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ABSTRACT

Precisely estimating the state of health (SOH) of lithium-ion batteries is essential for battery management systems
(BMS), as it plays a key role in ensuring the safe and reliable operation of battery systems. However, current
SOH estimation methods often overlook the valuable temperature information that can effectively characterize
battery aging during capacity degradation. Additionally, the Elman neural network, which is commonly employed
for SOH estimation, exhibits several drawbacks, including slow training speed, a tendency to become trapped in
local minima, and the initialization of weights and thresholds using pseudo-random numbers, leading to unstable
model performance. To address these issues, this study addresses the challenge of precise and effective SOH
detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal
voltammetry (DTV) and an SSA-Elman neural network. Firstly, two health features (HFs) considering temperature
factors and battery voltage are extracted from the differential thermal voltammetry curves and incremental capacity
curves. Next, the Sparrow Search Algorithm (SSA) is employed to optimize the initial weights and thresholds of
the Elman neural network, forming the SSA-Elman neural network model. To validate the performance, various
neural networks, including the proposed SSA-Elman network, are tested using the Oxford battery aging dataset.
The experimental results demonstrate that the method developed in this study achieves superior accuracy and
robustness, with a mean absolute error (MAE) of less than 0.9% and a root mean square error (RMSE) below 1.4%.
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1 Introduction

In response to the growing severity of energy and environmental crises, numerous countries
and regions are ramping up investments in renewable energy technologies. Among these, lithium-ion
batteries have gained widespread application in electric vehicles, substations, and photovoltaic power
grids, owing to their long lifespan, low self-discharge rate, high energy density, high power output,
and environmentally friendly properties [1,2]. However, during charge-discharge cycles, various side
reactions occur inside the battery, leading to the loss of active materials and electrolytes. This results in
capacity decay, increased impedance, and performance degradation, thus posing safety hazards [3–5].
Additionally, the battery aging process is a positive feedback loop, and improper operations such as
overcharging and over-discharging during use can accelerate aging, potentially causing system failures
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and safety issues. The state of health (SOH) of a battery, which serves as a key indicator of its aging
status, is a critical parameter within battery management systems (BMS). Precise SOH estimation
enables the BMS to effectively monitor and manage battery safety, thereby ensuring the reliable and
stable operation of the overall battery system.

The estimation of a battery’s SOH typically involves three main approaches: the feature parameter
method, model-based techniques, and data-driven approaches [6]. Model-based techniques are further
divided into two categories: electrochemical models and equivalent circuit models. The feature parame-
ter method, on the other hand, calculates SOH by deriving equations based on measured aging-related
parameters such as terminal voltage, current, and internal resistance, allowing for an assessment of the
battery’s current SOH through these computations. This method is simple in principle and broadly
applicable, but its estimation accuracy is affected by the precision of the measurement equipment, and
the measurement cycle is usually long, making it more suitable for laboratory applications [7]. The
model-based method simulates the external characteristics of the battery by establishing a physical-
chemical model of the battery. It requires parameter identification combined with filters and the use of
optimization algorithms to estimate SOH. This approach is mainly categorized into equivalent circuit
models and electrochemical models. Equivalent circuit models are structurally simple and require
relatively low computational resources, but their parameters vary under different operating conditions,
performing well only under conditions where the model parameters have been identified, which
limits their adaptability. Electrochemical models, on the other hand, describe the battery’s capacity
degradation mechanisms through a series of partial differential equations based on the internal aging
mechanisms of the battery. However, identifying parameters for electrochemical models is challenging
and computationally complex, making them unsuitable for BMS applications [8]. The data-driven
approach bypasses the need to understand the internal mechanisms of the battery. Instead, it focuses
on analyzing and extracting health features (HFs) that are closely related to the battery’s condition,
employing machine learning algorithms to establish a nonlinear mapping between these HFs and
the battery’s SOH. By eliminating the need for physical modeling and parameter identification, this
method offers enhanced flexibility and holds significant potential for practical applications, which has
attracted considerable attention and extensive research from the academic community [9].

