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Locomotion of a Viscous Drop, Induced by the Internal Secretion of Surfactant:
Boundary Effects

O.M. Lavrenteva 1, D. Tsemakh and A. Nir

Abstract: We have studied the motion of a drop, in-
duced by the internal secretion of a surface-active sub-
stance, in the vicinity of solid walls or non-deformable
liquid-liquid interface under micro-gravity conditions.
The secreted substance renders a non-uniform distribu-
tion of surfactant along the outer surface that, in turn, re-
sults in interfacial stress variation that ultimately leads to
a surface motion and to locomotion of the drop. Cases of
plane and spherical boundaries have been considered as
well as cases of linear and non-linear dependence of the
interfacial tension on concentration of surfactant. The
dependence of the drop migration velocity on the loca-
tion of the source and on the separation distance between
the drop and the outer boundary as well as on the phys-
ical parameters of the system is reported. The dynamics
of the drop is studied in the case of a fixed location of the
source inside the drop, and in the case when it passively
moves with the internal circulation.

keyword: Viscous flow, drop, surfactant, locomotion,
Marangoni effect

1 Introduction

Many modern industrial applications involve drops mo-
tion in a liquid matrix accompanied by heat or mass
transfer between the phases. These include, e.g. direct
heat exchange or liquid-liquid extraction. Exchange of
active species with an ambient media is also one of the
most characteristic features of living biological bodies.
Most of the theoretical studies of such processes were
based so far on the assumption of a uniform concentra-
tion or temperature inside the drops. This assumption
does not hold in the case when a dissolved substance is
secreted from some internal source within a drop, e.g.
from an encapsulated smaller drop in the course of tech-
nological processes involving compound drops, or from
certain organelles in a living cell. When a dissolved sub-
stance is secreted from an internal source within a drop
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that itself is embedded in a viscous fluid, concentration
variations at the surface result in surface tension gradi-
ents that induce surface flow and locomotion of the drop
in the viscous domain is realized. An internal secretion
of active substance is typical especially for small biolog-
ical bodies. The described system may thus serve as a
simplified quantative model for chemotaxis of biological
particles due to the activity of internal organelles such as
mitochondria, lysosomes, and Golgi aparata.

A theoretical model for the motion of a drop due to the
internal secretion of a surface-active substance was sug-
gested by Nir and Lavrenteva (2003). In the model we
considered a viscous drop that is embedded in an immis-
cible viscous fluid and contains another smaller droplet
or a point source of a surface-active substance. The in-
ner droplet is assumed to have a uniform concentration
of the secreted material, while a non-adsorbing kinetics
is used for the mass flux across the outer surface. Tse-
makh, Lavrenteva and Nir (2004) have studied the loco-
motion of such compound viscous drop embedded in an
unbounded viscous fluid. It was revealed that the internal
secretion from the inner droplet induces locomotion of
the compound viscous drop and that the inner circulation
generated by the motion of the interface of the large drop
causes a migration of the internal droplet in the same di-
rection. In general it was found that the velocity of the
inner droplet exceeds that of the large drop. With the
passage of time, the droplet approaches the interface of
the drop and the eccentricity of the system is increased.
When the distance between the centers increases, the rel-
ative velocity first grows, but as the droplet approaches
the interface, its relative motion is retarded by the strong
viscous resistance. At the limiting configuration of the
touching droplets the aggregate will move with a con-
stant speed.

The combined effect of buoyancy and spontaneous
Marangoni motion was studied as well. It was shown that
a rich variety of interaction patterns may occur, which
exhibits separation of flow in various domains. In some
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particular cases both drops remain suspended motionless
in the laboratory reference frame with the fluid circulat-
ing in a steady manner. A pair of drops may have several
equilibrium positions, with one or two of them being sta-
ble. Thus, it was demonstrated that in the absence of ex-
ternal forcing an internal secretion of surfactants results
in a spontaneous self-propulsion of the drop within an
unbounded fluid with considerable velocities and that the
flow induced by the Marangoni effect may substantially
alter the flow pattern and migration velocity of drops that
are under the influence of buoyancy.

