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On the Nature and Structure of Possible Three-dimensional Steady Flows in
Closed and Open Parallelepipedic and Cubical Containers under Different

Heating Conditions and Driving Forces.

Marcello Lappa1,2

Abstract: Possible natural transport mechanisms in
cubical and shallow cavities with different heating con-
ditions (from below or from the side) are investigated
by means of numerical solution of the non-linear model
equations and multiprocessor computations. Attention is
focused on a variety of three-dimensional steady effects
that can arise in such configurations in the case of low-
Pr liquids (silicon melt) even for relatively small values
of the temperature gradient due to localized boundary ef-
fects and/or true instabilities of the flow. Such aspects
are still poorly known or completely ignored owing to
the fact that most of the existing experiments focused on
the subsequent onset of oscillatory flow, or on the case
of transparent (Pr � 1) liquids. The influence of both
buoyancy and surface tension forces is considered. The
role played by the geometrical constraints and degrees
of freedom in determining the three-dimensional struc-
ture of the flow field is discussed. Some effort is devoted
to elucidate the results within the framework of existing
(state-of-the-art) theories and to illustrate the deviation
of results pertaining to a real three-dimensional geome-
try with respect to earlier two-dimensional models.

keyword: Buoyancy convection, Marangoni flow.

1 Introduction

1.1 Fundamental thermal problems in fluid-
mechanics

Natural convection in enclosures and cavities represents
a canonical subject of investigation in fluid-mechanics
(it has also extensive background application in many
branches of materials science). This topic exhibits an
outstanding theoretical kinship with the complex of prob-
lems that come under the heading of “non-linear dy-
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namics”. It, in fact, can be regarded as a good terrain
for testing the current ability of fundamental researchers
to predict the behavior of complex systems governed
by model equations that contain non linear terms in
themselves. These flows have been widely studied be-
cause of their fundamental interest as possible fascinat-
ing models for pattern formation and/or evolution (e.g.,
Le Quere, 1991); despite the apparent simplicity of the
domain where fluid motion arises, an astonishing vari-
ety of stages of evolution and final steady or oscillatory
regimes is possible; furthermore, discerning of the rele-
vant mechanisms at the basis of flow instabilities in these
basic geometrical models is a necessary pre-requisite of
any attempt devoted to the precise definition of operating
parameters that may provide a stable flow pattern under
required technological conditions and/or to the introduc-
tion of possible strategies for control of convection.

Obviously, a relevant part of the problem is also rep-
resented by the thermal and kinematic conditions along
the boundary of the physical domain. They complement
the basic partial differential balance equations responsi-
ble for the non-linear behavior discussed above, push-
ing them towards different possible evolutionary progress
and the selection of different fundamental mechanisms
of convection. Along these lines a first categorization
of the possible problems of interest can be introduced
as follows: (1) No-slip walls with isothermal horizon-
tal boundaries and adiabatic vertical sides, (2) No-slip
walls with adiabatic horizontal boundaries and isother-
mal (differentially heated) vertical sides, (3) Free adia-
batic upper surface and no-slip adiabatic lower bound-
ary with isothermal (differentially heated) vertical sides,
(4) Free upper surface with adiabatic vertical sides and
isothermal (heated) lower boundary. Case (1) falls into
the category of phenomena coming under the heading of
Rayleigh-Bènard convection. This type of flow is a ba-
sic problem in many industrial heat-transfer systems. An
intriguing question is raised by the pattern selection pro-
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cess upon which this system evolves through time to a
final state.

”The-heated-from-the-side” problem (cases (2) and (3))
has also received much attention over the years. Unlike
the heated-from-the-bottom case, the motivation of such
an interest is strictly of an application-oriented nature.
It is mainly related to the manufacture of bulk semicon-
ductor crystals. The simplest geometry among several
crystal growth technologies has, in fact, the horizontal
configuration of the Bridgman method, where the con-
vective flow is induced by the horizontal component of
the temperature gradient.

Cases (3) and (4) involve the presence of an additional
driving force that is basically a gravity-independent phe-
nomenon. If a nonisothermal free surface is involved
in the considered problem, then surface-tension forces
∇Sσ (∇Sderivative tangential to the interface, σ surface
tension) arise that must be balanced by viscous stresses
in the liquid. Such a condition enforces a flow by tan-
gential variation of the surface tension (the so-called
Marangoni convection). Prior to the space program, this
phenomenon had been ignored since on the ground it
is often overshadowed by the convective flow of grav-
itational origin. In microgravity, the reduced level of
buoyancy-driven convection allowed Marangoni convec-
tion to become obvious. Once it became recognized,
however, it was found to be significant in some Earth-
based processes as well. Like convection induced by
buoyancy forces, it can be an important natural trans-
port mechanism in many hydrodynamic systems (where
a free liquid/gas or liquid/liquid interface is involved in
the thermal process). In particular, case (4) falls into the
category of classical phenomena coming under the head-
ing of Marangoni-Bènard convection.

When the temperature gradient acting on the system (∆T)
reaches a certain critical value, these basic types of con-
vection can undergo transition to a variety of different
complex scenarios.

The most fundamental stability analyses of convection
flows carried out in the past considered fluid layers
of infinite horizontal extent; see, e.g., Busse (1978),
Hart (1983), Smith and Davis (1983) and Chandrasekhar
(1981) for boundary and heating conditions correspond-
ing to cases (1), (2), (3) and (4), respectively. Because of
the light shed on the problem by the subsequent studies
(see, e.g., the list of references in Lappa, 2005), however,
most of the scientific community is currently aware of
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Figure 1 : Sketch of the cavity and of the possible heat-
ing directions

the importance that the effective finite geometry of the
container may have on the threshold values and observed
flow patterns. In many cases, geometrical constraints and
the related possible multiplicity of the solutions are es-
sential ingredients of these flows (Gelfgat, 1999). The
disturbance wave number is selected out of the full spec-
trum of disturbances because the single- or multicellular
convective structure is closed in a special zone geome-
try. In many cases, the selection rule is given by the con-
straint that the wavelength must somewhat be an aliquot
of the finite extension of the system.