The data-driven approach primarily relies on the rationality of health features and the general-
ization capability of the training algorithms [10]. In the selection of data for feature extraction, the
charging data of the battery is more valuable for estimating SOH. In practical applications, battery
discharge conditions are often complex, while charging conditions are generally more controlled.
Typically, batteries are charged using a constant current (CC) phase followed by a constant voltage
(CV) phase. Researchers, such as Wang et al. [11], applied Incremental Capacity Analysis (ICA) to
extract features from the Incremental Capacity (IC) curves during battery charging. They then utilized
Support Vector Regression (SVR) to estimate the battery’s SOH. Additionally, Severson et al. [12]
introduced a data-driven method to predict the cycle life of lithium-ion batteries before capacity
degradation occurs. The research team utilized a large battery dataset and employed machine learning
algorithms, such as random forests, to analyze early cycle features and successfully predict battery
lifespan. The innovation of this method lies in its ability to accurately forecast the cycle life of
batteries without requiring complete discharge tests, thereby significantly reducing testing time
and costs. Zhang et al. [13] proposed a model free SOH estimation method combining Coulomb
counting method and differential voltage analysis. The above research mainly depends on the voltage
characteristics, without considering the temperature factor of battery aging process. In addition to
voltage, battery temperature and other characteristics can also characterize battery aging. Scholars
such as Jiang et al. [14] proposed that the surface temperature of lithium-ion batteries changes with
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cycling and aging, affecting battery performance. Surface temperature characteristics can describe the
temperature trends of batteries in different aging stages, assessing their aging status and preventing
serious accidents from occurring. Through experiments, that considering temperature factors during
the testing process enhances the accuracy of SOC and SOH estimation methods [15]. Yang et al. [16]
fitted battery surface temperature using an exponential model, extracting health features that char-
acterize temperature variation rates from model parameters, and validated their association with
battery capacity degradation. Tian et al. [17] analyzed temperature difference curves during the
CC process and utilized SVR within certain voltage ranges to estimate SOH. In the article by
Zhang et al. [18], the advantages of data-driven approaches for SOH estimation in lithium-ion batteries
are extensively discussed. The authors highlighted that data-driven methods offer significant benefits
in SOH applications due to their ability to automatically extract relevant features from large datasets
and model complex, nonlinear relationships inherent in battery degradation processes. These methods
enhance prediction accuracy and adaptability, as they do not require detailed physical modeling or
prior domain knowledge. Moreover, data-driven approaches are highly flexible, making them suitable
for real-time applications and various operational conditions, thereby improving the robustness and
reliability of battery health prognostics. Among various data-driven methods, Liu et al. [19] provided a
detailed introduction on how to use Elman neural network for SOH estimation of lithium-ion batteries,
and provides an application example of Elman neural network in battery SOH estimation. At the same
time, it compares with other traditional neural networks and proves the superiority of Elman neural
network, especially in the processing of nonlinear and dynamic time series data and adaptability in
complex environments.

The above review indicates that current research on SOH estimation primarily relies on voltage
characteristics, often neglecting temperature factors that may also signify battery aging. Meanwhile,
data-driven methods exhibit significant advantages in SOH estimation. However, traditional neural
networks have inherent limitations, such as susceptibility to local minima, slow convergence rates, and
challenges in accurately selecting initial weights and thresholds. To address these issues, this study
considered both voltage and temperature factors of the battery. Differential Thermal Voltammetry
(DTV) and Incremental Capacity Analysis (ICA) were employed to extract features related to tem-
perature and battery voltage, respectively. Through Pearson correlation coefficient analysis, suitable
HFs were selected as indicators for battery SOH and model inputs, aiming to reduce model training
and computation time. Aiming at the traditional Elman neural network which also suffers from the
drawbacks mentioned above, such as the susceptibility to local minima, slow convergence, and the
difficulty in selecting initial weights and thresholds, this study optimized the model using the Sparrow
Search Algorithm (SSA). The SSA-Elman neural network SOH estimation model was established to
improve estimation accuracy and robustness.

