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ABSTRACT

The turbidite channel of South China Sea has been highly concerned. Influenced by the complex fault and the
rapid phase change of lithofacies, predicting the channel through conventional seismic attributes is not accurate
enough. In response to this disadvantage, this study used a method combining grey relational analysis (GRA) and
support vector machine (SVM) and established a set of prediction technical procedures suitable for reservoirs with
complex geological conditions. In the case study of the Huangliu Formation in Qiongdongnan Basin, South China
Sea, this study first dimensionalized the conventional seismic attributes of Gas Layer Group I and then used the
GRA method to obtain the main relational factors. A higher relational degree indicates a higher probability of
responding to the attributes of the turbidite channel. This study then accumulated the optimized attributes with
the highest relational factors to obtain a first-order accumulated sequence, which was used as the input training
sample of the SVM model, thus successfully constructing the SVM turbidite channel model. Drilling results prove
that the GRA-SVM method has a high drilling coincidence rate. Utilizing the core and logging data and taking full
use of the advantages of seismic inversion in predicting the sand boundary of water channels, this study divides
the sedimentary microfacies of the Huangliu Formation in the Lingshui 17-2 Gas Field. This comprehensive study
has shown that the GRA-SVM method has high accuracy for predicting turbidite channels and can be used as a
superior turbidite channel prediction method under complex geological conditions.
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1 Introduction

In the expansive oil and gas basins of the South China Sea, the discovery and exploitation of
geological reserves in turbidite channel sand bodies hold paramount importance [1]. Specifically,
in the ultra-deep-water territories of the Qiongdongnan Basin, significant natural gas reserves are
harbored within these turbidite reservoirs. A notable example is the Lingshui 17-2 Gas Field, where
the majority of geological reserves are predominantly situated in turbidite formations. To date, the
proven geological reserve of natural gas within the Huangliu Formation has reached an impressive
1031.26 × 108 m3, with an additional indicated geological reserve of 162.67 × 108 m3, cumulating to a
total of 1208.73 × 108 m3 across possible, proven, and indicated reserves. The sedimentary processes
of turbidite channels within the Huangliu Formation play a critical role in the genesis of natural gas
reservoirs in this deep-water sector. However, the intricate sedimentary environment and the challenges
posed by deep-water exploration elevate drilling risks and costs, subsequently hampering the overall
exploration efforts. Furthermore, the prediction of deep-water turbidite channels has yet to achieve
significant breakthroughs, significantly impeding the exploration and development activities in the
region.

Thus, the accurate and efficient prediction of the distribution characteristics of deep-water
turbidite channels becomes a crucial endeavor to mitigate drilling inaccuracies and enhance production
processes. Seismic attributes, recognized for their operational feasibility and unbiased predictive capa-
bilities, have been extensively utilized in reservoir prediction endeavors [2–4]. Despite the elimination
of human factors in seismic data acquisition, processing, and inversion methods, the singular use
of a seismic attribute often fails to meticulously characterize the reservoir due to the sheer volume
and diversity of attributes, coupled with the unpredictable and nonlinear relationships between these
attributes and sedimentary formations like river channels. Consequently, identifying an effective
prediction method amidst a plethora of seismic attributes to delineate deep-water turbidite channels
remains a significant challenge. As per the investigation results, the current common methods for
solving the nonlinearity of samples include neural networks, GRA, SVM, etc., but these methods
have shortcomings such as overfitting in predicting sand bodies [5–9]. Therefore, in order to improve
the prediction accuracy of turbidite channel sand bodies, the application of seismic attributes in the
effective prediction of sand bodies in turbidite channels should be further explored.

Hence, to elevate the predictive accuracy of turbidite channel sand bodies, this study advocates
for a deeper exploration into the synergistic application of seismic attributes in predicting turbidite
channel sand bodies [10–13]. Leveraging the low sample size requirement of GRA, which facilitates
optimization through relational degree, and the SVM’s proficiency in managing small, nonlinear,
and high-dimensional samples through dimension reduction and comprehensive consideration of
influencing factors [14–17], this paper draws on the method proposed in reference [7], a seismic
prediction method for deep-water turbidite channels based on GRA-SVM has been developed. This
paper approach amalgamates the strengths of GRA and SVM, proposing it as an advanced method
for predicting deep-water turbidite channels. Empirical evidence from its application in the Huangliu
Formation of the Lingshui 17-2 Gas Field underscores its high predictive accuracy, establishing
the GRA-SVM model as an invaluable tool for forecasting turbidite channels under the complex
geological conditions prevalent in the deep-water domains of the South China Sea. This endeavor not
only marks a significant advancement in the realm of seismic attribute application but also contributes
substantially to the strategic exploration and development of oil and gas resources in challenging deep-
water environments.
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2 Methods and Processes
2.1 GRA