1.2 Current status, possible improvements and exten-
sions

Many of the existing numerical/experimental studies
were carried out for very elongated geometries designed
to somewhat mimic the conditions corresponding to the
landmark stability analyses cited before (pertaining to
the aforementioned unbounded infinite layers). Only a
few of them considered systems of very limited extent
and many of these were based on two-dimensional (2D)
models; this also means that there is still an outstand-
ing lack of information for the case of three-dimensional
(3D) domains. Factors like the high computational re-
sources required by the classical algorithms used for
these types of problem, the lack of not expensive pow-
erful processors and, more recently, the difficulties aris-
ing from the implementation of multi-processor routines
(parallel computation) have all combined to limit investi-
gations into the fundamental three-dimensional structure
of these flows.

It is thus on these unresolved issues that the present
analysis is mainly focused upon. A 3D cubical con-
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Table 1 : Physical properties of silicon melt
Melting point temperature Tm [K] 1685

Density ρ [gr/cm3] 2.42
Thermal diffusivity α [cm2/s] 2.44×10−1

Kinematic viscosity ν [cm2/s] 2.45×10−3

Prandtl number 0.01
Thermal conductivity λ [W/cmK] 0.64

Surface tension σ[dyne/cm] 7.33×102

σT [dyne/cmK] 1×10−1

tainer/cavity is selected as the relevant reference case ow-
ing to the presence of relatively close boundaries along
all the possible directions (x,y and z). In particular, em-
phasis is given to the role played by the presence of solid
constraints along the third direction z (assumed to be in-
finite in two-dimensional studies). Shallow enclosures
(3×1×3 and 4×1×4) are also investigated (Fig. 1) since
their two-dimensional counterparts have been the subject
of tremendous interest over past years (mainly as possi-
ble benchmarks configurations). Silicon melt (Pr=0.01)
is considered as the model liquid (see Table 1) due to its
technological importance and since experimental avail-
able results mainly concern the case of organic transpar-
ent liquids; these fluids are characterized by very large
values of the Prandtl number (Pr�1) and, as summarized
in the recent overview of Lappa (2005), tend to behave, in
many circumstances, in a very different way with respect
to melts of semiconductor materials and liquid metals
(the instabilities affecting the related flow often exhibit
a very different intrinsic physical nature).

The present analysis, in particular, focuses on the dif-
ferent fluid-dynamic mechanisms (and related ”ranges”
of applicability) responsible for steady three-dimensional
flow and related bifurcations. The few available ex-
perimental/numerical three-dimensional studies, in fact,
were somewhat limited to the onset of oscillatory con-
vection owing to its relevance to well-known techno-
logical processes (e.g., the growth of bulk crystals from
the melt) and/or owing to its intrinsic fascinating nature
within the context of fundamental studies dealing with
problems that come under the heading ”route to chaos”.
For these reasons this article is devoted to a critical and
concise analysis of the steady 3D effects. Some effort is
provided to illustrate their genesis, the governing nondi-
mensional parameters, the scaling properties, their struc-
ture and, in particular, the possible bifurcations to dif-

ferent patterns of symmetry in space (microgravity en-
vironment) as well as on the ground. Theoretical argu-
ments introduced over the years by investigators to ex-
plain the observed phenomena are used, enriched and fed
with new material. Some effort is also provided to clar-
ify still unresolved controversies pertaining to the physi-
cal nature of the dominating driving force responsible for
possible asymmetric convection in the various thermal
systems under investigation. Furthermore, the 3D results
are compared with those arising from 2D computations
to assess the role played by geometrical constraints in
determining edge effects, the overall process of selection
of the disturbances and the related symmetries.

2 Physical and mathematical model

2.1 Governing equations and boundary conditions

In the presence of steady gravity (on the ground condi-
tions g=go or steady acceleration levels on micrograv-
ity platforms) the velocity and temperature can be de-
termined by the differential balance equations (for mass,
momentum, and energy).

Following the usual Boussinesq approximation for in-
compressible fluids, the physical properties are assumed
constant, except for the density ρ in the generation term
in the momentum balance equation, which is assumed to
be a linear function of temperature:

ρ = ρ0 [1−βT (T −T0)] (1)

where βT is the thermal expansion coefficients, and To

a reference value for the temperature. In other words,
the continuity equation is reduced to the vanishing of the
divergence of the velocity field, and variations of the den-
sity are ignored in the momentum equation, except inso-
far as they give rise to a gravitational force.

In the case of thermal problems usually the nondimen-
sional form results from scaling the lengths by a refer-
ence distance (L, for the present case it is the height of the
computational domain) and the velocity V by the energy
diffusion velocity Vα = α/L (α is the thermal diffusivity);
the scales for time and pressure p are, respectively, L2/α
and ρoα2/L2. The temperature, measured with respect to
To, is scaled by ∆T. This approach leads to:

∇ ·V = 0 (2)

∂V
∂t

= −∇p−∇ · [VV ]+Pr ∇2V +Pr RaT ig (3)
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∂T
∂t

= −∇ · [VT ]+∇2T (4)

and the relevant nondimensional numbers are the well-
known Prandtl and Rayleigh numbers (Gr is the Grashof
number):

Pr =
ν
α

(5)

Gr =
gβT ∆T L3

ν2 (6a)

Ra = Gr Pr =
gβT ∆T L3

να
(6b)

ν is the kinematic viscosity.

The surface tension σ for many cases of practical interest
exhibits a linear dependence on the temperature:

σ = σo −σT (T −To) (7)

where σo is the surface tension for T=To, σT =-dσ/dT >
0 (σ is a decreasing function of temperature). If a non-
isothermal free surface is involved in the considered pro-
cess, then surface-tension forces arise that must be bal-
anced by viscous stresses in the liquid S·n (n unit vector
perpendicular to the free interface, S stress tensor). This
balance in nondimensional form reads:

∂V
∂n

= Ma∇ST (8)

where

Ma =
σT ∆T L

µα
= RePr (9a)

Re =
σT ∆TL

ρν2 (9b)

Ma is the so-called Marangoni number (Re is the related
Reynolds number); µ is the dynamic viscosity. Since the
capillary number (Ca = σT ∆T/σo is very small for all
the conditions considered in the present work (Ca � 1,
see Table 1) dynamic surface deformation can be ne-
glected and the melt/air interface is assumed to be flat
and undeformable.

2.2 The numerical method

According to the well-known SMAC method (see e.g.,
Lappa 2002, 2004a) the computation of the velocity field
at each time step is split into two substeps.