2 Data Set Analysis and Feature Extraction

Using data-driven approaches, the estimation of battery SOH depends on establishing a nonlinear
mapping between HFs and SOH. Therefore, the selection of HFs is a critical factor affecting
estimation accuracy. During the battery aging process, extracting HFs from discharge conditions is
generally challenging due to their complexity. In contrast, battery charging typically follows a constant
current followed by constant voltage (CC-CV) pattern, making features extracted from the constant
current charging stage more practically applicable in real-world settings [20]. Furthermore, existing
SOH estimation methods predominantly rely on voltage features without considering temperature
characteristics during battery aging. Utilizing different types of features, including both voltage and
temperature, can effectively enhance the accuracy and robustness of SOH estimation [21]. Therefore,
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when selecting health features for accurate estimation, priority must be given to the voltage and
temperature factors of the battery.

2.1 Definition of SOH
SOH refers to the present energy storage capacity of a lithium-ion battery compared to its capacity

when new. Expressed as a percentage, SOH quantifies the battery’s condition throughout its lifecycle,
offering a clear measurement of its current performance level and efficiency [22]. Currently, SOH can
be defined in various ways, primarily focusing on capacity, energy, internal resistance, cycle count,
peak power, and other aspects. The most commonly used definitions of SOH are as shown in Eq. (1):

SOH = Qaged

Qrate

× 100% (1)

In the equation, Qrate denotes the battery’s rated capacity at the time of manufacture, while Qaged

represents the remaining usable capacity of the battery after it has been in operation.

2.2 Analysis of the Oxford Battery Ageing Dataset
The Oxford Battery Ageing dataset was developed by Birkl et al. at the University of Oxford, UK,

through a long-term ageing experiment involving eight Kokam lithium cobalt-oxide batteries. Each of
the eight cells, designated as Cell1 to Cell8, had a rated capacity of 740 mAh. During the testing process,
the batteries were placed in a Binder thermostat, maintaining an ambient temperature of 40°C, while
being subjected to identical charging and discharging protocols. In the ageing experiment, the cells
were charged at a 2C current (where 1C = 740 mA) and discharged under Urban Artemis conditions to
simulate real-world vehicle operation. Data on voltage, current, and surface temperature were collected
using a Bio-logic MPG-205 battery tester with a sampling interval of 1 s for every 100 cycles until the
end of the batteries’ useful life. Except for Cell2, the capacity of all cells remained relatively stable,
without notable capacity fluctuations, as the number of cycles increased.

2.3 Temperature Feature Extraction Based on the DTV Method
The DTV analysis method allows for simultaneous consideration of both battery voltage and

temperature factors. Unlike other methods, it does not require experiments to be conducted under
constant temperature conditions [23]. The definition of DTV is the ratio of the change in temperature
over time to the change in voltage over time, expressed as shown in Eq. (2):

DTV = dT
dV

= dT
dt

/
dV
dt

(2)

In the equation, DTV represents the differential thermal voltage change, where T is the surface
temperature, V is the voltage, and t is the time.

Due to limitations in temperature sensor sampling frequency and performance, the temperature
data of the battery exhibit some local fluctuations. For example, the temperature data of Oxford
Battery Cell1 at Cycle 100 is shown in Fig. 1.

Therefore, in the process of plotting the DTV curve, noise reduction is an essential step in the
battery data processing. According to the definition of DTV, direct calculation of the data can amplify
the influence of measurement noise on the DTV curve, especially at voltage plateaus.
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Figure 1: Temperature data of Cycle 100 of Oxford Cell Cell1

To reduce the impact of errors, during the experimental process, battery data is reconstructed using
local weighted quadratic regression smoothing for the DTV curve, with a window size set to 0.5. As
an example, the smoothed DTV curve for the charging data of Cell1 over several cycles is shown in
Fig. 2.

