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ABSTRACT

Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unit
power generation costs. The service life of these modules directly affects these costs. Over time, the performance
of PV modules gradually declines due to internal degradation and external environmental factors. This cumulative
degradation impacts the overall reliability of photovoltaic power generation. This study addresses the complex
degradation process of PV modules by developing a two-stage Wiener process model. This approach accounts
for the distinct phases of degradation resulting from module aging and environmental influences. A power
degradation model based on the two-stage Wiener process is constructed to describe individual differences in
module degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization
(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) is
utilized to identify critical change points in PV module degradation trajectories. To validate the universality and
effectiveness of the proposed method, a comparative analysis is conducted against other established life prediction
techniques for PV modules.
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Nomenclature

PDF Probability density function.
RUL Remaining useful life.

e.g.,

Lk RUL at inspection time tk.
τ Time of the changing point.
Xτ Degradation state at the changing point.
ω Threshold of X (t).
fT (·) PDF of the lifetime.
fL (·) PDF of the RUL.
μi Drift coefficient at the ith phase.
σi Diffusion coefficient at the ith phase.
φ (·) PDF of the standard normal distribution.
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Φ (·) Cumulative distribution function of the standard normal distribution.
σα, σβ Standard variances of σ1 and σ2.
μα, μβ Means of μ1 and μ2.

1 Introduction

The PV module, a critical component of a PV power generation system, accounts for approxi-
mately 60% of the total cost. Ideally, the service life of a PV module should exceed 25 years [1–4].
However, in practice, environmental factors and external stresses often lead to a shorter lifespan than
expected [5,6]. Furthermore, the extended service life of PV modules presents challenges in collecting
degraded power data. Therefore, it is essential to investigate the degradation characteristics of PV
modules using stochastic degradation models. These models facilitate the estimation of remaining
service life and the development of appropriate maintenance strategies.

Currently, there are two main methods for predicting PV module life: failure mechanism-based
and data-driven [7,8]. Failure mechanism-based PV module life prediction methods primarily forecast
PV module life by quantifying the relationship between environmental pressure and output power,
without requiring performance degradation monitoring data. However, these methods necessitate
prior knowledge of the physical mechanisms underlying the degradation process and have inherent
limitations. Kaaya et al. [9] proposed a PV prediction model based on local climate, which offers
the advantage of applicability after a small performance degradation and can improve prediction
accuracy with fewer input variables. A generalized model was proposed in [10] to quantify the
impact of integrated climate loads and predict the degradation rate of single crystal components in
different climates. Liu et al. [11] propose a semi-parametric framework for on-site photovoltaic systems
with periodic attenuation signals to predict the remaining life of photovoltaic modules in dynamic
environments. In contrast to failure mechanism model-based approaches, data-driven methods do not
rely on specific physical or expert knowledge. These methods can uncover mathematical relationships
between input data and targets to reveal hidden correlations and predict the remaining lifetime based
on model parameters. Data-driven methods for PV module life prediction depend on the accumulation
of historical monitoring data. Kaaya et al. [12] propose a hybrid drive model based on data algorithm
drive and physical drive to obtain long-term reliable estimates of photovoltaic modules. Because the
amount of PV module degradation exhibits continuous degradation characteristics over time, there
are three main continuous-state degradation models: the gamma process, Wiener process, and inverse
Gaussian process [13]. Park et al. [14], addressing the uncertainty and volatility in the degradation
process of photovoltaic modules, compare three different life estimation methods and identify the
prediction based on the gamma process model as the most applicable. Karakaya et al. [15] predict
the life of inverters in photovoltaic modules using a data-driven approach, which is primarily divided
into two stages: feature extraction and classification. Gamma and inverse Gaussian process models
typically describe monotonic degradation processes [16–18] and have certain limitations in describing
PV module degradation models. The Wiener process, originating from Brownian motion with a linear
drift term, can describe the non-monotonic degradation process, which is favorable for the estimation
of model parameters [19,20]. Wei et al. [21] propose a PV prediction model based on the Wiener
process, which also considers individual differences, and models the degradation of photovoltaic
modules to predict life. In [22], the life cycle of PV modules is obtained by combining a Wiener
process with an acceleration time model. However, in practice, the deterioration of PV modules is
caused by factors such as the natural environment, product aging, and external shocks, and a two-stage
degradation phenomenon exists [20]. Nevertheless, current research on PV module life prediction does
not consider the two-stage degradation of PV modules.
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In summary, the traditional Wiener process model struggles to accurately depict the deterioration
process of PV modules in the presence of variable points. To address this challenge, this study employs
a two-stage Wiener degradation model to characterize the degradation process. Furthermore, Bayesian
inference and the EM algorithm are introduced for the estimation of the model parameters. Finally,
the feasibility and validity of the proposed method were verified by comprehensive simulation and
practical case analysis.