GRA calculates the relationship between the system and the influencing factors, aiming to
determine the main factor with the closest relationship [5]. The main mechanism is to convert the
variable factor value into a geometric curve and compare the shape of the curve. A higher similarity
of the shape indicates a greater relational degree. With high similarity and great relational degree,
the corresponding influencing factor can be concluded as the main factor of the turbidite channel.
The intervals of sand bodies where a turbidite channel is drilled are set as the positive sample series
of the system, and those of sand bodies where no turbidite channel is found are taken as the negative
sample series. The specific process is as follows:

(1) It is assumed that the characteristic series of the system (based on known well series) are

X0 = {x0 (1), . . . , x0 (n)} (1)

Series participating in the comparison are

Xi = {xi (1), . . . , xi (n)} (2)

(2) Dimensionalization of influencing factors. Because the dimensions and range of many seismic
attributes are different, the calculation results may seriously affect the prediction accuracy.
Therefore, it is necessary to dimensionalize the attributes of the original series.

X (k)

i = X (k)

i /Xi (3)

(3) Determination of the extreme value of the absolute difference between the two series. The
equation for calculating the grey relational coefficient is
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(4) Calculation of the relational degree. The relationship series is calculated through the below
equation. A higher relational degree indicates a higher probability of responding to the
attributes of the turbidite channels.

r (X0, Xi) =
n∑

k=1

εk
i (x0 (k), xi (k)) (5)

2.2 SVM
SVM is applied to nonlinear high dimension and local minima of small samples. Its principle is

to construct an optimal decision function, thus mapping the training samples into a high-dimensional
feature space through nonlinear mapping, converting the regression of nonlinear function into that of
linear function with high-dimensional feature, and then completing the transformation process from
nonlinear to linear function [9].

The sample set of attributes participating in the training is established as {xi, yi}, (i = 1, ..., n),
where n is the number of spatial samples. The input of the optimized attribute sample is selected as xi,
while the output of the sample is selected as yi. For the desired function,

f (x) = ωφ(x) + b (6)
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The optimization function is defined as

min
ω,b,ξ,ξ∗

1
2
ωTω + C

n∑
i=1

(
ξi + ξ ∗

i

)
(7)

Constraint condition s· t

yi − [ωTφ(xi) + b] ≤ ε + ξi (i = 1, . . . , n) (8)

[ωTφ(xi) + b] − yi ≤ ε + ξ ∗
i (i = 1, . . . , n) (9)

ξi, ξ ∗
i ≥ 0 (i = 1, . . . , n) (10)

where φ is the non-mapping function; ω is the normal vector of the function plane; b is the bias of the
function plane; T is the transpose of matrix; ε is the error probability; ξi, ξ ∗

i is the upper limit of training
error under the constraints of error ξ ; ξ is a positive number and can be set in advance according to
the desired accuracy, and C is the penalty factor. The constraint conditions are set as follows:{ ∑k

i=1 yi(ai − a∗
i ) = 0

0 ≤ ai, a∗ ≤ C
(11)

The Lagrange function is established as

L(ω, b, a) = 1
2

||ω||2 −
∑l

i=1
ai(yi((xi · ω) + b) − 1) (12)

The dual form of the optimization method is

max
ai ,a

∗
i

= −1
2

∑n

i,j=1
(ai − a∗

i )(aj − a∗
j )K(xi − xj) − ε

∑n

i=1
(ai − a∗

i ) +
∑n

i=1
yi(ai − a∗

i ) (13)

where K(xi, xj) = φ(xi) · φ(xj) is the kernel function; αi and α∗
i are the Lagrange operator, and j = 1,

. . . , n.

The complementary conditions corresponding to Eq. (12) are

αi(yi − ωφ(xi) − b − ε − ξi) = 0 (i = 1, . . . , n)

α∗
i (ωφ(xi) + b − yi − ε − ξi) = 0 (i = 1, . . . , n)

ξiξ
∗
i = 0, αiα

∗
i = 0 (i = 1, . . . , n)

(ai − C)ξi = 0, (a∗
i − C)ξ ∗

i = 0 (i = 1, . . . , n)

The final regression function obtained is

f (x) =
∑n

i=1
(αi − α∗

i )K(xi, x) + b (14)

2.3 Methodology and Steps
Based on the above principles, a GRA-SVM model was established to achieve the method and

process introduced above. The detail is shown in Fig. 1.
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Figure 1: Technique flowchart based on GRA-SVM model

(1) Determine reference series and comparison series

According to the GRA theory, the signal that reflects the stratum attribute extracted from
the seismic attribute is a gray signal, and the analysis of the attribute of the river channel and the
thickness of sandstone through the seismic attribute signal is a grey system process. Combined with
the seismic forward analysis results, seismic attribute signals of known wells in the experimental zone
were extracted to form a reference series. Other Seismic attribute signals of the target layer were selected
as the comparison series for building a response model of the seismic attribute and the thickness of
sandstone.