Figure 2: DTV curve of the Cell1 part of the cycle after smoothing treatment

In the case of Cell1, it can be observed that the DTV curve undergoes noticeable changes in certain
geometric features such as peaks, valleys, and their corresponding voltage positions as the cycle count
increases, as illustrated in Fig. 3. The valley of the DTV curve is denoted as V_DTV, and the peak
is denoted as P_DTV. Similarly, the position corresponding to the valley in the voltage is denoted as
PV_DTV, and the position corresponding to the peak is denoted as PP_DTV. As shown in Fig. 4,
the DTV curve exhibits some significant outliers in peak and valley magnitudes, which somewhat
impacts its correlation with battery SOH. However, the peak position PP_DTV is less affected by
these outliers. Merla et al. [24] decoupled the DTV curve into individual peaks representing specific
phases and utilizes peak parameters as features for SOH estimation. However, this decoupling and
peak extraction process increases computational complexity.
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Figure 3: Features of the DTV Curve

Figure 4: Trends in the peaks and troughs of Cell1

2.4 Voltage Feature Extraction Based on IC Method
The IC analysis method investigates battery aging mechanisms from the perspective of electrode-

level behavior. One of its key features is its ability to transform the voltage plateaus of batteries into
easily distinguishable peaks on the IC curves. These IC peaks reflect the phase transition characteristics
of lithium-ion active materials during the processes of intercalation and deintercalation [25]. The
primary principle of IC analysis is the rate of change of battery capacity relative to battery voltage,
defined as shown in Eq (3):

dQ
dV

= I ∗ dt
dV

(3)

In the equation, Q represents discharge capacity, V denotes voltage, I stands for discharge current,
and t denotes discharge time.
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According to the definition, it is known that the IC analysis method, similar to the DTV analysis
method, can produce significant errors at voltage plateaus. Therefore, the same smoothing method is
applied to the DTV curve to reduce the impact of these errors. The variation in IC curves is shown in
Fig. 5.

Figure 5: Trend of IC curves for battery Cell1

From Fig. 5, it can be observed that with battery aging, the maximum peak of the IC curve exhibits
a pronounced trend of change. In the text, this IC peak is denoted as P_IC.

2.5 Selection of Health Features
According to the aforementioned methods, battery characteristic parameters are extracted

through DTV analysis and IC analysis, resulting in the peaks, valleys, and their corresponding voltage
positions from the DTV curve, as well as the peaks from the IC curve. To select suitable HF, the
Pearson correlation coefficient is used to measure the degree of correlation between HF and capacity.
The definition of Pearson analysis is shown in Eq. (4):

R =
∑n

i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)
2
√∑n

i=1 (yi − y)
2

(4)

In the equation, R is the Pearson correlation coefficient, n is the total number of samples, xi

represents the health features, yi represents the battery SOH, and x, y are the mean values of the health
features and SOH, respectively. Pearson correlation analysis quantifies the linear relationship between
two variables, with its values ranging from [−1, 1]. The closer the absolute value approaches 1, the
stronger the correlation between the variables. Table 1 presents the correlation coefficients between
each feature and SOH.

As presented in Table 1, the absolute Pearson correlation coefficients for the health features
PP_DTV and P_IC across batteries Cell1 to Cell8 are consistently greater than 0.9, indicating a high
degree of correlation. This demonstrates that PP_DTV and P_IC can be used to characterize battery
aging and are suitable for SOH estimation. Therefore, this paper proposes a feature combination based
on DTV analysis and IC analysis for the estimation of battery SOH. The effectiveness of the proposed
feature combination will be validated through the experimental testing phase of this study.
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Table 1: Correlation analysis of different HFs

