
Copyright c© 2005 Tech Science Press FDMP, vol.1, no.2, pp.97-107, 2005

A Computational Study of Bubble Motion in Newtonian and Viscoelastic Fluids

Edwin Jiménez1, Mark Sussman2, and Mitsuhiro Ohta3

Abstract: The aim of this paper is to utilize a numeri-
cal model to compute bubble motion in quiescent Newto-
nian and viscoelastic liquids. For our numerical method,
we use a coupled level set and volume-of-fluid method
with a second order treatment for the jump conditions
related to surface tension. We investigate axisymmetric
gas-liquid systems with large density and viscosity ratios
as well as buoyancy-driven flows with complex changes
in topology. We present comparisons to previous compu-
tational results as well as experimental results.
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1 Introduction

The objective of this work is to compute bubble motion
in Newtonian and viscoelastic fluids. Although there
is an extensive number of numerical results concern-
ing bubble motion in incompressible Newtonian fluids
(Rudman (1998); Sussman and Smereka (1997); Ohta,
Imura, Yoshida, and Sussman (2005); Kang, Fedkiw, and
Liu (2000); Unverdi and Tryggvason (1992); Brackbill,
Kothe, and Zemach (1992); Esmaeeli (2005)), the liter-
ature regarding computation of non-Newtonian bubble
motion, in particular viscoelastic flow, is limited in com-
parison. Previous work regarding multiphase viscoelas-
tic flows include the work of Noh, Kang, and Leal (1993)
using a body fitted formulation, Pillapakkam and Singh
(2001) using the level set method and Goktekin, Bargteil,
and O’Brien (2004) also using the level set method. We
remark that the work by Noh, Kang, and Leal (1993) is
not suitable for large interfacial deformations. The work
by both Pillapakkam and Singh (2001) and Goktekin,
Bargteil, and O’Brien (2004) are suitable for large de-
formations, and so our work can be seen as an extension
of their methods. The main distinction between our work
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and previous work using the level set method is our sec-
ond order treatment of the jump conditions where surface
tension is concerned (Sussman (2003); Sussman, Hus-
saini, Smith, Zhi-Wei, and Mihalef (2004)). A second
order treatment allows one to compute on a coarse mesh
where otherwise a fine mesh is required.

Bubble phenomena have important applications in in-
dustry such as underwater explosions, ink-jet devices,
chemical separators, nuclear power plants, bioreactors,
and combustion engines (see Ohta, Imura, Yoshida, and
Sussman (2005) and references therein). Air bubbles in
water have even been observed to have applications in
nature; whales and dolphins employ a “bubble fence” to
round up their prey (Marten, Shariff, Psarakos, and White
(1996)).

In the manufacturing process of certain materials, the
behavior of materials while in their fluid state can im-
pact the resulting product. Example applications, in-
cluding the study of “sharkskin” instability in extru-
sion processes, have been researched by Bechtel, For-
est, Wang, and Zhou (1998); Migler, Son, Qiao, and
Flynn (2002); Venet and Vergnes (2000); Nithi-Uthai
and Manas-Zloczower (2003); Jansseune, Mewis, Mold-
enaers, Minale, and Maffettone (2000). With a numer-
ical method, one can systematically analyze the stabil-
ity of non-newtonian flows in relation to various physi-
cal properties such as surface tension, viscosity, density,
and concentration of viscoelastic material. A numerical
method also allows one to measure the viscoelastic stress
anywhere in the flow field. Finally, while we focus on the
Chilcott-Rallison model in this paper, we can replace our
constitutive law with the constitutive law for any “com-
plex” fluid such as for liquid crystal polymers (Bechtel,
Forest, Wang, and Zhou (1998)).

Here, we will consider the two-dimensional axisymmet-
ric problem of a gas bubble rising first in a Newtonian
liquid and then in a viscoelastic liquid. We examine the
steady state bubble shape in each fluid. In another study,
we initialize the gas-liquid system with a gas bubble just
below the free surface of the liquid, surface tension ef-
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fects dominate the flow dynamics, ultimately resulting in
a liquid jet. As expected, the liquid jet exhibits charac-
teristics unique to the type of fluid used.