(2) Nondimensionalize reference series and comparison series

Due to the different physical significance of each seismic attribute in the system, the dimensions
of the data are not always the same, which leads to inconvenient comparison and difficulty in
obtaining correct conclusions during comparison. Therefore, when GRA is conducted, data are
generally required to be nondimensionalized. This study processed the original data through the
average standardization approach.

(3) Calculate grey relational coefficient

For reference series X0, there are several comparison series such as X1, X2, and Xn. The relational
coefficients between each comparison series and the reference series at different time points (i.e., each
point in the curve) can be calculated through GRA.

(4) Sort relation order

The degree of relation between the sample and the reference series is mainly described in the
greatness and ranking of the relation degree. A larger relation degree value and higher ranking indicate
a greater relation degree with the reference series. On the contrary, a smaller relation degree and lower
ranking indicate a lower relation degree with the reference series. This study analyzed the relation
degree between sandstone thickness and seismic attributes through the GRA method, calculated the
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relation degree between these seismic attributes and sandstone thickness, and selected the typical
attribute variables as the data samples for SVM classification and combination.

(5) Classify samples

SVM is a learning classification method under supervision. Therefore, for the given training
samples, it is necessary to clarify the classification of each sample, which is either 0 or 1. In other
words, each sample should be labeled with an exact category label for SVM training.

(6) Set SVM parameters

The commonly used settings for SVM parameters include the SVM type, the kernel function type,
the termination conditions of the algorithm, relaxation variables, etc. The kernel function is to map
the training samples to a sample set that is easier for linear segmentation. The mapping, completed
through kernel functions, results in an increase in the dimension of the sample vector. As the SVM
training process is an iterative solution to the quadratic optimization issue under constraint conditions,
a combination of maximum iterations and allowable errors can be set as the termination condition of
the algorithm to allow the algorithm to stop computing under appropriate conditions.

(7) Train SVM

As SVM is a supervised learning classification method, for the given training samples, it is
necessary to clarify whether the classification of each sample is 0 or 1, or in other words, each
sample needs to be labeled with an exact category label for SVM training. SVM has no limitations
on the features and dimensions of the samples, which means that different features can be used as
representations of training samples to participate in SVM training.

(8) Segment sample area

There is an intuitive way to judge the classification of samples in the test sample space through the
above SVM model, namely, to color the space where different classifications of samples are located.
Based on red, green, and blue (RGB), different color zones can represent different sample spaces. The
junction of the color zones is the classification hyperplane. By this method, the sample area can be
segmented.

3 Application Case Analysis
3.1 Geological Background of the Target Area

The Lingshui Depression is located at the southeast edge of the Qiongdongnan Basin, between
the central depression of Qiongdongnan Basin and Hainan Island, and it belongs to the northern
lower continental slope zone of the basin. Controlled by boundary faults, the Lingshui Depression
mainly develops NE-SW faults. The stratigraphic sedimentation in the Lingshui Depression is a
multi-source sedimentary system, jointly controlled by the boundary faults on both sides of the
depression and the antithetic faults inside the contemporaneous slope. The Lingshui 17-2 Gas Field
is located in the central canyon in the northern part of the low uplift in the south of the Lingshui
Depression, with a water depth of 1250–1550 m and an average effective permeability of 596 mD.
It is a high-quality and large-scale deep-water gas field with high porosity, high permeability, and
high hydrocarbon production. As per the historical well analysis, the Lingshui 17-2 Gas Field is a
typical deep-water, high-temperature, and high-pressure gas reservoir. The formation of the Neogene
Huangliu Formation-Yinggehai Formation is mainly composed of submarine fans and central canyon
reservoir cap association, with lithologic traps distributed in strips along the canyon. The stratigraphic
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dip is small, with the closure amplitude between 83 and 215 m. The Huangliu Formation is the main
gas-bearing target layer, which is divided into four layers from the bottom to the top [18], with the Gas
Layer Groups I and II being the main gas-bearing sand bodies [19]. Having the largest production
potential, the Gas Layer Group I is further subdivided into two sets of sand bodies, namely, the Gas
Layer Group I upper and Gas Layer Group I lower. Each gas group is a different turbidite sand body
cut by watercourses in the later period under isochronous deposition. The major gas layer group is
mainly composed of well-sorted, argillaceous-cemented, and loose gray fine sandstone, fine siltstone,
and siltstone, making it a typical deep-water turbidite sedimentary environment.