V_DTV PV_DTV P_DTV PP_DTV P_IC

Cell1 −0.5857 0.7105 0.7407 −0.96192 0.9687
Cell2 −0.6529 0.0477 0.8644 −0.9598 0.9486
Cell3 −0.5488 0.7070 0.8198 −0.9393 0.9729
Cell4 −0.5145 0.8409 0.9274 −0.9102 0.9817
Cell5 −0.5281 0.0637 0.6358 −0.9574 0.9034
Cell6 −0.5561 0.7530 0.8589 −0.9299 0.9788
Cell7 −0.3892 −0.2350 0.7973 −0.9676 0.9748
Cell8 −0.7867 0.7609 0.8783 −0.9654 0.9713

3 SOH Estimation Method

Data-driven methods for SOH estimation mainly rely on machine learning algorithms to create a
nonlinear mapping between HFs and the battery’s SOH. The trained predictive model is then used to
estimate SOH.

3.1 Elman Neural Network
The Elman neural network, a dynamic recurrent neural network, was first introduced in 1990

to address challenges in speech processing [26]. It is a classic example of a local recurrent network,
consisting of four main layers: input, hidden, context, and output layers, as illustrated in Fig. 6. In
contrast to the BP neural network, the Elman network includes a context layer, which functions as
a one-step delay operator to facilitate memory. This context layer receives feedback from the hidden
layer, with each hidden node corresponding to a node in the context layer. The context layer stores the
hidden layer’s previous state and integrates it with the current input to form the input for the hidden
layer, essentially providing state feedback. The hidden layer’s transfer function is still a nonlinear
function, most commonly a Sigmoid function. With its enhanced computational power compared
to feedforward neural networks, the Elman network is capable of addressing more complex dynamic
problems, including rapid optimization tasks.

Nonlinear state space representation of the Elman network is as shown in Eq. (5):

y (k) = g (w3x (k)) (5)

The neurons in the hidden layer can be represented as Eq. (6):

x (k) = f (w1xc (k) + w2 (u (k − 1))) (6)

The hidden layer’s output is fed back into its input via the delay and storage mechanism of the
subsequent layer, establishing a recurrent connection, resulting in the following relationship being
expressed in Eq. (7):

xc (k) = x (k − 1) (7)
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Figure 6: Elman network structure

In the equation, y denotes the output node vector, x represents the hidden layer node unit vector, u
stands for the input vector, xc represents the feedback state vector, w3 signifies the connection weights
from the hidden layer to the output layer, w2 denotes the connection weights from the input layer to
the hidden layer, and w1 denotes the weights from the context layer to the hidden layer.

The traditional Elman neural network frequently demonstrates limited robustness, primarily
attributable to the stochastic nature of its initial weights and thresholds. This randomness can result in
slower convergence rates and a higher probability of the model becoming ensnared in local optima. To
improve both the predictive accuracy and stability of the Elman neural network model, it is essential
to optimize these initial weights and thresholds.

3.2 The Sparrow Search Algorithm
The SSA is an intelligent optimization method inspired by the foraging and anti-predatory

behaviors of sparrows. It offers several advantages, including rapid convergence speed and a broad
search capability. The core principle of the algorithm involves simulating the predation and anti-
predation behaviors of a sparrow population by dividing it into discoverers and joiners, where the
sparrows with better fitness are considered discoverers [27]. The process of building the SSA is shown
below.

The initialization of the sparrow population position is first carried out as shown in Eq. (8):

X =

⎡
⎢⎢⎣

x1
1 x2

1 · · · xd
1

x1
2 x2

2 · · · xd
2· · · · · · · · · · · ·

x1
n x2

n · · · xd
n

⎤
⎥⎥⎦ (8)

In this context, d signifies the dimensionality of the variables requiring optimization, specifically
the initial weights and thresholds of the Elman neural network in this study. Meanwhile, n refers to the
total number of individuals within the sparrow population. The fitness of all sparrows can be expressed
as shown in Eq. (9):
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Fx =

⎡
⎢⎢⎢⎢⎣

f
(
x1

1 x2
1 · · · xd

1

)
f
(
x1

2 x2
2 · · · xd

2

)
· · ·
f
(
x1

n x2
n · · · xd

n

)

⎤
⎥⎥⎥⎥⎦ (9)

The f in Eq. (9) denotes the value of population fitness.