In the first, an approximate non-solenoidal velocity field
V∗ which corresponds to the correct vorticity of the field
is computed at time (n+1) neglecting the pressure gradi-
ent term in the momentum eq. (3). In the second substep,
the pressure field is computed by solving the equation re-
sulting from the divergence of the momentum equation
taking into account eq. (2):

∇2 pn =
1
∆t

∇ ·V ∗ (10)

For further details on the numerical method see, e.g.,
Lappa (2002). On the physical boundaries the ∂p/∂n = 0
condition is imposed.

Finally, the correct solenoidal velocity field is updated
using the computed pressure field to account for continu-
ity:

V n+1 = V ∗ −∆t∇pn (11)

The temperature distribution at time (n + 1) is obtained
from eq. (4) after the velocity calculation.

Multiprocessor (Parallel) algorithms are used due to the
enormous time required for the computations. Within
such a context, the problem is split in two problems, one
parabolic and the other elliptic. A parallel algorithm, ex-
plicit in time, is utilized to solve the parabolic equations
(momentum and energy equations). A parallel multisplit-
ting kernel is introduced for the solution of the pseudo-
pressure elliptic equation, representing the most time-
consuming part of the algorithm. A grid-partition strat-
egy is used in the parallel implementations of both the
parabolic equations and the multisplitting elliptic kernel.
A Message Passing Interface (MPI) is coded for inter-
processor communications. For the sake of brevity the
parallel implementation of this method is not described
in detail. For further details on parallel strategies see,
e.g., Lappa (2004a) and Lappa (1997).

2.3 Validation and grid refinement study

Validation of the present algorithm has been obtained
through quantitative comparison with other recent three-
dimensional and steady solutions available in the litera-
ture (in Tables 2 and 3, u,v and w represent the velocity
components along x,y and z, respectively). In particular,
the numerical simulations of Saβ et al. (1995) and of Hof
et al. (2004) have been considered as a reference case for
what concerns the computation of Marangoni flows and
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Table 2 : Validation and grid refinement study,
Marangoni convection in cubical cavity, Pr=1, Ma=100,
u and T at x = 0.5, z = 0.5,y = 1

Grid u T
21×21×21 11.15 0.6279
31×31×31 11.058 0.6283
41×41×41 11.027 0.6284

Saβ et al. (1995) 11.12 0.620
(32×32×32)

Table 3a: Validation, comparison with the results of Hof
et al. (2004), buoyancy convection in laterally heated
parallelepipedic cavity (height = 1, length = 5, width =
1.3), Pr=0.0188, Ra=705.

Grid vmax

30×14×16 0.5482
40×18×16 0.5532

Hof et al. (2004) (40×18×16) 0.5386

Table 3b: Grid Refinement study, buoyancy convection
in laterally heated cubical cavity, Pr=0.01, Ra=103.

Grid vmax wmax

21×21×21 2.075 0.483
31×31×31 2.144 0.428
41×41×41 2.166 0.416

of buoyancy-driven convection, respectively. The simu-
lations carried out for a cubical cavity filled with a Pr=1
liquid and subjected to Ma=100, prove that agreement
with the results of Saβ et al. (1995) is obtained within
1% (see Table 2). Table 2 also shows the grid refinement
study carried out for the same conditions, from which it
is clear that mesh independence can be achieved for a
31×31×31 resolution.

The present results in the case of steady pure buoyancy
convection are listed in Table 3a. They coincide within a
very small difference (3 %) with those given in the very
recent analysis of Hof et al. (2004) (parallelepipedic en-
closure with Lx = 5,Ly = 1,Lz = 1.3 filled with gallium
and Ra=705). The grid independence study for the con-
figuration of interest in the present work (i.e. the differ-
entially heated cubical cavity filled with silicon melt) is
given in Table 3b.

According to these preliminary convergence studies it

seems that, for relatively small values of the Prandtl
number and of the governing characteristic numbers,
grid-independence can be easily obtained with a mesh
31×31×31. However, for the sake of high accuracy, all
the computations discussed hereafter for the cubical en-
closure have been obtained for 51×51×51 grids (this res-
olution is also somewhat necessary when trying to cap-
ture the behavior of a cubical enclosure heated from be-
low at values of the Rayleigh number strongly above the
first primary threshold, as also discussed in Puigjaner
et al., 2004). The number of computational points has
been reduced to 51×21×51 for the shallow cavities. The
2D counterpart of the code has been repeatedly validated
through comparison with the results of the GAMM work-
shop. Second order accurate upwind and central differ-
ence schemes have been used for the treatment of the
convective and diffusive terms, respectively, in both mo-
mentum and energy equations. Thermal diffusive condi-
tions and fluid at rest have been assumed as initial condi-
tions for all the computations.

3 Results

3.1 Rayleigh-Bènard convection

3.1.1 Historical background

By means of studies that considered infinite systems, i.e.
the stability of the quiescent state of nonconfined fluid
layers heated from below, it is known that the onset of
convection is caused by two-dimensional perturbations
of the diffusive basic state and that it undergoes instabil-
ity to couples of counter rotating convective rolls with
aspect ratio (ratio of the couple-width to the depth of
the layer) Ac

∼=2. Currently, however, as mentioned in
the introduction, it is well known that if systems con-
fined laterally by rigid sidewalls are considered, even
in containers of large horizontal dimensions, the lateral
walls can have a significant influence on the flow pat-
tern that develops when the Rayleigh number exceeds its
critical value. Thus results for the corresponding infi-
nite layer cannot, in general, be used to make predic-
tions about either the detailed structure or the stability
of the roll pattern in practical situations. There are sev-
eral modes of the most dangerous perturbation which re-
place each other when the aspect ratio A (ratio of the
horizontal extension and of the height of the finite two-
dimensional enclosure) is varied. Within this context it
should also be mentioned that the increase of the aspect
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Figure 2 : Two-dimensional rectangular container heated
from below and cooled from above with adiabatic
sidewalls (Pr=0.01, silicon, Rayleigh-Bènard problem),
Ra=3×103 (Ra based on the depth of the box): (a) A= 3,
(b) A=4.

ratio A generally results in the increase of the number
of two-dimensional rolls within the finite-size rectangu-
lar container (see the excellent investigation of Gelfgat
(1999) for Pr=0 and Pr=0.15). Some results along these
lines for the present case of silicon melt (Pr=0.01) are
shown in Figs. 2.