3.2 Prediction Based on GRA-SVM Model
Based on the GRA-SVM method, this study conducted practical research on the seismic geolog-

ical data of the Lingshui Depression, extracting more than 60 kinds of along-layer seismic attributes,
covering amplitude, phase, frequency, etc. [20]. After that, this study used the homogenization method
to dimensionalize these attributes, then used the GRA method to identify the main factors of the
attributes, and found the root mean square (RMS) of the amplitude. The max peak, the instantaneous
frequency, and the instantaneous phase have high main relational factors (Fig. 2). This study then
accumulated the top 20 attributes with the highest relational factors to obtain a first-order accumulated
sequence, which was used as the input training sample of the SVM model. Then the SVM model was
used to establish a prediction model and obtain the prediction results. To restore the prediction results
through consecutive subtraction, the attribute prediction diagram of the main oil layer of the Huangliu
Formation (Top interface S30, bottom interface S40) was ultimately obtained (Fig. 3).

Figure 2: Seismic attribute of the Gas Layer Group I lower of Huangliu Formation in the Lingshui
17-2 Gas Field in the Lingshui Depression

The Gas Layer Group I lower of the Huangliu Formation was taken as an example. Based on the
GERA-SVM prediction attribute diagram, the sample area segmentation indicates the difference in
sedimentation, or in other words, erosion is dominant on the left side, while sedimentation is dominant
on the right side, and curved NE-SW channels can be seen clearly on the plane. As proven by the
drilling results, the attribute anomaly body is the sedimentation in the deep-water turbidite channel.
The channel has developed to a large scale, with a width of about 2 km and a length of 18 km on
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the plane. During the drilling, seven wells encountered this turbidite sedimentary body. The sandstone
coincidence rate was 93% among the drilled water channels, with an average sandstone thickness of
30 m. In conclusion, a greater relationship degree of each seismic attribute indicates a higher
probability of responding to the attributes of the channels, revealing that the turbidite channel method
based on GRA-SVM is feasible.

Figure 3: 3D effect graph of deep-water turbidite channels in the Gas Layer Group I lower of Huangliu
Formation in the Lingshui Depression, Qiongdongnan Basin

3.3 Effect Analysis
3.3.1 Geophysical Characteristics

It can be seen from the through-well seismic profile (Fig. 4) that the valley of the basin is
distributed narrowly and cut deeply in the longitudinal direction. The seismic profile is mainly a
“V” type [21–23] close to the provenance and shows strong amplitude and good continuity, which
indicates that the energy of the turbidity current is strong during this period. Due to the terrain
characteristics of high in the west and low in the east, as well as the dominant erosion effect, the
sedimentation at the bottom of the valley is dominated by weak amplitude and chaotic reflection. On
this basis, the study speculated that this section may be covered by the sedimentation of the early stage
of the turbidity current, mainly composed of residual sedimentation and debris flow sedimentation.
Due to the reflection combination characteristics of geophysical wave groups, the lateral and vertical
sedimentary bodies formed by turbidite channels in the research zone are developed relatively well,
with a total of four stages of oblique-superimposed turbidite channels (marked as 1–4 in the figure).
Similarly, the drilling result proves that the sedimentation of turbidite channels is mainly composed
of a large set of light gray and gray fine sandstones. The logging GR curve generally shows a box-
shaped or bell-shaped pattern, with gradually decreasing amplitude upward, and multiple positive
rhythm characteristics are shown. The seismic attribute plane shows as an amplitude anomaly body,
which is lenticular or strip-like and distributed on the side edge of the curved channel in the middle.
Vertically, the channels from different periods develop in a progradational stacking pattern.Through
geophysical methods and the rock-electric characteristics of well LS17-2-2, this study revealed that the
lateral migration of the turbidite channel sand bodies at the top of this set of sand bodies was more
obvious, with more small turbidite channels. These observations fully show that the plane attribute
based on GRA-SVM can well depict the deep-water turbidite channels.
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Figure 4: (a) Comprehensive map of seismic profile filling characteristics of oblique-superimposed
turbidite channels. (b) Rock electricity during the well logging (Passing through LS17-2-2 well)