As mentioned in the previous section, we divided the sparrow population into discoverers and
joiners, and the higher the fitness value of the former, the easier it is to obtain food, because the duty
of the discoverers is not only to make food available for themselves, but also need to provide other
sparrow individuals can forage area and foraging direction. Building on this concept, the discoverer
possesses a more extensive foraging area than the follower. The process of iterative updating allows
for the location of the discoverer to be represented by Eq. (10):

X t+1
i,j =

⎧⎨
⎩Xi,j • exp

(
− i

α • T

)
, R2 < ST

Xi,j + Q • L, R2 ≥ ST
(10)

In the Eq. (10), t represents the current iteration number; j = 1, 2, . . . , d; X d
i,j represents the

information of the i-th sparrow in the j-th dimension at the t-th iteration. T represents the maximum
number of iterations; α ∈ (0, 1], is a random number; R2 ∈ [0, 1] and ST ∈ [0.5, 1] represent the
warning value and safety value, respectively; Q is a random number following a normal distribution;
L represents a 1xd matrix where all elements are 1. When R2 < ST , at this point the surrounding area
is safe and a vast foraging area is found. When R2 ≥ ST , danger exists around the foraging area and
all individuals of the population move to the next safe area to reduce the risk of predation.

Followers base their foraging activities on the directional cues provided by the discoverers, with
their position updates governed by Eq. (11):

X t+1
i,j =

⎧⎪⎨
⎪⎩

Q • exp
(

Xw − X t
i,j

i2

)
, i >

n
2

X t+1
p + ∣∣Xi,j − X t+1

p

∣∣ • A+ • L, i ≤ n
2

(11)

In the formula, X p represents the current optimal position occupied by the explorer, and X w

denotes the current globally worst position. A is a 1xd order matrix, with each element randomly

assigned a value of 1 or −1, A+ = AT(AAT)−1. When i >
n
2

, this indicates that the ith individual

sparrow in the population is less well adapted compared to the others, indicating that this sparrow is
not locating any food and thus must relocate to other areas in search of sustenance.

During the experiment, 10% to 20% of sparrows became aware of danger and avoided it, and
their initial positions were randomly generated within the population. The formula for updating their
position is as Eq. (12):

X t+1
i,j =

⎧⎪⎪⎨
⎪⎪⎩

X t
p + β • ∣∣X t

i,j − X t
p

∣∣ , fi > fg

X t
i,j + K

( ∣∣X t
i,j − X t

w

∣∣
(fi − fw) + ε

)
, fi = fg

(12)
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In the formula, f i is the fitness value of the i-th sparrow; f g and f w are respectively the best and
worst fitness values within the global scope; X p and X w are respectively the fitness values of the global
best and worst solutions; β and K are step size control parameters. fi > fg means that the sparrows
at the edge of the population feel the danger and are vulnerable to other predators and need to move
their position. And fi = fg means that the sparrows in the middle of the population realize that there
are dangers around, and these individuals move to other companions to reduce the risk of predation.

From the above analysis, the SSA model can be constructed to optimize the Elman neural network,
following the procedure outlined in Fig. 7.

Start

Initialize the sparrow population and set the 
warning threshold, proportion of discoverers, 

and proportion of vigilantes

Optimize the selection of network parameters 
using the SSA

Check if the termination 
criteria of the SSA are met

End

Yes

Update the positions of discoverers, joiners, and 
vigilantes

No

Define the network parameters to be optimized 
and preset the dimensionality of each individual

Initialize the network architecture

Output the optimal position of sparrows and 
determine the optimal neural network 

architecture.