However, in real applications, especially biological, the
motion in an unbounded medium is not the typical case
but, rather, it occurs in domains confined by various
kinds of boundaries. The aim of this work is to extend the
results of Tsemakh, Lavrenteva and Nir (2004) to these
more physically relevant situations and to study the ef-
fect of nearby solid walls, free surfaces and liquid-liquid
interfaces on the locomotion of a drop induced by the in-
ternal secretion of surface-active substance. The effect
of non-linear dependence of the surface tension on a sur-
factant concentration is studied as well. Our focus is on
the case when the dimension of the inner droplet is sig-
nificant less than that of the large one and it is natural to
model it by a point mass source with a given strength.

In section 2 the basic assumptions of our model are dis-
cussed and a mathematical formulation of the problem
is presented. A spherical drop containing a source of
a soluble weak surfactant, which is submerged into an
immiscible viscous fluid, is considered. A point source
model is assumed, neglecting the internal structure of an
organelle and its dimension compared to that of the body.
The outer fluid is confined by a flat or spherical boundary,
where conditions of insulation or constant concentration
are imposed. Three different types of outer boundary are
considered: solid wall, free surface and liquid-liquid in-
terface. All physical properties of the fluids are assumed
to be constant except for the interfacial tensions, which
are assumed to depend on the surface concentration. At
the outset, we introduce dimensionless variables based
on the size of the drop and the physical properties of the
ambient fluid. The system is governed by the follow-
ing set of dimensionless parameters: Reynolds number,
Peclet number, capillary number, and the ratios of physi-
cal characteristics of the phases (viscosity, diffusivity).

The effects of inertia, convective transport and defor-
mation were discussed in Tsemakh, Lavrenteva and Nir

(2004) for the locomotion of a drop in an unbounded
medium and were shown to exert only minor influence
on the motion induced solely by the Marangoni force. It
is anticipated that for the motion retarded by the bound-
aries, the effect of inertia and convective transport are
even smaller than in unbounded media. In contrast to
this, the deformations of the drops in the presence of
boundaries may be more pronounced than in an un-
bounded fluid. Nevertheless, here, for simplicity, we
consider the cases when all the effects mentioned above
can be neglected, i.e. the Reynolds, Peclet and capillary
numbers are assumed to be zero. Under these conditions
the quasi-steady approximation is valid, i.e. the concen-
tration and velocity fields can be found from stationary
equations (Laplace and Stokes, respectively). The prob-
lems remain coupled only through the dependence of in-
terfacial stress conditions on the variation of surfactant
concentration at the surface. The method of solution
(based on some earlier results concerning drop motion
in the vicinity of flat boundaries, see Haber, Hetsroni
and Solan, 1973, Keh and Chen, 1990, Loewenberg and
Davis, 1993) is described in section 3.

The velocity and pressure fields in each phase satisfy
the quasi-stationary Stokes equations with the following
boundary conditions: The fluid is at rest at infinity. No-
slip conditions are imposed on solid walls. The velocity
field is continuous across each fluid interface. While the
drops do not deform the difference of tangential stresses
at the interfaces is balanced by the gradient of the sur-
face tension. The problem definition is complemented
by the balance of the forces acting on each of the drops
from which the dynamics is extracted, and by the equa-
tions for temporal evolution of the positions of the drop
and the internal source. The latter may be either fixed
within the drop or passively migrating with the internal
circulation.

The above problem is solved for axisymmetric config-
urations using conformal mapping techniques. In this
procedure we first calculate the concentration distribu-
tion and the Stokes stream function from which the force
on the drop can be obtained as a sum of Marangoni force,
Stokes drag and buoyancy. Balancing these forces pro-
vides an equation on the drop’s migration velocity that is
used to advance the geometry of the system.

The results of simulations are reported in section 4. The
migration velocity of the drop in the vicinity of a no-slip
flat surface and a spherical shell is computed as a func-
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tion of separation distance for a variety of governing pa-
rameters in sections 4.1 and 4.2, respectively. The tempo-
rary evolution of drop’s position and streamline patterns
are illustrated by characteristic samples. The extension
of these results to the cases of a flat liquid-gas and liquid-
liquid interface are described in sections 4.3. In section
5 we summarize the results of the simulations and com-
pare the influence of nearby surfaces on the locomotion
of a drop induced by internal secretion of surfactants to
that obtained for other types of motion of drops available
in the literature, e.g. sedimentation and thermocapillary
migration under externally applied temperature gradient.

