−Lλ (tm) − α (t)ΠT (t) (−∇f (x (t)) + λ (t))

+ ΞT (t) (L′λm − L′y (tm) − εy (t)) + εy (t) + α (t) (p (t) − l))

= −α (t) ΠT (t) (∇f (p (t)) + ∇f (p∗))

− ηT (t) L (λ (tm) − λ∗) − α (t) ΠT (t) η (t)

+ α (t) ηT (t)Π (t) + εηT (t) Ξ (t)

− ΞT (t) L′ (y (tm) − y∗) − εΞ2 (t) + ΞT (t) L (λ (tm) − λ∗) (31)

where ζ = diag {ζi} is the general convex coefficient of the convex function f (x (t)), we can obtain
α (t) ΠT (t) RT (−∇f (x (t)) + ∇f (x∗)) ≤ −a (t) ΓT (t) ζΓ (t) from the properties of convex functions.
Since the Laplace matrix L and L′ are positive definite, there exists a minimum nonzero eigenvalue κ2

and κ ′
2. We can further get λT (t) Lλ (t) ≥ κ2 ‖λ (t)‖2 and ηT (t) L′η (t) ≥ κ ′

2 ‖η (t)‖2. Based on Young’s
inequality, one obtains ΠT (t) η (t) = 2‖Π(t)‖2 + ‖η (t)‖2

/2. According to the (29) and definition of
Ni, it not hard to prove eT (t) Le (t) ≤ 2

∑n

i=1 |Ni| · ∥∥λi

(
tm

i

) − λi (ti)
∥∥2

and zT (t) L′z (t) ≤ 2
∑n

i=1 |Ni| ·∥∥yi

(
tm

i

) − yi (ti)
∥∥2

. Based on convex and graph theory, each term in (31) can be replaced by (29). Since
ε and α (t) is non-negative, it can be derived to following inequality by deflation:

V̇3 (t) ≤ −α (t) ζ ‖� (t)‖2

−
[(

a1 − 2
2a1

)
κ2 − ε

2

]
‖η (t)‖2 −

[
ε

2
− κ2

2a2

]
‖� (t)‖2

+ a3(�1 ‖e (t)‖2 + �2 ‖z (t)‖2

− 1
2a1

n∑
i=1

∑
j∈N

aij

∥∥λi

(
tm

i

) − λj

(
tm

j

)∥∥2
(32)

where a1 ≥ (1 − ε)/(2κ2) and a2 ≥ κ2/ε. According to the triggering strategy (22)–(25), we have:

a3 (�1‖e (t)‖2 + �2 ‖z (t)‖2 − 1
2a1

n∑
i=1

∑
j∈N

aij

∥∥λi

(
tm

i

) − λj

(
tm

j

)∥∥2 ≤ 0 (33)

So, by the previous definitions of a1, a2, �1 �2, we can have V̇3 (t) ≤ 0. Thus, when t → ∞,
algorithm (18)–(21) achieves p = p∗. Further, through the above analysis we can easily get:

n∑
i=1

p∗
i =

n∑
i=1

li

λ∗
i = λ∗

j

n∑
i=1

fi

(
p∗

i

) = L (p∗, λ∗) (34)

In summary, Eq. (34) satisfies the Karush-Kuhn-Tucker (KKT) conditions for the Lagrangian
function (17) and algorithm (18)–(21) converges asymptotically to p = p∗. Therefore, we consider p∗

to be the globally optimal solution. This completes the proof.
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4 Simulation and Results

We adopt a smart grid distribution topology consisting of 40 buses and 10 energy devices, as
illustrated in Fig. 1. The physical structure of the network includes 6 DFGSs, 2 DRGs, and 2 DPSDs in
Table 2. The energy transmission network is represented by solid lines, while the directed information
transmission network is represented by dotted lines. To ensure consistency in units, we define 1 p.u. as
1 MW for power and 1 p.u. as 1 $/MWh for price [22]. The scalability of the proposed distributed event-
triggered surplus algorithm is demonstrated on this large urban network with 40 buses. Additionally,
all simulation are running on a server computer with Win10, i7-10700K CPU @ 3.80 GHz and
64 GB RAM.
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Figure 1: The network of the 119-bus test system

Table 2: Parameters of the test system

a b c

DFG1 0.021 7.88 80
DFG2 0.01 7.85 85
DFG3 0.022 7.8 100
DFG4 0.031 7.82 130
DFG5 0.025 7.79 83
DFG6 0.019 7.87 110

(Continued)
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Table 2 (continued)

a b c

DRG1 0.29 4.5 0.4
DRG2 0.17 3.9 0.4
DPSD1 0.031 16
DPSD2 0.029 18

4.1 Result and Analysis of Distributed Event-Triggered Surplus Algorithm
This subsection investigates the convergence of the proposed algorithm. The power load for the

information network consisting of 10 nodes is initially set to 22.4 p.u. During the computation, data
is exchanged among neighboring energy devices in the smart grid. The proposed algorithm calculates
the local target variable in a distributed manner, using arbitrarily selected initial values.