Figure 7: SSA algorithm flowchart

3.3 SSA-Elman Based SOH Estimation Methodology
Similar to the BP network, the Elman neural network also relies on gradient descent, which has

limitations such as slow convergence and vulnerability to local minima, making it challenging to
achieve global optimization during neural network training. Typically, when the Elman network is used
for predictive tasks, the initial weights and thresholds are set using pseudo-random numbers, resulting
in unstable performance and affecting prediction accuracy. To address this, the SSA is employed to
optimize the Elman network’s initial weights and thresholds, thereby enhancing prediction accuracy.
The fitness function is formulated as the mean absolute error between the estimated and actual
values of the lithium batteries. Fig. 8 presents the overall experimental framework of the SSA-Elman-
based SOH estimation method for lithium-ion batteries, which is divided into three main parts: data
processing, model construction, and testing and analysis.
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Training set Test set

Battery dataset

Determine the structure of 
the Elman neural network

Initialising the parameters of 
the Elman neural network
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optimal individual

Update individual positions 
based on foraging and anti-

predation behaviors

Are the requirements met?Obtain optimal weights 
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Feature extraction based on 
DTV and ICA
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Randomly select sentinel 
individuals and update their 
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Data processing

Construction and 
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Predictive Models

Testing and analysis

SSA Op�m
iza�on M

ethods

Elm
an neural netw

ork
Obtain the optimized Elman 

neural network 
prediction model

Figure 8: Diagram of the experimental scheme of the SOH estimation method based on SSA-Elman
algorithm

The process can be divided into the following 5 steps:

(1) The dataset was identified and voltage features and temperature features were extracted using
the DTV and ICA identified in Chapter 2, and then the battery data was divided into two parts: the
training set and the test set.

(2) Based on the training set in Step 1, determine the structure of the Elman neural network, and
initialize parameters such as weights, thresholds, number of iterations, and learning rate to construct
the Elman neural network.



EE, 2025, vol.122, no.1 215

(3) Set the individual parameters of the sparrow population, specifically the parameters of the
maximum number of iterations of the population, the size of the population, the share of discoverers
in the population, the share of followers, and the maximum number of trainings of the algorithm.

(4) Compute the fitness of the initial sparrow individuals in the population and begin the iterative
training cycle. The SSA algorithm calculates the population fitness value, continuously updating the
current optimal individual. Throughout the process, the sparrow population performs foraging and
anti-predation behaviors. The value of the best individual is compared and updated at each iteration.
Once the maximum number of iterations is reached or the optimal solution during the process is
smaller than the predefined threshold, the system evaluates whether the optimal solution has been
achieved, and if so, terminates the loop early.

(5) The optimal solution obtained in Step 4 is brought in as parameters such as the optimal weight
threshold required for the Elman network model to construct the optimal SOH prediction model, and
the optimized prediction model is used for online estimation of battery SOH.

Among the parameters of the initial sparrow algorithm after many experiments and experiences
were set as follows: the maximum number of iterations of the population was 30, the number of
sparrows was set to 20, the weight of sparrow scouts was 0.2, the weight of spotters was 0.8, and
the value of the population warning was 0.7.

4 Results and Analysis

The Oxford battery dataset is utilized to validate the feasibility and accuracy of the proposed SOH
estimation method. To perform a quantitative evaluation, Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) are employed, as presented in Eqs. (13) and (14). In these equations, xi

and xi
′ denote the actual and estimated SOH values, respectively, while N represents the total number

of samples.

MAE = 1
N

N∑
i=1

∣∣xi − x
′
i

∣∣ (13)

RMSE =
√√√√ 1

N

(
N∑

i=1

(
xi − x′

i

)2

)
(14)