2 Problem formulation

Consider a drop of radius a submerged into an immisci-
ble viscous fluid and containing a point source of a solu-
ble weak surfactant of a constant flux Q. The outer fluid
is confined by a spherical or flat boundary. The geometry
of the system is illustrated in Figure 1.

All physical properties of the fluids are assumed to be
constant, except for the interfacial tension on the drops’
interface, which is considered to depend solely on the
surface concentration of the active substance, σ = σ(Γ).
This dependence can be established experimentally or
deduced theoretically from thermodynamic considera-
tions (see e.g. Chen and Stebe 1997, and Edwards, Bren-
ner and Wasan 1991). In practice, this dependence is of-
ten linearized to yield σ = σ0 + σΓ(Γ−Γ0), where Γ0 is
a reference value and with σΓ being a constant.

At the outset, we introduce dimensionless variables
based on the size of the drop and the physical proper-
ties of the ambient fluid, which are marked by a sub-
script 0. The properties of the drop’s medium and those
of the outer fluid are marked by subscript 1 and 2, respec-
tively. The bulk and surface concentrations are scaled by
C∗ = Q/(4πaD) and Γ∗ = Q/(4πD), respectively, while
the velocity is scaled by V ∗ = σ′Γ∗/η0, where η0 de-
notes the ambient fluid viscosity and σ′

is a characteris-
tic/averaged magnitude of the surface tension derivative
with respect to concentration. The system is governed by
the following set of dimensionless parameters: the ratios
of viscosities of the phases, µi = ηi/η0 (i=1,2), the ratio
of the diffusivities of the phases κ = D1/D0,the Reynolds
number, Re = ρ0aV ∗/η0, where ρ0 is the density of the
ambient phase; the capillary number Ca1 = η0V ∗/σ0,
and the Peclet number, Pe = aV ∗/D0. If the outer bound-

ary is a liquid-liquid interface, its surface tension, σ2,
may depend on concentration and Marangoni flow may
be induced at this interface as well. In the latter case,
addressed below as a case of an active outer surface, ad-
ditional parameter, M1 = σ′/σ′

2, characterizes the relative
intensity of the induced Marangoni flow at this interface.

As mentioned before, for simplicity, we consider the
cases when inertia and convective transport and defor-
mation effects can be neglected, i.e. negligibly small Re
Pe and Ca

For any given configuration, the dimensionless concen-
tration fields ci(x, t) satisfy Laplace equation

∇2ci = 0, x ∈ Ωi\{xs}, i = 0,1. (1)
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Figure 1 : A sketch of the geometry of the system
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There is a point source of concentration at a given loca-
tion inside the drop

c1 → 1
|x−xs| , |x−xs| → 0. (2)

We assume a local thermodynamic equilibrium between
the surface and the bulk phases, yielding that the surface
concentration of a surfactant is a function of the bulk one.
These functional relations, which are addressed in the lit-
erature as adsorbtion isothermes, may be obtained exper-
imentally or deduced theoretically from detailed micro-
scopic analysis of adsorbtion-desorption (see e.g. Chen
and Stebe 1997, and Edwards, Brenner and Wasan 1991).
Further on, we assume the most simple linearized form
of the adsorption isotherms, ci = kiΓ. It follows from
these assumptions that the equilibrium bulk concentra-
tions at the interface are proportional, c1= (k1/k0)c0. For
the simplicity of presentation we introduce a modified
concentration c0 = (k0/k1)c0in the continuous.phase and
c1 = c1in the dispersed phase, which is continuous across
the interface. Further on, the bars are omitted. Note that
this transformation is equivalent to different scaling of
concentration in the two phases. Since the surface con-
centration is proportional to the continuous bulk concen-
tration, it is possible to consider the dependence of sur-
face tension on this concentration c. Thus, the surface
concentration is excluded from the formulation of the
problem.