The principal contributions of the proposed model are as follows:

1) A novel two-stage degradation model for PV modules has been developed, incorporating a
random parameter to account for sample variability. The analytical expression of the remaining useful
life (RUL) distribution of the two-stage system in the first arrival time is derived, enabling online real-
time RUL estimation. Compared to single-stage models, the proposed model demonstrates superior
alignment with engineering practices and exhibits enhanced accuracy.

2) The EM algorithm and Bayesian algorithm are proposed in this study. The life prediction results
derived from these algorithms provide a robust theoretical foundation for optimizing the operation
and maintenance cycle of PV modules.

2 PV Module Performance Degradation Model

The failure rate of PV modules changes over time due to the impact of environmental conditions,
external stresses, and other random factors, which can be described by the bathtub curve, consisting of
three distinct phases. The initial phase exhibits a higher failure rate, primarily attributed to defects in
the PV module manufacturing process. During the second phase, the failure rate decreases as defective
modules are eliminated, although random failures still occur due to environmental factors and external
stresses. The third phase is characterized by an increase in the failure rate caused by fatigue, aging,
and depletion of the PV modules resulting from prolonged usage [23]. Since the initial degradation is
assumed to be zero in the performance degradation process of PV modules, most decay curves exhibit
two stages. The Wiener process effectively simulates the non-monotonic deterioration process, offering
robust data fitting capabilities and mathematical properties [24]. Due to the degradation process of PV
modules, two distinct stages of degradation trajectories are observed. In summary, this study proposes
a PV module life prediction method based on a two-stage degradation trajectory.

2.1 Assumptions of the Model
(1) The performance degradation curve of PV modules exhibits a distinct two-stage pattern.

Although the precise location of the change point remains undetermined, engineers and technicians
possess the ability to identify the periods preceding and following this transition [25].

(2) The degradation process at each stage conforms to an independent linear Wiener process,
which can be expressed as:

X (t) = x0 + μt + σB (t) (1)

In this equation, X (t) represents the degradation at time t, x0 denotes the initial degradation, σ

signifies the diffusion parameter, which captures the variability in the degradation process, and B (t)
represents the standard Brownian motion, a stochastic process that models random fluctuations in
the degradation over time.
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(3) The lifetime T of a component is defined as the initial instance when the output power
degradation X (t) reaches the failure threshold ω:

T = inf {t : X (t) ≥ ω|X (0) < ω} (2)

The remaining lifetime Lk is given by [26]:

Lk = inf {lk : X (tk + lk) ≥ ω|X (tk) < ω} (3)

2.2 Two-Stage Modeling
Based on the aforementioned assumptions, the following two-stage Wiener degradation model

can be developed:

X (t) =
{

x0 + μ1t + σ1B (t), 0 < t ≤ τ

xτ + μ2 (t − τ) + σ2B (t − τ), t > τ
(4)

where x0 denotes the initial amount of degradation, which is assumed as zero. τ represents the time of
the change point; xτ denotes the degradation amount at the change point; μ1 and μ2 denote the drift
coefficients of the first and second-stage degradation processes, respectively; and σ1 and σ2 denote the
diffusion coefficients of the first and second-stage degradation processes, respectively.