Based on Table 1, it is evident that the PP_DTV of the DTV curve exhibits a strong correlation
with battery SOH, with Pearson correlation coefficients consistently exceeding 0.91 in absolute terms.
The experimental design is structured as follows: the first 50 cycles of data from Cell1 are utilized as
the training set to develop the prediction model, while the remaining data from Cell1, along with data
from the other batteries, serve as the testing set for evaluation. Health features are extracted from the
selected experimental data using the DTV and IC feature extraction methods described in Chapter 2.
Following the data partitioning, the prediction model is trained on the training set and tested on the
testing set. The results of SOH estimation using various neural networks, including the SSA-Elman
model proposed in this study, are shown in Fig. 9, with the corresponding MAE and RMSE values
provided in Table 2. Fig. 9 demonstrates that the SSA optimization of Elman’s initial weights and
thresholds effectively mitigates the problem of local minima during Elman’s estimation, resulting in
improved prediction accuracy. The alignment between the estimated SOH values from SSA-Elman
and the actual SOH is notably precise.
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Figure 9: Predicted results from different methods
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Table 2: MAE and RMSE calculation results

Battery BP LSSVM ELMAN SSA-ELMAN

MAE RMSE MAE RMSE MAE MAE RMSE MAE

Cell1 0.0232 0.0259 0.0267 0.0298 Cell1 0.0232 0.0259 0.0267
Cell2 0.0260 0.0350 0.0258 0.0389 Cell2 0.0260 0.0350 0.0258
Cell3 0.0143 0.0203 0.0146 0.0206 Cell3 0.0143 0.0203 0.0146
Cell4 0.0158 0.0188 0.0062 0.0085 Cell4 0.0158 0.0188 0.0062
Cell5 0.0152 0.0566 0.0090 0.0311 Cell5 0.0152 0.0566 0.0090
Cell6 0.0063 0.0131 0.0045 0.0067 Cell6 0.0063 0.0131 0.0045
Cell7 0.0087 0.0133 0.0089 0.0136 Cell7 0.0087 0.0133 0.0089
Cell8 0.0153 0.0208 0.0169 0.0255 Cell8 0.0153 0.0208 0.0169

Table 2 shows the errors for each battery. Except for Cell5, using different methods based on the
features proposed in this paper, the SOH estimation errors in terms of MAE do not exceed 2.7% and
RMSE does not exceed 3.9%. Moreover, the SOH estimation errors using the SSA-ELMAN method
are less than 0.9% for MAE and less than 1.4% for RMSE. This indicates that the proposed PP_DTV
and P_IC feature combination can effectively reflect the aging status of batteries, including the sudden
drop in SOH observed at the end of testing for Cell5 due to a fault. For SSA-ELMAN, the estimation
errors are less than 0.3% for MAE and less than 0.35% for RMSE, demonstrating that the SOH
estimation method based on the proposed features and SSA-Elman can achieve highly accurate SOH
estimation results.

5 Conclusion

This study proposes a battery SOH estimation method based on the fusion of DTV curve
features and IC curve features using SSA-Elman. Firstly, health features are extracted: PP_DTV, which
considers temperature factors, is extracted through DTV analysis, and P_IC, which considers voltage
factors, is extracted through IC analysis. The Pearson correlation analysis is then used to analyze the
correlation between each feature and SOH.

Next, the weights and thresholds of the Elman neural network are optimized using the SSA, and
the estimation results based on SSA-Elman are compared and analyzed against results from different
neural networks. The model prediction results indicate that with consideration of temperature factors,
the model achieves an estimation error of MAE less than 0.9% and RMSE less than 1.4%. This
represents an improvement in accuracy compared to other models. Additionally, the SSA algorithm
optimizes the Elman neural network to address issues such as susceptibility to local minima, slow
convergence, and difficulty in selecting correct initial weights and thresholds.

The above analysis demonstrates the advantages and feasibility of the model proposed in this
study. Accurate battery aging estimation for BMS can be provided by the proposed method in
this study. Meanwhile, the on-board BMS system emphasizes on real-time, and the present method
is an online estimation method. From these two aspects, this study has some practical value for
the development or operation of BMS, which is important for prolonging battery life, predicting
maintenance needs and ensuring safe operation. However, this study also has some limitations,
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mainly because lithium-ion batteries are evolving from single cells to more modular and systematic
configurations. Estimating the SOH in battery pack systems will be the focus of our future research.
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