The modified concentration and the mass flux are contin-
uous through the surface of the drop, i.e.,

c1 = c0,
∂c0

∂n
= κ

∂c1

∂n
, x ∈ ∂Ω1, (3)

while, at the outer boundary, either the concentration is
constant

c0 = 0, x ∈ ∂Ω0, (4)

or the mass flux vanishes

∂c0

∂n
= 0, x ∈ ∂Ω0. (5)

The velocity, u, and pressure (modified by adding the
gravity force potential), p, fields in each phase satisfy
the quasi-stationary Stokes equations

µi∇2ui = ∇pi, ∇ ·ui = 0, x ∈ Ωi, i = 0,1,2, (6)

and the following boundary conditions are applied at the
drop’s interface: the velocity field is continuous

u0 = u1, x ∈ ∂Ω1, (7)

The normal components of the velocity of the fluid at the
surface of a drop and of the velocity of the drop, V,are
equal

V ·n = u0 ·n, x ∈ ∂Ω1, (8)

The balance of tangential stresses at the interface reads

Π1
τ −Π0

τ =
∂σ
∂τ

=
∂σ
∂c

∂c
∂τ

, x ∈ ∂Ω1. (9)

Here τ denotes an element tangential to the interface and

Πi
τ = Πi: nτ, where Πi =−piI+µi

[
∇ui +(∇ui)

T
]

is the

stress tensor, while n and τ are unit vectors normal and
tangential to the surface.

If the outer boundary is solid, a no-slip condition is im-
posed

u0 = 0, x ∈ ∂Ω0, (10)

while at an outer free surface we set

Π0
τ =

∂σ2

∂τ
, u0 ·n = 0, x ∈ ∂Ω0. (11)

where σ2 denotes the surface tension at ∂Ω0. In the case
of a liquid-liquid interface ∂Ω0, the problem formulation
is modified in a natural way. Equation (4) and (6) are
solved in the domain of the third phase Ω2=R3\(Ω0 ∩
Ω1)and boundary conditions at ∂Ω0 are replaced by those
similar to the conditions at ∂Ω1.

The balance of the forces acting on the drop reads

F =
ZZ
©

∂Ω1

Π0•nds = 0, (12)

while the temporal evolution of the position of the center
of the drop is governed by

Ż = V, Z(0) = Z0. (13)

The source position inside the drop, xs(t), can be either
fixed with respect to drops surface, or it may move pas-
sively with the flow. In the first case, the equation of
source motion is similar to (13)

ẋs = V, xs(0) = x0
s , (14)
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while in the second case, the drop’s velocity should be
replaced by the velocity of the liquid at a corresponding
point

ẋs = u(xs(t), t), xs(0) = x0
s . (15)

We are interested also in the position of the source inside
the drop relative to its center, d(t) = xs(t)−Z(t). Obvi-
ously, in the case of a fixed source d does not depend on
time.

The formulation of the problem is completed by specify-
ing dependence of the surface tension on concentration.
Most of our results are computed under assumption that
this dependence is linear

σ = σ0 −σ′(c−c0), (16)

which provides a good approximation for moderate val-
ues of concentration and small variations along the in-
terface. However, for high concentrations, the change
of surface tension with concentration considerably slows
down (see e.g Adamson, 1990). To describe this phe-
nomenon we admit a quasi-linear model: The depen-
dence of surface tension on concentration is divided to
two different regions: In the first region the dependence
is strong and can be described by (16), while in the sec-
ond region, where the surface tension is low, its change
with concentration is very slow and it can be approxi-
mated by a constant,

σ =
{

σ0 −σ′(c−c0), c < c1 = c0 +(σ0 −σ1)/σ′,
σ1 c ≥ c1.

(17)

Most of the calculations presented in this paper are per-
formed under the assumption of a linear surface tension
(16). A detailed study of the effect of non-linear sur-
face tension (17) was carried out for the case of an insu-
lated plane wall and it is anticipated to be qualitatively
the same in the other cases.

3 Method of solution

Under the quasi-stationary approximation, the concentra-
tion field resulting from problems (1) – (4) or (1) - (3),
(5) may be solved for any given configuration of the sys-
tem, independent of the hydrodynamic part, and provide
the distribution of concentration on the interface ∂Ω1. As

soon as the latter is known, the velocity field can be ob-
tained for any given velocity of the drop, V, by solving
(6) – (11). Finally, a use is made of the linearity of creep-
ing flow to find the migration velocity from the net force
balance (12).