3.1.2 Present contribution

When turning to the three-dimensional problem, there are
different aspects that would deserve attention. First of
all, of course, the analysis of the sensitivity that the final
state of the system can exhibit to the presence of limiting
sidewalls along the third direction. However, it should be
kept in mind that in the specific case of Rayleigh-Bènard
convection, as anticipated in the introduction, the possi-
ble transitional regimes during the evolutionary progress
that leads to the aforementioned final state, also form a
relevant and important part of the problem. This aspect,
in particular is very poorly known in the case of liquid
metals and often the subject of controversies in the liter-
ature.

Concerning the first subject of study, interesting insights
into the physics of the problem can be obtained by com-
paring the fields illustrated in Figs.2 with corresponding
3D results. Of course such a comparison makes sense
when the domain extension along z is comparable to its
extension along x (Lz/Lx ≤O(1), whereas in the oppo-
site case of Lz/Lx >O(1), 2D results can be regarded as a
good approximation of the real flow.
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Figure 3 : Rayleigh-Bènard convection in an enclosure
with Lx = 3,Ly = 1,Lz = 3 (Pr=0.01, Ra=3500, steady
state): a) Projection of the velocity field in the horizontal
midplane; b) Vertical velocity contours in the horizon-
tal midplane; c) Projection of the velocity field in the xy
midplane.

For the enclosure 3×1×3, a certain apparent degree of
2D behavior can be highlighted for a core zone appar-
ently not affected by edge effects (Fig. 3c). However,
Figs. 3a and 3b clearly prove that even if the z-extension
is quite large, the flow tends to exhibit a fully three-
dimensional structure. After an initial stage, the ensuing
steady 3D pattern, in fact, is featured by the presence of
parallel convection rolls with a diagonal prevailing direc-
tion.
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For the 3-D geometry, similarly to the 2-D idealized case,
there are several modes of the most dangerous pertur-
bation that replace each other when the aspect ratio is
varied. However, the spectrum of possible perturbations
is more complicated (Gelfgat, 1999). The larger vari-
ety of perturbations is obviously caused by the three-
dimensional geometry. Within such a context, the prob-
lem becomes even more interesting if a cubical box is
considered. In fact, in such a case, an additional com-
plexity is caused by the variety of the symmetries of the
system.

Because of the intrinsic symmetry of this configuration
the Rayleigh-Bènard flow tends to produce state solu-
tions with manifold symmetries. As the Rayleigh num-
ber is increased, new possible patterns of symmetry are
prone to occur. Furthermore, as mentioned in the forego-
ing discussion, the delicate evolutionary route to a final
steady state can be coupled to significant and intriguing
adjustments in the roll pattern.

According to the analysis of Puigjaner et al. (2004) (car-
ried out in the case of a model fluid with Pr=0.710 (air)),
the critical Rayleigh number for the case of a cubical box
is Racr=3389; such a larger value with respect to the cor-
responding two-dimensional (square) case Racr

∼= 2585
(Luijkx and Platten, 1981) obviously follows from the
presence of solid walls along the third coordinate. It is
also worthwhile to stress that these threshold values of
the Rayleigh number are affected by the presence of solid
constraints but do not depend on the model liquid used
for the experiments.

The present results for Pr=0.01 illustrate that among all
the combinations, only a stable single x or z roll is possi-
ble in the cubical configuration whereas, unlike the cases
already discussed for the 3×1×3 container, the diagonal
modes x±z tend to be unstable, i.e. only appear as transi-
tional stages of evolution. Similar conclusions were also
reported by Puigjaner et al. (2004) for Pr=0.710.

Some examples of the possible patterns of symmetry and
their ranges of existence in the case of silicon melt are
shown in Figs. 4-7. Following Puigjaner et al. (2004)
they are categorized as Si modes with the subscript ”i”=
1,2,. . . ,n, and have been obtained as bifurcations from an
initial diffusive state. The possible stable flow pattern (S1

shown in Fig.4), that occurs as a final steady mode of the
system in a relatively wide range of the Rayleigh num-
ber (Racr <Ra< 6×104), is formed by one x roll. The
S2 state shown in Fig.5 appears as a transitional solution

g

Heated wall

X

Z

Figure 4 : Vertical velocity contours in the horizontal
midplane of a cubical enclosure heated from below with
adiabatic vertical walls; pattern of symmetry S1 (Silicon,
Pr=0.01, Ra=5×103, steady state).

along the evolutionary process that leads to S1. It occurs
in a limited range of the Rayleigh number (Ra<15000).
This S2 solution can be essentially obtained by subtract-
ing one x roll from one z roll.

For large values of Ra, the transitional S2 mode is no
longer possible and is replaced by a solution with a dif-
ferent symmetry pattern (S4). The S4 solution is featured
by a toroidal organization of the flow that was also re-
ported by Hernàndez and Frederick (1994) (see Fig. 6).

At very large values of the Rayleigh number (Ra> 7×
104) a new stable regime can arise. This S8 structure
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g

Heated wall

X

Z

Figure 5 : Vertical velocity contours in the horizontal
midplane of a cubical enclosure heated from below with
adiabatic vertical walls; pattern of symmetry S2 (Silicon,
Pr=0.01, Ra=9×103, transitional state during the evolu-
tion that leads to S1).

(Fig.7) consists of two asymmetric counter rotating rolls
aligned along one of the x = ±z diagonals (the S8 solu-
tion has a certain similarity to the S2 pattern illustrated in
Fig. 5).

These results are in partial agreement with the findings of
Puigjaner et al. (2004); in fact, the present computations
show no evidence of the other possible transitional states
described by these investigators (e.g., the S6 solution).
The ranges of existence of the possible unstable regimes
are also quite different. Similar discrepancies were also

g
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Z

Figure 6 : Vertical velocity contours in the horizontal
midplane of a cubical enclosure heated from below with
adiabatic vertical walls; pattern of symmetry S4 (Silicon,
Pr=0.01, Ra=7×104, transitional state).

observed between the numerical simulations of Puigjaner
et al. (2004) and available experimental results in the
case of transparent organic liquids (Pallares et al., 2001
for Pr=130).

Some authors (see, e.g., the authoritative analysis of
Gelfgat, 1999) tried to explain these differences in terms
of some basic features of the Rayleigh-Bènard convec-
tion. It is known, in fact, that several different perturba-
tions of the basic quiescent state can become critical at
close values of the Rayleigh number; this means that in
a supercritical state any of these perturbations can grow
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Figure 7 : Vertical velocity contours in the horizontal
midplane of a cubical enclosure heated from below with
adiabatic vertical walls; pattern of symmetry S8 (Silicon,
Pr=0.01, Ra=8×104).

and the possible states of the system will depend on the
initial conditions.