Fig. 2 verifies that the proposed algorithm can achieve the supply and demand balance of the
system. Where the curve mismatch = ∑n+m+w

i=1 pi −∑n+m+w

i=1 li. When t = 10 the curve reaches 0, indicating
that the current state has satisfied the equation constraints (13). However, at this time, each power
generating device is not the optimal output state, i.e., it does not satisfy the social welfare maximization.
So the distributed computing needs to continue to run. Fig. 3 shows that the surplus of this algorithm
gradually reaches 0 at t = 15. indicating that at this point the algorithm has eliminated the local bias.
All subsequent computations satisfy the inequality constraint (14), (15). In addition, Fig. 4 illustrates
the trend of all target variables pi. After the distributed computation, all devices reach the optimal
power generation. At this time, the smart grid system realizes the global supply and demand balance
(13), and the local devices satisfy the local inequality constraints (14), (15). Meanwhile the system
maximizes the welfare.

Figure 2: Power mismatch by using the proposed method
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Figure 3: Energy surplus by using the proposed method
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Figure 4: Energy output by proposed algorithm

4.2 Event-Triggered and Hot-Plug Performance Analysis
In this section, the event-triggered and hot-plugging characteristic of the distributed event-

triggered surplus algorithm is analyzed by using the topology and data from the previous section as
Fig. 2 and Table 1. Fig. 5 displays the event-triggered sequence of each distributed generation devices,
with each triggering time denoted by “†”. For better observation, the period between 25 and 40 in
Fig. 5 is enlarged on the right side. It can be found that the information transfer between neighboring
nodes is not continuous but discrete and asynchronous. The proposed algorithm communicates only at
the triggering moment to achieve the update of node interaction information. This greatly reduces the
frequency and cost of communication. In addition, since the threshold of the trigger function (22)–(24)
is continuously decreasing with the value of pi, λi and yi, it can be guaranteed that the event triggering
mechanism is continuously running.

The hot-plugging performance of this algorithm is demonstrated in Fig. 6. The total load of the
power system is initially set to 22.4. when the system is gradually stabilized, the total load is adjusted to
17 at the 50 s. It can be found that the curve fluctuates at the 50 s, and gradually returns to smoothness
at the 90 s. At this time, all the DG, PV and storage outputs reach the optimum and ensure the
supply and demand of the system. At this time, the outputs of all DG, PV and storage reach their
optimal values and ensure the balance between supply and demand of the system. And then, at 100
s, DG1 and PV1 are cut off and the curve fluctuates at the same time. Since this algorithm is a fully
distributed algorithm, a single point of failure does not affect the distributed optimization calculation
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of the remaining devices. At 130 s, the curves of the remaining 8 devices are restored to be stable. The
output of all devices reaches the optimal value and the system supply-demand balance is realized.
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Figure 5: Event triggering squence
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Figure 6: Curves for hot-plug

Compared with the continuous time algorithm in literature [9], this paper incorporates the event-
triggered mechanism on the basis of its algorithm, which makes the information transmission of
neighboring nodes discrete and avoids the exchange of continuous state information in literature [9].
Literature [9] is mainly aimed at the economic scheduling problem with the smart grid, compared with
literature [9], this paper is specifically for the economic scheduling problem of photovoltaic power
generation and energy storage devices, but this paper’s simulation experimental result of hot-plug
is consistent with the plug-and-play characteristic of economic scheduling to meet the literature [9],
which illustrates the effectiveness of this paper’s distributed optimization algorithm, which is able to
solve the problem of the economic scheduling of photovoltaic power generation and energy storage
devices very well.

5 Conclusion

This paper introduces a novel renewable energy cost model and a distributed optimization
algorithm tailored for the economic dispatch challenge within smart grids. In order to integrate
renewable energy into economic dispatch, this paper models the operating cost of renewable energy
by introducing penalty factors and confidence intervals. Cost compensation is utilized to compensate
for the renewable energy forecasting output error due to uncertainty. The cost compensation increases
with the increase of prediction error. Meanwhile, a distributed event-triggered surplus optimization
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algorithm is proposed in this paper. The algorithm increases the stability, flexibility, robustness and
privacy protection of the system with a unique dynamic update rule. In addition, this paper provides
complete convergence and optimality proofs.
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