3 Remaining Useful Life Prediction

If the drift coefficients μ1 and μ2 follow the normal distribution N
(
μα, σ 2

α

)
and N

(
μβ , σ 2

β

)
respectively to describe the difference between samples, and gτ (xτ |μα, σα) is used to represent the
transition probability from 0 to x after time T , then the probability density function (PDF) can be
expressed as follows [27,28]:

(1) when tk < τ and 0 < lk + tk < τ

fL (Lk) =
∫ +∞
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(2) when tk < τ and lk + tk > τ
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We define:

μa = μβ (tk − τ + lk) (7)

μb = ω − xk + μα (tk − τ) (8)
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α
(tk − τ)

σ 2
1

(9)

σ 2
a = σ 2

2 (tk − τ + lk) + σ 2
β
(tk − τ + lk)

2 (10)

σ 2
b = (tk − τ)

2
σ 2

a + (tk − τ)
2
σ 2

1 (11)

A =
√

1

2π (lk + tk − τ)
2 (

σ 2
a + σ 2

b

) exp

[
− (μa − μb)

2

2
(
σ 2

a + σ 2
b

)
]

×
⎧⎨
⎩μaσ

2
b + μbσ

2
a

σ 2
a + σ 2

b

	

⎛
⎝ μaσ

2
b + μbσ

2
a√

σ 2
a σ

2
b

(
σ 2

a + σ 2
b

)
⎞
⎠ +

√
σ 2

a σ
2
b

σ 2
a + σ 2

b

φ

⎛
⎝ μaσ

2
b + μbσ

2
a√

σ 2
a σ

2
b

(
σ 2

a + σ 2
b

)
⎞
⎠
⎫⎬
⎭ (12)

B = exp

{
2μα (ω − xk)

σ 2
1

+ 2σ 2
α

[
(ω − xk)

2
σ 2

α
τ + (ω − xk)

2
σ 2

1

]
σ 4

1

[
σ 2

1 + (τ − tk) σ 2
α

]
}

×
√

1

2π
(
σ 2

a + σ 2
b

)
(tk − τ + lk)

2

× exp

[
− (μa − μc)

2

2
(
σ 2

a + σ 2
b

)
]

×
⎧⎨
⎩μaσ

2
b + μcσ

2
a

σ 2
a + σ 2

b

	

⎛
⎝ μaσ

2
b + μcσ

2
a√

σ 2
a σ

2
b

(
σ 2

a + σ 2
b

)
⎞
⎠

+
√

σ 2
a σ

2
b

σ 2
a + σ 2

b

φ

⎛
⎝ μaσ

2
b + μcσ

2
a√

σ 2
a σ

2
b

(
σ 2

a + σ 2
b

)
⎞
⎠
⎫⎬
⎭ (13)

Eq. (14) can be derived from Eqs. (5)–(13).
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(3) when tk > τ
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4 Model Parameters and Updates
4.1 Hyperparameter Estimation Based on EM Algorithm

In practical engineering, the same type of historical degradation data is frequently utilized as prior
information for equipment. In this section, the EM algorithm’s parameter estimation is employed to
estimate the prior information. Consider a total of m monitoring points for PV modules, resulting in
n sets of degradation data denoted as X = {X0, X1, · · · , Xn}, where Xi = {Xi,0, Xi,1, · · · , Xi,m

}
represents

the monitoring value of the ith PV module at time {t0, t1, · · · , tm}, the power degradation increment is
defined as 
xi = xi,k − xi,k−1, and the time interval is 
ti = ti,k − ti,k−1.

Let {x0, x1, · · · , xτ} and {xτ+1, xτ+2, · · · , xm} represent the degradation data of the PV modules at
two stages, respectively. Assuming that the change point occurs only at a monitoring mileage τi ∈
{t0, t1, · · · , tm}, the likelihood function is constructed as follows [29,30]:

ln L
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where μ1,i, σ1, μ2,i, σ2 is the model’s unknown parameter corresponding to the ith PV module.

� = arg max
�

∑n
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ln L
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)
(17)

where Θ = {
μ1,1, μ1,2, · · · , μ1,n, μ2,1, μ2,2, · · · , μ2,n, σ1, σ2

}
. Using μ1,i and μ2,i as the observed values of

the random variables μ1 and μ2, respectively, the likelihood function is established as follows.

ln L (�|X , Z) = ln
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where Θ = {
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}
is the model parameters and Zi = {
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}
are hidden variables,

and X0: k = {X0, X1, · · · , Xk} denotes the degraded data from t0 to tk. The EM algorithm is employed
to estimate the corresponding hyperparameters and calculate the vector of parameters [31].
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After maximizing the conditional expectation and employing the EM algorithm, the result of the
j + 1st iteration can be obtained using �
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4.2 Parameter Updates Based on Bayesian Methods
This section aims to integrate the prior information from the previous section with the current

operational data for PV module degradation equipment in a degradation process. The initial degra-
dation stage of the PV module occurs when tk < τ . This stage encompasses the monitoring period
preceding the change point and provides the initial dataset for parameter updates. Let μα,0, σα,0 denote
the priori information of μ1. Then, under the Bayesian framework, the following calculations apply:

p (μ1|X0: k) ∝ p (X0: k|μ1) · p (μ1) (26)