If the motion of the droplet is axi-symmetric, as it is in
the case of the motion driven solely by the Marangoni
effect, it is convenient to apply orthogonal coordinates,
(ξ,ζ,φ), conjugate to the cylindrical system (z,r,φ), hav-
ing the interface of the drop and the outer boundary as
coordinate surfaces and to introduce an axi-symmetric
Stokes stream function Ψ such that the velocity compo-
nents are

uξ =
h
r

∂Ψ
∂ζ

, uζ = −h
r

∂Ψ
∂ξ

where h is a metric coefficient.

The stream function satisfies the following equation
(Happel and Brenner, 1965)

E2
(
E2Ψi

)
= 0, x ∈ Ωi, i = 0,1. (18)

with

E2 = rh2
[

∂
∂ξ

(
1
r

∂
∂ξ

)
+

∂
∂ζ

(
1
r

∂
∂ζ

)]

In this representation the subscripts 0 and 1 correspond
to domains of the continuous outer phase with β < ξ ≤
α, and the droplet, ξ > α, respectively. The boundary
conditions at the interface of the drop can be rewritten in
terms of the stream function as

Ψ0 = Ψ1 = −r2V,
∂Ψ0

∂ξ
=

∂Ψ1

∂ξ
,

Π0
ξζ −Π1

ξζ = h
∂σ
∂ζ

, ξ = α, (19)

while the conditions at the solid wall and free surface
read

Ψ0 = 0 and
∂Ψ0

∂ξ
= 0, ξ = β, (20)

or

Ψ0 = 0 and Π0
ξζ = M1h

∂σ2

∂ζ
, ξ = β, (21)

respectively.
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As soon as the stream function is known, the force ex-
erted on a body by the fluid in the positive z-direction
can be calculated following Happel and Brenner, 1965,
as

F = µπez

Z
r3 ∂

∂ξ

(
E2Ψ

r2

)
dζ. (22)

Due to the linearity of the problem, the flow field may
be constructed as a superposition of a Marangoni flow
generated around the interface of the drop at rest by a
given distribution of surfactants and a flow that would be
generated by the motion of the drop in the absence of the
Marangoni effect. Similarly, the force acting on the drop
can be represented as a sum of the following forces:

1. Marangoni force Fm that is exerted on the drop at
rest by a flow generated by a non-uniform distribu-
tion of concentration. Supposing V = 0 in bound-
ary condition (19) we solve the system of equations
(18) – (20) or (18), (19), (21) and then find the force
Fmaccording to (22);

2. Hydrodynamic drag force,VF , that acts on a moving
drop in the absence of the Marangoni effect. Fcan
be found by applying (22) to the solution of (18) –
(20) or 18), (19), (21) with V = 1 and with ∂σ

∂ζ = 0
in boundary condition (19).

If the drop does not touch the outer surface, the migration
velocity V is found from the balance of the forces acting
on the drop as

V = −Fg +Fm

F
. (23)

When the separation between the interfaces is larger than
or comparable with the dimension of the drop, the natural
choice is to use the bi-spherical coordinate system (ξ,ζ,φ)
connected with the two droplets that is linked with the
cylindrical system by the following relations:

z =
sinhξ

h
, r =

sinζ
h

, h =
1

sinhα
(coshξ−cos ζ) .

The interfaces of the drop and the outer boundary are de-
scribed by the coordinate surfaces ξ = α ≥ 0 and ξ =
β < α, respectively. If the outer boundary is a plane z =
0, then β = 0 and α can be defined from

coshα = s+1,

where s is a given separation distance between the drop
and planar surface. In the case of a spherical outer bound-
ary, α and β can be determined by

coshβ =
(1−R+ s)2 +1−R2

2(1−R+ s)
,

coshα =
1−R2 − (1−R− s)2

2R(1−R− s)
, 0 < β < α,

with R being the radii ratio.