Because of important industrial applications, such as in
microscale jetting devices, similar liquid jet problems
have already been investigated (Sussman and Puckett
(2000)). However, liquids employed in ink-jet devices
need not be Newtonian liquids. Therefore an accurate nu-
merical description of bubble and jet phenomena for vis-
coelastic fluids can result in more realistic simulations.

It should be noted that in our simulations, the bubbles
are initially set at an ‘intermediate’ stage, i.e., we do not
consider bubble formation nor initial bubble conditions.
We simply begin with a spherical bubble, for example,
and evolve its motion according to the relevant govern-
ing equations. In a related note, a recent study by Ohta,
Imura, Yoshida, and Sussman (2005) considers the ef-
fects of initial bubble conditions on the motion of a rising
gas bubble.

Our numerical approach is a coupled level set
and volume-of-fluid method (CLSVOF) (Sussman and
Smereka (1997); Sussman and Puckett (2000); Sussman
(2003)). In the level set method (LS), a smooth level
set function φ is used to implicitly represent the inter-
face between the gas and the liquid. Although there are
many possible level set functions that can be used (for a
good introduction to level set methods see, e.g., Sethian
(1999)), typically φ is chosen to be a distance function,
i.e., φ = −d in the gas and φ = d in the liquid, where
d = d(t) is the shortest distance from a point (r, z) to the
free surface at time t. Denote the gas and liquid (or ‘sol-
vent’) domain by ΩG and ΩS, respectively. Thus,{

φ > 0 if φ ∈ ΩS

φ < 0 if φ ∈ ΩG.

The interface between the liquid and gas is contained
implicitly in the level set φ = 0. For a detailed account
on level set methods see Sethian (1999); Sussman and
Smereka (1997); Sussman, Smereka, and Osher (1994).

The level set equation,

φt +u ·∇φ = 0, (1)

prescribes that the interface is advected along particle
paths; u is the underlying velocity field obtained from the
momentum equations. Due to discretization error, and

in spite of the fact that u is a volume conserving veloc-
ity field, one might experience mass loss when discretely
solving (1). To overcome this difficulty, we solve an ad-
ditional equation for the volume of fluid function F,

Ft +u ·∇F = 0, (2)

where F = 1 in a computational cell containing only liq-
uid, F = 0 in a computational cell containing only gas,
and 0 < F < 1 otherwise.

As contrasted from the level set equation (1), one can
incorporate mass-conserving discretization schemes for
solving (2). Since ∇ ·u = 0, we can rewrite (2) as

Ft +∇ · (uF) = 0, (3)

and then discretize (3) in conservation form (see section
3.1). We remark that we can rewrite the level set equation
(1) in conservation form as well, but since the level set
function φ does not have a physical relation to “mass”,
solving (1) in conservation form will not guarantee mass
conservation.

So, in our formulation we couple the level set method to
the volume-of-fluid method. The slopes in the volume-
of-fluid reconstruction step are taken from the level set
function. The level set function, on the other hand, is
taken to be the signed distance from the volume-of-fluid
reconstructed interface. Details and validation of our
coupled levelset and volume-of-fluid approach are given
by Sussman and Puckett (2000); Sussman (2003).

2 Governing Equations

In this paper we use the viscoelastic model proposed by
Chilcott and Rallison (1988); i.e. the FENE-CL dumb-
bell model. We can write the governing equations of mo-
tions for incompressible two-phase non-Newtonian flow,
with surface tension written as a body force (Sussman
and Puckett (2000)), as follows

ut +(u ·∇)u =
1

ρ(φ)
∇ ·T− σκ

ρ(φ)
∇H(φ)+g (4)

T = −pI+2η̃SD+
η̃P(φ)

λ
f (R)A (5)

∇ ·u = 0, (6)

where the polymer configuration tensor A is the dyadic
product of the dumbbell end-to-end vector R, i.e., A =
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〈RR〉, λ is a characteristic relaxation time, and T is the
total stress tensor. In the liquid, A satisfies

At +u ·∇A = A ·∇u+∇uT ·A− f (R)
λ

(A− I) (7)

where the function

f (R) =
1

1−R2/L2 =
1

1− tr(A)/L2 . (8)

represents the nonlinear spring characteristics of the vis-
coelastic fluid. Here L is the maximum length of a poly-
mer molecule relative to the equilibrium radius of gyra-
tion. D is the rate of deformation tensor defined by

D =
∇u+∇uT

2
.