Style:
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Given that p (X0: k|μ1) and p (μ1) follow a normal distribution, the posterior distribution can be
derived using the properties of conjugate normal distributions. Consequently, the posterior distribu-
tion is expressed as:

p (μ1|X0: k) = 1√
2Πσ 2
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exp
{
−(μ1 − μα)

2
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α
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(29)
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In contrast, the second degradation stage of the PV module degradation occurs when tk > τ ;
indicating that the monitoring time was after the appearance of the change point. In this stage, the
degradation model parameters are updated using the dataset Xτ : k = {Xτ , Xτ+1, · · · , Xk}. Let μβ,0, σβ,0

denote the prior information for μ2. The posterior distribution for μ2 can be expressed analogously
to the parameter updating process for μ1:
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4.3 Variable Point Estimation
Schwartz proposed the SIC in 1978 to determine whether a model has a variation-point problem.

The SIC offers a straightforward method for estimating the change point in PV module degradation,
demonstrating effective detection capabilities [32]. The SIC is defined as:

SIC = −2 ln L
(
θ̂
)

+ p ln m (35)

where L
(
θ̂
)

is the maximum likelihood function of the PV module model, θ̂ is the maximum likelihood

estimate of θ , p signifies the number of free parameters in the model, and m indicates the size of the
degradation data sample.

To determine the change point locations using the SIC, the following hypotheses are proposed:

Null hypothesis (H0): All parameters are equal, indicating the absence of change points in the
model.

Alternative hypothesis (H1): There is a variable point τ that degenerates at X1

(
t; μ1, σ 2

1

)
one stage

before τ , and at X2

(
t; μ2, σ 2

2

)
one stage after τ .
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Based on Eq. (35), the SIC value under H0 is:

SIC (m) = m ln 2π + m ln
m∑
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2 + m + (2 − m) ln m (36)
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The SIC(k) value under the H1 is:
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When SIC (m) > min2<k≤m−2 SIC(k), the null hypothesis H0 is rejected in favor of the alternative
hypothesis H1, suggesting the existence of a change point τ̂ = k̂:

SIC
(

k̂
)

= min
2<k≤m−2

SIC (k) (40)

In conclusion, the remaining life prediction process of the PV module can be derived from the two-
stage Wiener process, which involves variable point estimation and parameter updating, as depicted
in Fig. 1.

Initiate

Input degraded data

Change point estimation

Give the initial values of 
the model parameters

EM parameter estimation

The posterior distribution is 
obtained based on Bayes

Whether there is new data

Updated model 
parameters

Remaining useful life 
probability distribution

The end

Y

N

Figure 1: Flowchart of PV life prediction
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5 Single-Stage Wiener Degeneracy Model

Based on the single-stage Wiener process model, the life T of a PV module is defined as:

T = inf {t : xt ≥ ω|x0 < ω} (41)

At tk, the remaining life lk is expressed as:

Lk = inf
{
lk : xtk+lk

≥ ω|xtk
≤ ω

}
(42)

In conjunction with Eq. (1), the PDF can be expressed as:

fT (t) = ω√
2πt3σ 2

exp
{
−(ω − μt)2

2σ 2t

}
(43)

Let μ0, σ0 denote the prior information for μ. Within the Bayesian framework, the mean μk and
variance σk estimates of μ at the time tk can be calculated as:

μk = μ0σ
2 + xkσ0

2

tkσ0
2 + σ 2

(44)

σ 2
k = σ 2σ0

2

tkσ0
2 + σ 2

(45)

Upon deriving the posterior distribution, the EM algorithm is employed to calculate the positional
parameter vector Θ = (μ0, σ 2

0 , σ 2
)
, and the estimation of the j+1st step can be obtained as follows:

μ
(j+1)

0 = μk (46)

σ
2,(j+1)

0 = σ 2
k (47)

σ
2,(j+1) =

m∑
i=1

(
xi)
2 − 2μk
ti
xi + (
ti)

2
(
μk

2 + σ 2
k

)
m
ti

(48)

By substituting the parameter estimates into Eq. (43), the remaining life prediction model is
obtained.