It is convenient to present the concentration as a sum

ci = G(x,xs)+bi(x), i = 0,1,

where G(x,xs) is a Green function for Poisson equation
in half space with boundary conditions (4) or (5), while
bi is a bounded harmonic function in Ωi satisfying the
boundary conditions (4) or (5) at ∂Ω0 and

b0 = b1 and
∂b0

∂n
−κ

∂b1

∂n
= (1−κ)

∂G(x,xs)
∂n

,

x ∈ ∂Ω1. (24)

The general solution of the Laplace equation is expressed
in the form of Fourier series (see e.g., Subramanian and
Balasubramaniam, 2001)

bi = (coshξ−cos ζ)1/2

×
∞

∑
n=1

[
Ei

n cosh(n+1/2)ξ
+Gi

n sinh(n+1/2)ξ

]
Pn(cosζ), i = 0,1,

(25)

where Pn(µ) are Legendre polynomials. Substituting
these series into boundary conditions (24) and (4) or (5)
results in an infinite system of linear algebraic equations
for the coefficient Ei

n and Gi
n, which we then solve for a

specified level of accuracy (see Appendix for more de-
tails). Note that, in a special case κ = 1, the solution for
concentration can be obtained in an explicit form as

ci = G(x,xs) =
1

|x−xs| ±
1

|x−xm| , x ∈ Ωi, i = 0,1,

(26)

where xm is a mirror image of xs with respect to ∂Ω0,
while ‘+’ and ‘-‘ signs reflect insulation and constant
concentration on ∂Ω0.
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As soon as the concentration field is available, the stream
function can be determined using the algorithm devel-
oped for computing the interaction of a drop and a plane
surface under Marangoni convection ( Barton and Subra-
manian, 1990).

The general solution of (18) in bi-spherical coordinates
was given by Stimson and Jeffery (1926) as

Ψi = (coshξ−µ)−3/2
∞

∑
n=1

W i
n(ξ)C−1/2

n+1 (µ), i = 0,1,

(27)

where C−1/2
n+1 (µ) are the Gegenbauer polynomials and

with the general form of the coefficients W i
n being

W i
n = Ai

n cosh(n−1/2)ξ+Bi
n sinh(n−1/2)ξ+

Ci
n cosh(n+3/2)ξ+Di

n sinh(n+3/2)ξ (28)

Substituting (27) and (28) into boundary conditions (19)
– (21) results in a finite system of linear equations for the
coefficients of the stream function for any choice of n.
The right-hand side of this system depends on the coef-
ficients Ei

n and Gi
n, (see Golovin, Nir and Pismen, 1995,

and Appendix for the details). The force exerted on the
drop by the flow can be computed according to Happel
and Brenner (1965).

F =
2πµ0

√
2

sinhα

∞

∑
n=1

(
A0

n +B0
n +C0

n +D0
n

)
.

As soon as the Marangoni force, Fm, and viscous resis-
tance, F, are known, the migration velocity is found from
(23) and the drop’s position is updated according to (13).
For the problem with a free suspended source, represen-
tation (27), (28) with computed coefficients is used to de-
termine the velocity of the source, the position of which
is then updated according to (15).

4 Results of simulations

The crucial part of the solution of the problem is the de-
termination of the migration velocity for a given geome-
try of the system that is characterized by separation dis-
tance, s, and position of the source inside the drop, d. In
this section we present a parametric analysis of this aux-
iliary problem for various types of outer boundaries and
several characteristic samples of dynamic calculations.

4.1 Plane solid wall

4.1.1 Migration velocity and velocity of the source

The velocity of the drop and the relative velocity of the
source within the drop in the vicinity of a plane solid
wall z = 0 (see Figure 1a) are plotted versus the separa-
tion distance in Figs 2 and 3, respectively. Figs (a) and
(c) correspond to an insulated wall, while (b) and (d) cor-
respond to a constant concentration at ∂Ω0.

The dependence of the velocity on the separation dis-
tance between the drop and the wall, s = Z – 1, and on the
position of the internal source, d, is illustrated in Figs (a)
and (b) for a fixed viscosity ratio µ1 = 0.1. Various curves
correspond to various positions of the source. The value
of d is positive when the source is located above the cen-
ter of the drop and it is negative in the opposite case (see
Figure 1). d= 0 corresponds to the source located at the
center of the drop. Similarly, V is positive when the drop
migrated from the wall and negative in the opposite case,
while at the equilibrium position V= 0. Curves 1, 2, 3, 4,
and 5 in Figs (a) and (b) correspond to d= 0.8, 0.3, 0, –
0.3 and – 0.8, respectively.