The present simulations for Pr� 1 provide an additional
useful point of view about these aspects.

There is indirect evidence, in fact, that another factor in-
fluencing the roll-adjustment process is the presence of
thermal and/or momentum boundary layers close to the
solid walls. The dynamics of these layers, in fact, com-
pletely changes according to the relative importance of
transport at microscopic scale (i.e. diffusion) of momen-
tum and energy, i.e. according to the Prandtl number.

To provide a more solid basis to these arguments it is
worth spending some words about the possible existence
and scaling of these zones. For instance, it is known
(see e.g., Lappa, 2002) that for Pr≤O(1), momentum
boundary layers can develop if Gr>O(1) whose thick-
ness scales according to (Gr)−1/4.

Since Gr=Ra/Pr, this simple theoretical argument illus-
trates that the transitional dynamics of the system under
investigation cannot be independent of the Prandtl num-
ber for given values of the Rayleigh number, i.e. that,
even if the critical Rayleigh number for the primary bi-
furcation from the diffusive state is known to be not de-
pendent on Pr, it however is not the proper parameter to
put in relation possible ensuing transitional modes at dif-
ferent values of the Prandtl number; when convection has
been initiated in the system, the dynamics of the system
(i.e. its evolutionary progress) must of course depend
on the presence of thermal and/or momentum boundary
layers., i.e. on Pr. This argument is even more rele-
vant when high Prandtl numbers (Pr�1) are compared
to Pr=O(1) since in the first case the system is affected
by the presence of thermal boundary layers whose thick-
ness scales according to (PrGr)−1/4whereas in the latter,
the possible transitional regimes will be affected by mo-
mentum boundary layers scaling according to (Gr)−1/4as
mentioned before.

Such a theoretical argument could be used as an addi-
tional means to explain in principle the scarce repro-
ducibility that seems to characterize this kind of experi-
ments (e.g., the observed differences between the numer-
ical results of Puigjaner et al. (2004) for Pr=0.710 and
the experimental ones of Pallares et al. (2001) obtained
for Pr=130.

3.2 Lateral heating

3.2.1 Historical background

A synthesis of available results concerning the simplified
case of horizontal fluid layers of infinite extent limited
from below and from above by adiabatic parallel planes,
is given in the article of Hart (1983). It is shown therein
that, if a velocity profile with an inflection point in the
center of the layer section is assumed as representative
of the basic flow in this configuration, two perturbing
mechanisms (two-dimensional hydrodynamic mode with
rolls perpendicular to the basic flow, three-dimensional
oscillatory mode with oscillatory rolls parallel to the ba-
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sic flow) are possible and that the most dangerous dis-
turbance in the case of 0<Pr<0.033 (i.e., semiconductor
melts and liquid metals) is related to the steady hydro-
dynamic mode. These results were refined by Kuo &
Korpela (1988) who found that the first transition is to
steady rolls for Pr<0.033, and to oscillatory longitudinal
rolls for 0.033<Pr<0.2.

In reality, a third mechanism could be also possible if
conductive thermal boundary conditions were used for
the upper and lower boundaries instead of the adiabatic
ones. This mode is usually referred to as the Rayleigh
mode (Gershuni et al., 1992). In reality, the Rayleigh
mode follows from the presence of zones of potentially
unstable stratification near the upper and lower hori-
zontal boundaries (induced by the aforementioned basic
flow) that makes possible the onset of instability of the
Rayleigh-Bènard type therein (steady longitudinal rolls
(SLR): in practice this flow exhibits strong analogies
with the convective case already discussed before in the
case of uniform heating from below and for this reason it
is not treated in the present section).

The hydrodynamic mode corresponds to a shear instabil-
ity and is related to the formation of vortices on the fron-
tier (i.e. close to the midsection of the layer) of the two
opposing flows characterizing the basic state (i.e. close
to the aforementioned inflection point); this mode is ini-
tially steady but can become time-dependent for a fur-
ther increase of the temperature difference. A quite ex-
haustive parametric study of multiple steady states, their
stability, onset of oscillatory instability, and some su-
percritical unsteady regimes of convective flow in two-
dimensional laterally heated rectangular containers of fi-
nite extent with adiabatic upper and lower boundaries has
been carried out recently by Gelfgat et al. (1999a,b) for
Pr=0.015.

Many possible distinct branches of steady-state flows
(pertaining to the aforementioned 2D-hydrodynamic
mode) were found for this configuration. A complete
study of stability of each branch was performed for the
aspect ratio of the rectangular container varying contin-
uously from 1 to 11. The results were represented as
stability diagrams showing the critical parameters (crit-
ical Grashof number and the frequency at the onset of
the oscillatory instability) corresponding to transitions
from steady to oscillatory states, appearance of multiroll
states, merging of multiple states and backwards transi-
tions from multiroll to single-roll states.

Figs. 8 illustrate, for instance, the multiple possible
steady modes of convection in a 2D laterally heated
closed cavity with A= 4 for the present case of sili-
con melt (Pr=0.01). The single-cell structure character-
ized by the presence of an elongated vortex that occurs
for Ra= 103 is taken over by a new steady state with
two separate rolls when Ra is sufficiently increased (e.g.,
Ra=2×103).

Present contribution

Fig. 9a shows the three-dimensional solution corre-
sponding to the same conditions of Fig. 8b, but with
a finite width along z (4×1×4). It is evident that, un-
like the multicellular flow predicted by two-dimensional
studies and shown in Fig. 8b, the flow is represented
by a single cell. Such a simple argument demonstrates
that the presence of constraints along the third direction,
like the presence of solid walls along x can play a signif-
icant role in the selection of the possible multiple states
of convection with respect to the 2D case (similar con-
clusions were also reported by Afrid and Zebib, 1990).
Furthermore, in the 3D case for Ra=2000, the flow is no
longer steady and undergoes transition to an oscillatory
behavior (see Figs. 9b,c); under the constraint of 2D flow
(the two-roll multicellular structure in Fig. 8b), transi-
tion to time-dependence occurs for larger values of Ra
(Ra=O(104)).