Here ρ is the density, ηS is the solvent viscosity, ηP =
cηS is the polymer viscosity, κ is the curvature, σ is the
surface tension,

η̃P =

{
ηP if φ > 0

0 if φ < 0,

and H is the Heaviside function defined by

H(φ) =

{
1 if φ ≥ 0

0 if φ < 0.
(9)

Let us denote the density and viscosity in the solvent as
ρS and ηS, respectively (and similarly for the gas). Then,
using the Heaviside function, we can write the density
and viscosity in the liquid and gas as

ρ(φ) = ρG(1−H(φ))+ρSH(φ)
η̃S(φ) = ηG(1−H(φ))+ηSH(φ).

The governing equations for interface motion are given
by

Ft +u ·∇F = 0

and

φt +u ·∇φ = 0.

3 Numerical Algorithm

3.1 Advancing the Interface

As mentioned in the Introduction, a coupled level set and
volume-of-fluid method (CLSVOF) is used to represent
the free surface. We simultaneously solve the level set
equation and the volume-of-fluid equation

φt +u ·∇φ = 0

Ft +u ·∇F = 0.

Define a typical computational cell to be

Ωi j = {(x,y)|xi ≤ x ≤ xi+1, y j ≤ y ≤ y j+1}.
Then, at t = 0, we initialize the volume-of-fluid function
in each computational cell as follows

Fi j =
1

∆x∆y

Z
Ωi j

H(φ(x,y,0))dxdy.

In this case, ∆x = xi+1 −xi and ∆y = y j+1 −y j, and H(φ)
is the Heaviside function defined in (9). φ and F are eval-
uated at the cell centers so we have φi j and Fi j.

Both the level set equation and the volume-of-fluid equa-
tion are discretized using second order “strang splitting”
(see Strang (1968)). The spatial operators are split, where
one alternates between sweeping in the x direction,

F∗ −F n

∆t
+

ui+1/2, jF
n

i+1/2, j −ui−1/2, jF
n

i−1/2, j

∆x
=

F∗ ui+1/2, j −ui−1/2, j

∆x

φ∗−φn

∆t
+

ui+1/2, jφn
i+1/2, j −ui−1/2, jφn

i−1/2, j

∆x
=

φ∗ui+1/2, j −ui−1/2, j

∆x
,

and in the y direction,

Fn+1 −F∗

∆t
+

vi, j+1/2F∗
i, j+1/2 −vi, j−1/2F∗

i, j−1/2

∆y
=

F∗ vi, j+1/2 −vi, j−1/2

∆y

φn+1−φ∗

∆t
+

vi, j+1/2φ∗
i, j+1/2−vi, j−1/2φ∗

i, j−1/2

∆y
=

φ∗ vi, j+1/2 −vi, j−1/2

∆y
.
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The volume-of-fluid fluxes, Fi+1/2, j, Fi, j+1/2, are calcu-
lated as the fraction of liquid fluid to the overall fluid that
is advected across a given cell face during a time step.
The level set fluxes, φi+1/2, j and φi, j+1/2 are calculated
by extrapolating the level set function in space and time
to get a time-centered flux at given cell faces. Details are
presented by Sussman and Puckett (2000).

3.2 Runge-Kutta/Crank-Nicolson projection method

Our numerical method for updating the momentum
equations is based on the projection method proposed by
Bell, Colella, and Glaz (1989). A general outline of the
method can be given in terms of two sweeps:

Sweep 1:

u∗ −un

∆t
= F(un)+G

(
un +u∗

2

)
−Gpn−1/2

un+1,(0)−un

∆t
= F(un)+G

(
un +u∗

2

)
−Gpn+1/2,(0) (10)

Sweep 2:

u∗ −un

∆t
= F

(
un +un+1,(0)

2

)
+G

(
un +u∗

2

)
−Gpn+1/2,(0)

un+1 −un

∆t
= F

(
un +un+1,(0)

2

)
+G

(
un +u∗

2

)
−Gpn+1/2 (11)

F(u) represents the discretization of the nonlinear ad-
vective terms, G(u) represents the discretization of the
viscosity terms, and Gp represents the pressure gradient
term. The pressure update in (10) and (11) is cast as an
elliptic equation for p and uses the continuity condition,
∇ ·u = 0:

∇ · ∇p
ρ

= ∇ ·v

u = v− ∇p
ρ

3.3 Staggered grid discretization

The discrete velocity field is stored at cell face centers
(MAC grid) and the pressure p, level set function φ,
volume-of-fluid function F , viscous forces, nonlinear ad-
vection terms, and configuration tensor A are stored at

cell centers. We store liquid and gas states separately.
Our numerical discretization is designed so that our two-
phase method is discretely equivalent to the second order
method described by Sussman (2003) in the limit that the
gas density approaches zero. In other words, the results
of our computations are the same as if we had treated the
gas pressure as spatially uniform.

An outline of our numerical algorithm during the first
sweep of our Runge-Kutta/Crank-Nicolson time stepping
procedure is given as the following sequence of steps:

1. Advance the location of the interface; update φn+1

and Fn+1.

2. Calculate nonlinear advective terms using second
order, Van-Leer limited slope calculation:

((u ·∇)u)n
i, j =

{
(uS ·∇)uS if φ ≥ 0

(uG ·∇)uG if φ < 0.

3. Update the configuration tensor A . An important
concern in the discretization of (7) is that A be
maintained positive definite (Trebotich, Colella, and
Miller (2005); Singh and Leal (1993)). The follow-
ing steps are used to update A:

(a)

Aadv−An

∆t
+

[
u ·∇A

]n = 0

A first-order upwind scheme is used for the
term [u ·∇A]n. The condition

(u+v)∆t < ∆x

guarantees that if An is positive definite, then
Aadv is also positive definite.

(b) non-positive preserving update of A,

An+1−An

∆t
=

(
∇u ·A)n +

(
A ·∇uT )n − An+1

λ

(c) diagonally positive preserving update of A, if[(
∇u ·A)n +

(
A ·∇uT )n]

ii < 0,

[
An+1−An

∆t

]
ii
=

[((
∇u ·A)n +

(
A ·∇uT )n) An+1

An

]
ii

−
[

An+1

λ

]
ii
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4. Viscous solve,

u∗
i, j −un

i, j

∆t
=−(

(u ·∇)u
)n

i, j −
(

∇p+σκ∇H
ρ

)n−1/2

i, j

+
(

1
ρ

∇ ·2ηS

(
Dn +D∗

2

))
i, j

+
(

1
ρ

∇ · ηPA
λ

)n

i, j
,

The viscosity (face centered) and density (cell cen-
tered here) as they appear above are discretized
based on a finite-volume approach in which,

η̃S,i+1/2, j = Ai+1/2, jηS +(1−Ai+1/2, j)ηG

ρi, j = Fi, jρS +(1−Fi, j)ρG.

In discretizing the viscoelastic force term, we re-
place ηPA

λ with,

ηPA
λ

= 2ηPD−ηP
ĎA
Dt

,

where Ď/Dt denotes the upper convected derivative
(Bird, Armstrong, and O.Hassager (1987)). So that
we now have

u∗
i, j −un

i, j

∆t
=−(

(u ·∇)u
)n

i, j −
(

∇p+σκ∇H
ρ

)n−1/2

i, j

+
(

1
ρ

∇ ·2(η̃S + η̃P)
(

Dn +D∗

2

))
i, j

−
(

∇ · η̃PĎA
Dt

)
i, j

,

where

ĎA
Dt

=
An+1−An

∆t
−(

(u ·∇)A
)n

+(∇u ·A)n +
(
A ·∇uT )n

.

5. Interpolate advective force from cell centers to faces
(liquid and gas advective terms interpolated sepa-
rately),

[
(u ·∇)u

]
i+1/2, j =

1
2

[(
(u ·∇)u

)
i, j +

(
(u ·∇)u

)
i+1, j

]

6. Interpolate viscous force from cell centers to faces
using a density-weighted average,

(
1
ρ

∇ ·2η̃SD
)

i+1/2, j
=

1
2

(
∇ ·2η̃SD

)
i, j

ρi, j +ρi+1, j

+
1
2

(
∇ ·2η̃SD

)
i+1, j

ρi, j +ρi+1, j
.