One can see that if the source is located near the upper
interface (see curves 1) the drop migrates from the wall,
while the free source will move toward the upper surface.
These velocities grow monotonically with the separation
distance up to the value of the velocity in an unbounded
fluid far from the wall. When the source is located fur-
ther from the surface above the drops center (see curves
2), the dependence of the velocity on the separation dis-
tance is no more monotonic. For an insulated wall, Figs
(a), for very small separations the velocities are negative,
i.e. the drop is attracted to the wall and the free source
approaches the lower interface. At a certain distance, the
migration velocity vanishes and for larger separations the
velocity increases monotonically, while the free source
approaches the upper interface. For the fixed source this
critical distance corresponds to an unstable equilibrium
configuration. In contrast to this, near a wall with a con-
stant concentration (Figs. b), the velocities are always
positive (i.e. the drop moves from the wall and the free
source migrates to the upper surface) and achieve their
maximum values at a certain (different) separation dis-
tances and then reduce to an asymptotic value, which
conforms to the value of the velocity in an unbounded
fluid.

A source located at the center (lines 3) induces a uniform
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Figure 2 : Migration velocity of a drop near a solid wall
with a zero mass flux (a and c) or uniform concentration
(b and d) versus separation distance. κ = 1. (a) and (b):
µ1 = 0.1, curves 1, 2, 3, 4, and 5 correspond to d = 0.8,
0.3, 0, – 0.3 and – 0.8, respectively. For (c) d = 0.1 and
for (d): d = – 0.1, while curves 1, 2, and 3 correspond to
µ1 = 0.1, 1, and 5, respectively.
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Figure 3 : Relative migration velocity of a free source
inside a drop near a solid wall with a zero mass flux (a
and c) or uniform concentration (b and d) versus sepa-
ration distance. κ= 1. (a) and (b): µ1 = 0.1, curves 1,
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respectively.
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distribution of concentration at the interface of the drop
in an unbounded fluid and no Marangoni flow occurs in
this case. The presence of a nearby wall breaks the sym-
metry and thus results in the migration of such a drop.
Our calculations reveal that a drop with a source at the
center is attracted to an insulated wall, while the relative
velocity at its center is negative, Figs. (a). In contrast to
this, the drop is repulsed from the wall with constant con-
centration having a positive velocity at the center, Figs.
(b). In both cases the migration velocity vanishes at near
contact and at large separations, while the velocity at the
center tends to a constant value at a near contact config-
uration.

If the source is located lower than the center (lines 4 and
5), then the drop always moves towards an insulated wall
and the free source approaches the lower interface, Figs.
(a), while for the wall with uniform concentration, Figs.
(b), there may exist critical separations when the drop
migration velocity and the velocity at the location of the
source vanish. Note that, generally, these two critical
separations are different. The first critical separation de-
scribes a stable equilibrium position of the drop with a
fixed source, such that the drop is attracted at higher sep-
arations and repulsed for lower ones. A stable equilib-
rium of a drop with a free source is possible only for very
special conditions when the two velocities, of the drop
and of the source vanish simultaneously. At near con-
tact configuration, the migration velocity vanishes, while
the velocity at the source location tends to some non-zero
value.

The dependence of the migration velocity and the veloc-
ity at the location of the source on the viscosity ratio is il-
lustrated in Figs. (c) and (d), where curves 1, 2 and 3 cor-
respond to viscosity ratio 0.1, 1 and 5, respectively. The
distance between the source and the center of the drop d=
0.1 and – 0.1 for Figs. (c) and (d), respectively. It is ev-
ident that, for an insulated wall, Figs. (c), closer drops
are attracted to the wall while the free sources within
them migrate to the lower surface. In contrast to this,
more distant drops are repulsed and the velocities at the
source locations are positive. At a certain separation,
a little smaller than the drop’s radius, the drop’s veloc-
ity vanishes. This separation corresponds to an unstable
equilibrium of a drop with a fixed internal source. For a
wall with uniform concentration (Figs. d), the drop is at-
tracted for large separation and repulsed for smaller ones,
while the relative velocity at the location of the source is

positive for small separations and negative for larger. At
a critical separation, the drop with a fixed source is at
a stable equilibrium position. The magnitude of the both
velocities decreases with the viscosity ratio, and vanishes
at µ1 → ∞, a limit that corresponds to the case of a solid
particle. At an opposite limiting caseµ1 → 0, describing
a gas bubble or an inviscid drop, the migration veloc-
ity tends to some finite value. An equilibrium separation
turns out to be almost independent of the viscosity ratio.