Figure 8 : Multiple steady states of two-dimensional
convection in a laterally heated enclosure with A= 4
(cold and hot sides on the left and on the right of each
frame, respectively, upper and lower boundaries with adi-
abatic conditions). Pr=0.01, silicon. Single- and two-roll
steady-state flows for Ra=1×103(a), and Ra=2×103(b),
respectively (Ra based on the depth of the container). For
A=4, two branches of possible steady state exist.
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Figure 9 : Snapshots of 3D buoyancy convection in a
laterally heated enclosure with Lx = 4,Ly = 1,Lz = 4
(Pr=0.01, silicon, Ra=2×103, oscillatory convection); a)
xy midplane, b) and c) Projection of the velocity field in
the horizontal midplane at two different times during a
period of the oscillations.

In the light of these arguments, like the case of Rayleigh-
Bènard convection, the presence of lateral solid con-
straints along the z-coordinate (Lz/Lx �O(1)) can be
thought of as altering the mode selection process and the

pattern symmetries.

According to the present simulations for the cubical en-
closure and Pr=0.01, the three-dimensional intrinsic na-
ture of the problem also goes beyond the effect discussed
above about the deviation of the pattern-symmetry selec-
tion process in the xy plane with respect to correspond-
ing 2D results and the threshold for the onset of time-
dependence.

For this configuration, in fact, the occurrence of possible
unsteady oscillations in the flow seems to be preceded by
a steady 3D instability (Figs. 10) originated in an inter-
nal, stratified shear layer that separates from the adiabatic
walls of the cavity.

Despite the immense effort provided by the scientific
community over the last years (see, e.g., Roux, 1990;
Kamotani and Sahraoui, 1990; Henry and Buffat, 1998,
Wakitani, 2001) in the investigation of the oscillatory in-
stabilities that can occur in these containers for Pr�1
(owing to the aforementioned theoretical kinship with the
Horizontal Bridgman method) there seems to be an out-
standing lack of information dealing with this primary
steady bifurcation.

It is inherently three-dimensional and characterized by
he presence of streamwise-oriented, counter rotating vor-
tices.

This result seems to be in qualitative agreement with the
findings of Juel et al. (2001) and Hof et al. (2004)
in the case of Gallium and shallow containers. They
focused on the structure of the aforementioned steady
three-dimensional flow by means of experimental inves-
tigation. The three-dimensional nature of the steady flow
was clearly demonstrated by quantitative experimental
temperature measurements, which gave an indication of
the strength of the convective flow.

According to the present simulations in the case of sil-
icon, this three-dimensional convection is characterized
by cross-flows which are an order of magnitude smaller
than the main circulation, and spread from the endwall
regions to the entire bulk when the Grashof number is in-
creased beyond Gr = 5×103 (Fig. 10b). A couple of vor-
tices located in the upper half of the box is also clearly
visible in the yz midplane (Fig. 10c).

Within this context it is also worthwhile to stress how this
instability has nothing to do with the three-dimensional
flow that is usually observed in the case of experiments
made with transparent (Pr�1) liquids. In such a case the
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Figure 10 : Velocity field is shown in the three orthog-
onal coordinate planes of a cubical enclosure differen-
tially heated from sides with adiabatic solid boundaries
(Silicon, Pr=0.01, steady 3D state, Ra=102).

differences between the experimental flow and the ide-
alized two-dimensional convection (see, e.g., the discus-
sion in Hiller et al., 1989) mainly occur as a consequence
of the failure to achieve strictly adiabatic condition on the
insulating side walls. When idealized adiabatic bound-
aries are considered in the numerical simulations (see,
e.g., Kowalewski, 1998) the 3D effects are somewhat
limited to weak spiraling motions responsible, besides
the main recirculation, for cross-flow along z (from the
sidewalls towards the midplane xy).

However, for the sake of completeness it should be
pointed out that steady three-dimensional flow has been
also reported by means of numerical computations in
the case of cubical cavities filled with air (Pr=0.710) by
Fusegi et al. (1991) in a relatively wide range of the
Rayleigh number and by Janssen et al. (1996). Owing
to the value of the Prandtl number corresponding to air
(Pr=0.710), this subject would deserve further investiga-
tion to discern the intrinsic nature of this instability for
values of the Prandtl number of O(1).

3.3 Pure Marangoni flow

3.3.1 Historical background

It is well known that for small temperature differences
∆T , the flow in open cavities is steady and simply uni-
cellular even for the case of elongated geometries. In the
case of two-dimensional models, it appears as a unique
large roll, whose axis is perpendicular to the tempera-
ture gradient and whose position changes according to
the Prandtl number (at low Pr a recirculation roll devel-
ops near the cold wall (Fig. 11c), while at higher Pr the
roll develops near the hot wall).

It is also known (Ben Hadid and Roux, 1990), that for
low values of the Reynolds/Marangoni number, this fluid
configuration reaches a parallel flow state in the central
region (core flow) of the cavity with the exception of an
upwind region (close to the hot sidewall) in which the
flow is accelerated and a downwind region (close to the
cold sidewall) in which the flow is decelerated (Fig. 11a).
Such a parallel flow state, of course, is not present in the
case of a cavities with small aspect ratio.

3.3.2 Present results

Like the case of buoyancy convection in this case the
presence of sidewalls along the third direction z can lead
to a variety of three-dimensional effects.
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Figure 11 : Structure of pure 2D Marangoni convection
for Pr=0.01 (silicon) and open cavity with aspect ratio
A=3 (cold and hot sides on the left and on the right of
each frame respectively, upper and lower boundaries with
adiabatic conditions): (a) Ma=1, (b) Ma= 10, (c) Ma=100
(Ma based on the depth of the container).

As an example Fig. 12 provides a clear picture of
the structure of the pure Marangoni flow in the three-
dimensional cubical cavity (Pr=0.01 and Ma=100) al-
ready considered in the previous sections.

Vortex I represents the classical unicellular convection
discussed before. Vortices (II) and (III) (see Fig. 12a)
are corner vortices, that arise owing to flow separation
close to solid (no-slip) boundaries (Moffatt, 1963).

Vortex (VI) and its symmetrically located counterpart
are of a surface-tension-driven origin. Since the veloc-
ity component along x (i.e. u) vanishes at the solid
boundaries z = 0 and z = 1, the convective transport
in the x direction at the free surface is reduced there
with respect to the mid-section (z = 0.5). This results
in larger temperature values at the mid-section at fixed
locations along x. Accordingly, Marangoni forces di-
rected towards the sidewalls are induced in the z direction
leading to the aforementioned well-developed secondary

convective structures. The magnitude of these secondary
Marangoni flows obviously tends to zero as Ma→0. This
is confirmed by the numerical simulations carried out for
Ma=10 (not shown) where the vortices (VI) disappear.