Density-weighted averaging is also used to interpo-
late the viscoelastic force from cell centers to faces.

7. Projection step.

(a) For the liquid and gas separately,

u∗
i+1/2, j = un

i+1/2, j −∆t
[
(u ·∇)u

]
i+1/2, j

+∆t

(
1
ρ

∇ ·2η̃SD
)

i+1/2, j

+∆t

(
1
ρ

∇ · η̃PA
λ

)
i+1/2, j

−∆t

(
σκ∇H

ρ

)
i+1/2, j

. (12)

(b)

u∗
i+1/2, j =

{
(u∗

i+1/2, j)S φi, j ≥ 0 or φi+1, j ≥ 0

(u∗
i+1/2, j)G otherwise.

(c)

∆t∇ · ∇pn+1/2

ρ
= ∇ ·u∗

un+1
i+1/2 = u∗

i+1/2 −∆t
∇pn+1/2

ρ
(13)

Extrapolate (un+1
i+1/2, j)S where φi, j < 0 and

φi+1, j < 0 (see Sussman (2003) for extrapola-
tion details).

(d)

(
∇p−σκ∇H

ρ

)n+1/2

i, j
=

u∗
i, j −un+1

i, j

∆t

+
(

∇p+σκ∇H
ρ

)n−1/2

i, j
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As a remark, in the absence of viscous or viscoelastic
forces, our two-phase numerical algorithm reduces to the
second order single-phase numerical algorithm described
by Sussman (2003) in the limit of zero gas density. In
other words, for the problems described in this paper, the
gas exerts primarily a normal pressure force on the liq-
uid. Or to put it another way, the purpose of the gas is
to take up volume. Our numerical method is consistent
with this fact in that our numerical approach reduces to
an approach in which the gas pressure is treated as spa-
tially constant, and the liquid is incompressible. There
are two important similarities between the two-phase ap-
proach presented here and the second order single-phase
approach presented by Sussman (2003) in the limit of
zero gas density. (1) The discretization of the surface
tension force term (12), σκ∇H/ρ corresponds on the dis-
crete level to the second order dirichlet boundary con-
dition for surface tension that is described in Sussman
(2003). (2) In this paper, we store the liquid velocity and
gas velocity separately; the two velocity fields are distin-
guished by the liquid extrapolation step. The extrapola-
tion step (just after (13)) is necessary in order to eliminate
numerical diffusion in the liquid at the free surface. The
extrapolation step used in this paper for two-fluids, has a
corresponding role in the single-phase paper of Sussman
(2003).

4 Results and Discussion

4.1 Axisymmetric Newtonian Bubble Shapes

In this section, we compute the steady state shapes of a
gas bubble rising in a viscous Newtonian liquid. Grace,
Wairegi, and Nguyen (1976) and, in a more detailed
study, Bhaga and Weber (1981) systematically arranged
the motion of bubbles freely rising in viscous Newtonian
liquids. They showed that the Reynolds (Re), Eötvös
(Eo) and Morton (Mo) numbers were essential for de-
scribing a rising bubble (drop) or falling drop motion
because the shape and terminal velocity of a bubble or
drop are determined by these three dimensionless num-
bers. As in Bhaga and Weber (1981), Hnat and Buck-
master (1976) and Grace, Wairegi, and Nguyen (1976),
we will present our computational results in terms of
these dimensionless groups. The Reynolds number Re,
the Eötvös number Eo, and the Morton number Mo are

defined as follows

Re =
ρSLU

ηS
Eo =

ρSL2g
σ

Mo =
gη4

S

ρSσ3 . (14)

ρS is the solvent density, L is the bubble diameter, U is
a characteristic velocity, ηS is the solvent viscosity, σ is
the surface tension, and g is the acceleration of gravity.

Another set of useful dimensionless numbers, although
not independent of those in (14), are the Weber number
We, the Froude number Fr, and the drag coefficient CD :

We =
ρSLU2

σ
Fr =

U2

gL
CD =

4ρSgL2

3ηSU
.

We shall compare our computational results with the ex-
perimental results found in Bhaga and Weber (1981) and
Hnat and Buckmaster (1976) and computational results
in Ryskin and Leal (1984).