6 Example Analysis
6.1 Simulation Verification

To validate the feasibility of the proposed method, a comparative case study was conducted using
data from Reference [33]. The study compared the life prediction results obtained from the single-stage
Wiener process modeling approach with those derived from the methodology presented in this paper.

To facilitate analysis, the output power degradation data for the S73L47 module between 12 years
of service was processed based on cases in the literature and divided into 1200 cycles, as depicted
in Fig. 2.

Adhering to the S73L47 power degradation model, the obsolescence threshold was established at
80% of the initial output power P0 [4].

Initially, the degradation model was monitored for change points using the SIC to determine the
change point location; the corresponding trend of the SIC value is shown in Fig. 3. According to the
SIC criterion, there is a change point in the degradation of the PV module and τ = 671.
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Figure 2: Degradation data

Figure 3: SIC value of PV modules

The resulting parameter estimates are μα = 0.015, σ1 = 0.01042, μβ = 0.05788, and σ2 = 0.04303.
In conjunction with Fig. 2, point estimates of the remaining lifetime at each monitoring point during
the PV module service were obtained. Figs. 4 and 5 illustrate the two-stage parameter update process.
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Figure 4: The first stage of model parameter updating

Figure 5: The second stage of model parameter updating

Figs. 6 and 7 illustrate the life prediction results and relative error values for the S73L47 PV
module. The proposed model exhibits notably superior prediction accuracy compared to the single-
stage model as the duration increases. This improved performance stems from the single-stage model’s
inability to effectively capture the degradation trajectory of PV modules in the presence of a change
point. By accurately modeling the degradation trajectory, the proposed approach achieves enhanced
prediction accuracy.



EE, 2025, vol.122, no.1 343

Figure 6: Prediction results of different methods

Figure 7: Relative value curves of remaining life prediction results

6.2 Comparative Analysis
To illustrate the proposed model’s suitability for analyzing PV module degradation processes, this

study compares and examines average degradation curves from four PV module groups, as depicted
in Fig. 8. The degradation data is sourced from the literature [33], ensuring the analysis is grounded
in established research.

Fig. 8 illustrates that the two-stage degradation model accurately fits the PV module degradation
curve. Furthermore, as demonstrated in Table 1, the two-stage Wiener process model generates smaller
lifetime prediction errors in comparison to both linear and nonlinear degradation models.
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Figure 8: Component performance degradation trajectory comparison

Table 1: Component performance degradation comparison

Prediction models Estimated value/y Actual value/y Relative error/%

Proposed method 8.8 8.3 6.024
Nonlinear Gamma degradation process 7.6 8.3 8.434
Linear Gamma degradation process 6.8 8.3 18.072

7 Conclusions

In light of the two-stage degradation phenomenon observed in PV modules, which is influenced by
natural conditions and other stochastic factors in real-world scenarios, as well as the inter-individual
variability of degradation rates and critical change points in PV systems, this study proposes a novel
two-stage process for predicting PV module lifetimes. This approach addresses the complex nature
of PV module degradation more comprehensively than existing methods. To enhance the model’s
accuracy and robustness, a combination of the EM algorithm and Bayesian inference methods was
employed for estimating model parameters and hyperparameters. Additionally, the SIC was utilized
to detect the critical change point in the degradation curve, allowing for a more precise identification of
transitions between degradation stages. Comparative analyses demonstrate that the proposed method
achieves higher real-time accuracy in predicting the remaining life of PV modules compared to existing
techniques. This improved predictive capability is particularly beneficial for developing more effective
and efficient maintenance strategies for PV modules, ultimately contributing to the optimization of
solar energy systems’ performance and longevity.

Although this study focuses on two-stage random degradation equipment with accessible degra-
dation data, it is crucial to recognize that large, complex equipment may display multiple working
conditions or state-switching phenomena due to environmental factors and varying work tasks, leading
to multi-stage scenarios. Future research could extend the modeling of degradation and prediction of
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RUL to encompass multi-state and multi-stage complex random systems, while also addressing related
maintenance decision challenges.
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