3.3.2 Characterization of Sedimentary Microfacies

Based on the above findings, this study utilized the GRA-SVM predicted results, combined with
the historical well analysis and geophysical methods, to delineate the boundary of the sand body in the
water channel [24,25]. With the help of core and logging data, this study divided the sedimentary facies
of the Huangliu Formation in the Lingshui Depression [26,27]. With the Gas Layer Group I lower of
Huangliu Formation as an example, the research area is mainly a deep-water turbidite subfacies area
(Fig. 5). The turbidite channel sedimentation is limited by the central canyon, which is affected by
multiple provenances, including Yacheng Region, Yingdong Slope, and Vietnam in the west. Under
this circumstance, thick-bedded restricted turbidite channel complexes with low-to-medium curvatures
are mainly developed in this area, and sand bodies are distributed in strips along the canyon [28].
The sedimentary bodies in the turbidite channel, depicted by the GRA-SVM method, continuously
migrate and accumulate laterally within the canyon, forming sedimentary units such as channel sand
bodies and natural embankment complexes. The sedimentary accretionary complex is of a large scale,
mainly distributed on the northeast side of the canyon. The lateral accretionary complex develops
in small sheets or mounds and is distributed in a flower-like manner at both ends of the diversion
channel, reflecting the typical characteristics of turbidite sedimentation in deep-water canyons [29,30].
In particular, the large-scale deep-water turbidite channel microfacies are the potential zones for future
well deployment.

3.3.3 Post-Drilling Validation

Based on the results of attribute prediction, a development well, LS17-2-10d, was drilled in the
research area around the central canyon gas field and its surrounding areas to tap into unutilized
reserves. This well underwent a well test analysis in the N1HIII interval using a post-pressure
drawdown method (see Table 1), serving to verify the credibility of the prediction methods used. The
N1HIII interval in well LS17-2-10d has a sandstone thickness of 37.5 m with an effective thickness
of 12 m. The well testing concluded that it is an extraordinarily high-yielding industrial gas layer.
Additionally, rock-electrical response analysis indicated that this well is situated in typical turbidite
channel deposits of the Huangliu Formation. The successful design and execution of well LS17-2-10d
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thoroughly demonstrate the effectiveness of the employed methods for predicting deep-water turbidite
channels.

Figure 5: Sedimentary microfacies map of the Gas Layer Group I lower of the Huangliu Formation in
the Lingshui 17-2 Gas Field, Qiongdongnan Basin, South China Sea

Table 1: Well testing and drilling encounters for Lingshui 17-2 Gas Field, Well LS17-2-10d

Well number Interval Sandstone
thickness (m)

Effective
thickness (m)

Gas-bearing
area (km2)

Gas saturation
(%)

Test
conclusion

LS17-2-10d N1HIII 37.5 12 3.66 77.0 Exceptionally
high-
producing
industrial gas
layer
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4 Conclusion

To predict the channel sand body through seismic attributes, this study combines the advantages
of the GRA-SVM method to establish a prediction model based on GRA-SVM for training and
prediction. Through GRA, this study finds out that the RMS of the amplitude, the max peak, the
instantaneous frequency, and the instantaneous phase have high main relational factors. It then selects
seismic attributes through GRA as the input sample of the model and uses the Lingshui Depression
as the target area for prediction. The results show that the GRA-SVM method performs well in
the prediction of deep-water turbidite channels and has the advantage of low limitation for seismic
attribute samples, as well as high accuracy of the prediction results. Therefore, this method is of
great significance for the prediction of sand bodies in turbidite channels under complex geological
conditions.

(1) The GRA model can optimize the relationship among seismic attributes well. The SVM model
uses known geological data to form the training dataset and the test dataset. Therefore,
by combining the known geological prior information, the GRA-SVM method can further
improve the accuracy of reservoir prediction.

(2) The advantage of the GRA-SVM model in prediction lies in that it uses a variety of seismic
attributes for nonlinear analysis, avoiding the premise of linear assumptions. Combining
the similarities in geological body responses integrates the strengths of both, enhancing the
accuracy of reservoir interpretation.

(3) Based on the prediction results of the GRA-SVM model, combined with the historical well
analysis and geophysical characteristics, this study divides the sedimentary facies of the Huan-
gliu Formation in the Lingshui Depression. The Lingshui Depression mainly develops thick-
bedded restricted turbidite channel complexes with low-to-medium curvatures, where sand
bodies are distributed in strips along the canyon. In particular, the sedimentary accretionary
complex is relatively large and mainly distributed on the northeast side of the canyon, while
the lateral accretionary complex develops in small sheets or mounds.
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