The other secondary convective cells (IV, and V) pro-
duced by the main vortex in the vicinity of solid bound-
aries are Ekman structures (see Saß et al., 1995). They
are somewhat similar to the secondary vortices already
discussed for the case of pure buoyancy convection (Figs.
10).

At this stage it is also worthwhile to stress that the cross-
flow VI, that occurs as a natural consequence of the in-
trinsic mechanisms of the Marangoni flow and the par-
ticular geometry considered (that leads to the onset of
temperature gradients along the z direction), must not be
confused with the well-known steady three-dimensional
flow that can appear in liquid bridges and other mod-
els of the Floating Zone Technique under particular cir-
cumstances (Lappa, 2003, 2004b). It is known that for
sufficiently small values of the Marangoni number, the
convection in liquid columns of liquid metals under the
effect of imposed axial temperature gradients, is lami-
nar, steady and axisymmetrical, but when the Marangoni
number exceeds certain critical values (the so-called crit-
ical Marangoni number Mac) depending on the Prandtl
number of the liquid, on the geometry (aspect ratio), the
liquid motion can undergo a transition to a steady three-
dimensional (3D) complex flow pattern. In such a case
the 3D flow pertains to a hydrodynamic bifurcation, and,
in practice, this hydrodynamic mode corresponds to a
shear instability of the shear layer below the free surface
of the liquid column (see, e.g., the discussions in Lappa,
2005); hence, its nature should be regarded as similar
to that of the steady bifurcation described in section 3.2
(rather than related to the 3D Marangoni flow depicted in
this section).

3.4 Coupled Buoyant-Marangoni flow

The flow in the midplane x = 0.5 under the combined ef-
fect of buoyancy and Marangoni convection for the same
cubical open cavity considered in the earlier section is
illustrated in Fig. 13. Conditions at which the effects
induced by both mechanisms are of comparable order of
magnitude are considered (Ma=100 and Ra=1000).

According to Fig. 13, the presence of buoyancy forces
dramatically increases the magnitude of the upper cou-
ple of vortices in the yz plane (previously referred to
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Figure 12 : Cubical cavity with free surface (Pr=0.01,
Ma=100), primary and secondary vortical structures
shown in the three orthogonal coordinate planes. The
roman numbers are referred in the text.
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Figure 13 : Cubical cavity with free surface (Pr=0.01,
Ma=100, Ra=1000), mixed buoyant-Marangoni convec-
tion in the yz midplane.

as vortices VI) leading to three-dimensional effects even
more pronounced than those observed in the case of pure
Marangoni convection.

Such a strengthening is, in reality, is the consequence of
two separate effects:

1) The simultaneous presence of surface tension and
buoyancy forces leads to a larger magnitude of the ve-
locity on the free surface (Marangoni and buoyancy flow
tend to act in the same direction along the interface); this
effect, in turn, leads to an enhancement of the mecha-
nism described in section 3.3, by which the damping ef-
fect exerted by the solid boundaries z = 0 and z = 1 on
the flow can induce the onset of temperature gradients
along z (that, in turn, are responsible for the presence of
the vortices VI).

2) As illustrated in section 3.2, even for relatively
small values of the Rayleigh number (Ra>50), the flow
of buoyant origin can undergo transition to a three-
dimensional pattern (shown in Figs. 10) .

These two mechanisms can support each other leading to
fully-developed three-dimensional flow.

If a shallow cavity is considered (e.g., Figs. 14 deal with
the case 3×1×3 with Ma=100 and Ra=200) the three-
dimensional cross-flow observable in the horizontal mid-
plane is mainly due to the latter effect; for this case, in
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Figure 14 : mixed buoyant-Marangoni convection in
the open cavity with Lx = 3,Ly = 1,Lz = 3 (Pr=0.01,
Ma=100, Ra=200, steady state): a) Projection of the ve-
locity field in the horizontal midplane; b) Projection of
the velocity field in the xy midplane.

fact, the thermal mechanism discussed in section 3.3 is
considerably weakened owing to the relatively large dis-
tance between the rigid walls along z (furthermore, the
Ekman structures associated with the Marangoni convec-
tion do not tend to diffuse away from the lateral solid
boundaries: their influence becomes very evident only
when the cubical cavity or cavities with a square yz
section are considered). Numerical simulations for the
cavity 3×1×3 in the case of pure Marangoni flow (not
shown) have proven, in fact, that the structure of the con-
vective field tends to maintain a good degree of 2D be-
havior even if the Marangoni number is increased to quite
large values (Ma=O(102)).

Such a discussion also sheds some light on previous 3D
results obtained by Bucchignani and Mansutti (2004) in
the case of 4×1×1 cavities, who attributed the onset of
3-D flow to an instability of the basic Marangoni convec-
tion. In practice, in the light of the foregoing theoretical

arguments, the presence of steady three-dimensional ef-
fects in their simulation must be regarded as a non-linear
effect coming from the interplay between the fundamen-
tal features of the Marangoni flow induced by the pres-
ence of side-walls along z (in particular, the surface ther-
mal mechanism illustrated in section 3.3) and the possi-
ble (still poorly known) steady 3D buoyancy convection
(described in section 3.2). In particular, as outlined be-
fore, the latter tends to be the major cause responsible
for the onset of 3D flow in the case of shallow open cav-
ities and/or pools at moderate values of the Marangoni
number (e.g., the values considered in the investigation
of Bucchignani and Mansutti, 2004, i.e. Ra=150 and
Ma=O(100)).

For the sake of completeness, finally, it should be high-
lighted that steady mixed buoyant-Marangoni flows with
evident 3-D features have been also found in the case of
fluids with very large value of the Prandtl number (Pr�1,
see, e.g., Mundrane and Zebib, 1993 and Braunsfurth and
Hornsy, 1997). The underlying physics and existing the-
ories, however, in this case, exhibit notable differences
with respect to the case of Pr�1; therefore, it is nec-
essary to open a short discussion about these aspects be-
fore going further in the description of the nature of these
flows and their cause-and-effect relationships.