It should be noted that in our computations the rise ve-
locity U of the bubble is not known a priori; a reference
bubble velocity is chosen so the relevant dimensionless
parameters coincide with those of the experiments per-
formed by Bhaga and Weber (1981) and Hnat and Buck-
master (1976).

Figure 1 is an oblate ellipsoidal cap bubble found by
Bhaga and Weber (1981). The left part of the image in
Figure 1 corresponds to bubble (d) of figure 2 in their
study, where Eo = 243, Mo = 266, and Re = 7.77. The
right side of the image is our computational result which
shows an indentation at the base of the bubble, in agree-
ment with experimental observations.

Figure 1 : Comparison of our numerical results with
experimental results found in Bhaga and Weber (1981)
where Eo = 243, Mo = 266, and Re = 7.77.

The work of Hnat and Buckmaster (1976) studies the
structure of spherical cap bubbles and skirt formation in
mineral oil (high liquid-gas density ratio and viscosity



A Computational Study of Bubble Motion 103

Figure 2 : Comparison of our numerical results with ex-
perimental results found in Hnat and Buckmaster (1976)
where Re = 9.8, Mo = 0.065, and C = 4.95.

Figure 3 : Comparison of our numerical results with
computational results found in Ryskin and Leal (1984)
where Re = 100 and We = 10.

ratio). The photograph in the left side of Figure 2 cor-
responds to the spherical cap bubble Figure 1(a) found
in their study. The right side of this figure corresponds
to our computational results. From Figure 2 we see that
our computational results closely agree with their exper-
imental findings. In this case, the relevant parameters are
Re = 9.8, Mo = 0.065, and C = 4.95, where

C =
r

(ν2/g)1/3

is a nondimensional parameter, r is the effective bubble
radius, ν is the kinematic viscosity, and g is the accelera-
tion of gravity.

In Ryskin and Leal (1984), they consider the numerical
solution of buoyancy-driven motion of a gas bubble in a
quiescent fluid using a boundary-fitted finite difference
method. To compare with their numerical results, we
present our computations in terms of the Reynolds num-
ber Re and Weber number We. Figure 3 corresponds to
Re = 100 and We = 10; the same figure can be found in
their work. As with the experimental results, we find that
a comparison of our numerical findings to their compu-
tational results show reasonable agreement.

4.2 Gas Bubble Bursting at a Free Surface

In this section we consider the problem of a gas bubble
bursting at the free surface of a liquid. A similar prob-
lem has been studies computationally by Boulton-Stone
and Blake (1993) and Sussman and Smereka (1997). In
our computations, we illustrate the differences between a
gas bubble bursting from a Newtonian fluid versus a gas
bubble bursting from a viscoelastic fluid. The setup of
the problem is as follows. We initialize a spherical gas
bubble just below the surface of the liquid. Strong sur-
face tension forces give rise to a vertical liquid jet.

In both cases, the Newtonian as well as the viscoelastic
case, we have a liquid-gas density ratio of 1000:1 and a
liquid-gas viscosity ratio of 100:1. To make comparisons
with previous similar gas-bursting computations (Suss-
man and Smereka (1997)), we assume a characteristic
velocity of U = 26 cm/s. This is done to set Re = 100.
We also use a characteristic length scale of l = 1.1 cm
(radius of bubble), and a fictitious solvent viscosity of
ηS = 0.286 g/(cm·s). This gives the following dimen-
sionless values,

Re =
ρSlU

ηS
= 100,

Fr =
U2

gl
= 0.64,

We =
ρSlU2

σ
= 10.

For the non-newtonian case, we assume the same charac-
teristic velocity U = 26 cm/s, and a characteristic length
scale of l = 1.1 cm (radius of bubble), but we assume that
the fictitious liquid viscosity is zero (ηS = 0), and the fic-
titious polymeric viscosity satisfies ηP = 0.005. Also, we
assume that L as it appears in (8) satisfies L = 10 and the
Deborah number,

De =
Uλ

l
,

is De=236. As expected, the added effects of viscoelas-
ticity drastically change the dynamics of the bubble-jet
system. We perform our calculations in a domain Ω =
ΩS ∪ΩG = {(r, z) |0≤ r ≤ 3, 0 ≤ z ≤ 12} with a 16×64
grid with one level of Adaptive Mesh Refinement (AMR)



104 Copyright c© 2005 Tech Science Press FDMP, vol.1, no.2, pp.97-107, 2005

20 40 60
0

20

40

60

80

t=0.18

20 40 60
0

20

40

60

80

t=0.50

20 40 60
0

20

40

60

80

t=0.78

20 40 60
0

20

40

60

80

t=1.50

20 40 60
0

20

40

60

80

t=1.90

20 40 60
0

20

40

60

80

t=2.81

20 40 60
0

20

40

60

80

t=3.54

20 40 60
0

20

40

60

80

t=4.34

20 40 60
0

20

40

60

80

t=5.32

Figure 4 : Gas bubble bursting at a free surface of a New-
tonian fluid.

(see Sussman, Almgren, Bell, Collela, Howell, and Wel-
come (1999) and Sussman (2005) for AMR information).
As our submerged gas bubble breaks through the surface,
the resulting large surface tension forces produced ulti-
mately result in the ejection of a liquid jet. In the ab-
sence of viscoelastic effects, the Newtonian liquid jet is
ejected upwards more forcefully and eventually pinches
off. We remark that the level set formulation allows the
computation to continue well after the liquid jet breaks.
A drop is formed as a result of the pinch-off and, as this
drop impinges on the liquid on its way back, it entrains a
small gas bubble just below the surface (see Figure 4).

On the other hand, using the same initial conditions, the
viscoelastic fluid attenuates the liquid jet dynamics. As
in the Newtonian fluid, in this case we also observe the
formation of a liquid jet after the bubble breaks the sur-
face. However, the jet profile is wider and elastic effects
prevent it from extending as high as the Newtonian jet
(see Figure 5). The spring-like viscosity of the solvent
force the jet to recoil more abruptly as the fluid attempts
to reach an equilibrium state. We also notice that in this
case the viscoelastic effects render the jet more resistant
to pinch off.

We remark that our results demonstrate that we can ob-
tain comparable results as a body-fitted approach, with
the additional feature of calculating multiphase flows
with “complex” geometry.
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Figure 5 : Gas bubble bursting at a free surface of a vis-
coelastic fluid.

4.3 Steady Viscoelastic Bubble Rise Motion

In this section we study the steady state shape of a gas
bubble rising in a viscoelastic fluid. As a reference, we
refer the reader to Noh, Kang, and Leal (1993). We com-
pute the steady deformation of an axisymmetric gas bub-
ble of radius r rising with velocity U in a viscoelastic
(polymeric) solution of density ρS. The solvent is a poly-
meric solution with viscosity ηS. We will also assume
there is a uniform surface bubble tension σ. The density
ratio and viscosity ratio in our computations are taken to
be 1000:1 and 100:1 respectively.

The governing equations are given by (4). Using a char-
acteristic velocity U = 0.187 m/s, and a characteristic
length scale (bubble diameter) l = 20 mm, we have,

Re =
ρSlU

ηS
= 3.4,

Fr =
U2

gl
= 0.178,

We =
ρSlU2

σ
= 14,

and

Ca =
We
Re

= 4.114.
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In all of our examples, ηP = cηS where c = 0.1. Figures
6-8 show the steady state shape of a gas bubble rising
in various polymeric solutions. We examine the result-
ing bubble geometry as we vary L (8) and the Deborah
number,

De =
Uλ

l
.

We notice in Figures 6 and 7 the bubble shape exhibits the
well-known trailing cusp, characteristic of gas bubbles
rising in viscoelastic fluids.

Figure 6 : Computational results for L = 10, De = 10
and c = 0.1.

Figure 7 : Computational results for L = 10, De = 5, and
c = 0.1.

Figure 8 : Computational results for L = 5, De = 10, and
c = 0.1.

5 Conclusions

We have presented a coupled level set method and
volume-of-fluid method for computing axisymmetric
bubble motion in Newtonian and viscoelastic fluids. Us-
ing this method, our computations demonstrated reason-
able agreement with previous computational results as
well as benchmark experimental results. In addition, we
showed that using our method we can easily continue our
computation even in the presence of complex topological
changes, such as jet pinch-off and bubble entrainment.
Moreover, the addition of AMR allows us to investigate
finer properties of liquid-gas dynamics in both Newto-
nian and viscoelastic fluids.
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