The oscillatory disturbances associated with the propa-
gation of hydrothermal waves, according to the landmark
analysis of Smith and Davis (1983), are known to be al-
ways the most dangerous disturbances for both cases of
low and high values of the Prandtl number and ”pure”
Marangoni flow (i.e. microgravity conditions). For in-
stance, by means of numerical simulations, Xu and Ze-
bib (1998) found two-dimensional supercritical oscilla-
tory bifurcations over a wide range of Prandtl numbers
(1<Pr<13.9) and aspect ratios A; they noted that the crit-
ical threshold tends to the corresponding value predicted
by Smith and Davis (1983) for the hydrothermal wave
case, in the limit as A → ∞. They also considered the
three-dimensional case where the sidewalls located along
z were found to have a damping effect on oscillations re-
lated to the propagation of the hydrothermal waves and
hence increase the magnitude of the critical Ma.

However, many of the experimental results for these con-
figurations did not provide evidence of these hydrother-
mal waves. In many experiments, the basic flow was ob-
served to destabilize first against a stationary multicellu-
lar instability (transition from steady unicellular flow to
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steady multicellular flow with longitudinal rolls embed-
ded in the main flow all rotating in the same direction)
before exhibiting oscillatory behaviors.

The existence of these oscillatory patterns not corre-
sponding to the propagation of hydrothermal waves was
observed by Villers and Platten (1992), De Saedeleer et
al. (1996) and many others for Pr�1.

The available results in the case of transparent liquids
have been summarized in the recent analysis of Burguete
et al. (2001) where it is shown how depending on the
height of liquid and on the extension along z, the two-
dimensional basic flow destabilizes into oblique travel-
ing waves or longitudinal stationary rolls: The first phe-
nomenon seems to be favored for small thickness of the
layer and large extension of the pool along z; vice versa
the latter tends to become dominant for thick layers and
small extension along z. In this case the oscillatory be-
havior that occurs when the thermal gradient is further
increased is characterized by oscillation of the multicel-
lular pattern.

With regard to the latter steady mode of convection, some
necessary theoretical arguments (explaining its contro-
versial existence), have been provided by the recent sta-
bility analysis of Mercier and Normand (1996). It has
been clearly shown (in the case of a liquid with Pr=7) that
transition between traveling waves and stationary rolls,
as the most dangerous disturbances on the ground, occurs
when the height of the cavity is sufficiently increased.

Within such a theoretical background, therefore, it is
reasonable that the aforementioned steady 3D flow re-
ported by Mundrane and Zebib (1993) and Braunsfurth
and Hornsy (1997) for Pr�1 is somewhat an instability
pertaining to the stationary rolls mode that, as explained
above, tends to replace under normal gravity conditions
the mechanism of propagation of hydrothermal waves
predicted by Smith and Davis for pure Marangoni flows
(no-g conditions). Further investigation is required along
these lines.

3.5 Mixed Rayleigh-Marangoni-Bènard convection

3.5.1 Historical background

The problem concerning thin fluid layers uniformly
heated from below falls into the category of phenomena
known under the heading of ”Marangoni-Bènard” con-
vection. This topic is still affected by a tremendous lack
of information in the case of liquid metals (with the ex-

ception of very rare efforts, see, e.g., Boeck and Thess,
1999) and is briefly treated here only for the sake of
completeness since it would require much room to pro-
vide the reader with an exhaustive picture of the prob-
lem. For transparent organic liquids (e.g., silicone oils)
this phenomenon, is characterized by the suggestive pres-
ence of aesthetic hexagonal cells; it is also known that at
a certain distance (in terms of value of the Marangoni
number) from the threshold of primary instability, square
convection cells rather than the seemingly all-embracing
hexagons become the persistent dominant features of this
type of convection (see, e.g., Eckert et al., 1998).

3.5.2 Present results

The related mechanism in the case of pure Marangoni
flow, is not treated here owing to lack of space. Rather,
this section is devoted to the mixed buoyant-Marangoni
problem since it, like that illustrated in section 3.4, is an
even more relevant situation when this type of heated-
from-below flow is encountered under normal gravity
conditions.

Fig. 15 (Pr=0.01, Ra=2000, Ma=30, Bi=1) shows the
Rayleigh-Marangoni-Bènard flow in the case of the
3×1×3 cavity already considered in section 3.1. The
cross-comparison between Figs. 3 and Figs. 15 provides
additional insights into the effect that the presence of a
free surface can have on the structure of the resulting
buoyancy flow. According to Figs. 15a-b, in fact, the
flow structure is no longer characterized by the diago-
nal mode of convection shown in Figs. 3; rather the hot
liquid rises at the center of the cavity and the cold liq-
uid descends along the vertical walls (toroidal structure
of convection). For a further increase of the Marangoni
number the flow becomes strongly time-dependent.

4 Conclusions

The different complex scenarios that arise in cubical and
shallow cavities filled with silicon melt in terms of de-
tailed structure of the convective field and possible stable
and unstable regimes have been investigated within the
framework of numerical solution of the non-linear bal-
ance equations through multiprocessor computations.

Significant effort has been devoted to illustrate the possi-
ble three-dimensional patterns of symmetry pertaining to
various types of convective mechanisms (pure buoyancy,
pure Marangoni and possible mixed states) under differ-
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Figure 15 : Rayleigh-Marangoni-Bènard convection in
an open cavity with Lx = 3,Ly = 1,Lz = 3 (Pr= 0.01,
Ra= 2000, Ma= 30): a) Projection of the velocity field
in the horizontal midplane; b) Vertical velocity contours
in the horizontal midplane; c) Projection of the velocity
field in the xy midplane.

ent heating conditions (horizontal or vertical temperature
gradients) pointing out differences, analogies as well as
some unexpected theoretical kinships. Critical and fo-
cused comparison with earlier two-dimensional results
has been used as an additional artifice to gain additional
insights into the physics of spatially limited systems. The
prominent features of convective modes in these domains
always tend to exhibit large sensitivity on all the possi-
ble extensions of the system if these are of a comparable
measure.

Theoretical arguments supported by ”ad hoc” novel and
heretofore unseen numerical computations have been in-
troduced to clarify some still unresolved discrepancies
related to results provided by different investigators as
well as some controversies pertaining to the driving force
responsible for the observed three-dimensional flow and
the physical nature of the related instability.

These studies (as well as other investigations carried
out along the same lines by other researchers) are of
paramount importance since they are validating new,
more complex models, accelerating the current trend to-
wards predictable and reproducible phenomena, filling
gaps where existing theories are still limited to ideal-
ized systems, and finally providing an adequate scientific
foundation to industrial processes which are still con-
ducted on a largely empirical basis.
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