4.1.2 Effect of a non-linear surface tension

The results of the previous section were calculated for
a linear dependence of surface tension on concentration
(16), which provides a good approximation for moder-
ate values of concentration and small variations along
the interface. However, for higher concentrations that are
typical when the source is located near the interface, the
change of surface tension with concentration slows down
considerably (see e.g. Adamson, 1976). To describe this
phenomenon we admit a piecewise-linear model (17),
where the surface tension remains a low constant, when
concentration exceeds some critical value c1. Obviously,
if the concentration at the entire interface in less than c1,
the results do not differ from those obtained for the linear
surface tension. In the opposite case, when the concen-
tration at the entire interface exceeds c1, the surface ten-
sion is uniformly constant and no Marangoni flow takes
place.

The effect of a non-linear surface tension is illustrated
in Fig.4, where the migration velocity is plotted versus
the distance between the drop’s center and the source for
various positions of the drop relative the wall and various
values of a critical concentration c1. The case of linear
surface tension is presented by curves 4, while curves 1,
2 and 3 correspond to c1 = 0.5, 0.7 and 1, respectively.
Curves in plot (a) and (c) are calculated for the case of
large separation distance s > 5, where the influence of
the wall is negligibly small. These curves are almost the
same for insulated and constant concentration boundary
conditions and coincide with those computed for an un-
bounded outer medium.

Results for smaller separation distance s = 0.3 when the
influence of the wall is significant are presented in Figs
4 (b) and (d) for a constant concentration and insulation
conditions, respectively. As anticipated, for high criti-
cal concentration and near-center position of the source,
the concentration all over the surface does not exceed
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Figure 4 : Migration velocity of a drop located far from
and near a solid wall versus the position of the source
relative to the drop’s center, µ1=1 and κ = 1. (a) s > 5
and (b) s = 0.3, uniform concentration. (c) s > 5 and (d)
s = 0.3, zero mass flux. Lines 1, 2, 3 and 4 denote c1 =
0.5, 0.7, 1 and a linear surface tension, respectively.
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Figure 5 : Evolution of the drop’s center position with
time near a solid wall with zero mass flux (a and c) and
constant concentration (b and d) for µ1 = 1 and κ = 1.
Solid and dashed curves (in (a) and (b)) denote cases
with a fixed source position, while dotted curves reflect a
freely suspended source. Curves in (c) and (d) are com-
puted for a freely suspended source. (a) d = 0.1; (b) and
(d) d0= - 0.1; (c) d0 = - 0.1 for the solid line and d0 = 0
for the dashed curve.



Locomotion of a Viscous Drop 141

the critical value and, hence the migration velocity is the
same as in the linear case. When the source is located
near the interface, a region with super critical concen-
tration where surface tension gradient appears. In such
cases, the migration velocity for the non-linear surface
tension is lower than for the linear one. The slow down
effect is much more pronounced when the source is lo-
cated closer to the interface, in which case a larger part
of interface has a high concentration.

Summarizing the results of the velocity calculations, one
can conclude that a wall with zero mass flux attracts
a drop undergoing spontaneous Marangoni migration,
while a wall with a uniform concentration has a repul-
sive effect. On the other hand, the presence of a nearby
solid wall results in an increase of the hydrodynamic re-
sistance and, hence, leads to smaller migration velocities
than those observed in an unbounded fluid.

4.1.3 Dynamics of the drops and flow patters

Typical examples of the evolution of the drop’s center po-
sition with time near solid walls with zero mass flux and
constant concentration are presented in Figs. 5a, 5c and
5b, 5d, respectively. All the curves in Fig 5 are calcu-
lated for µ1=1 and κ = 1. In Fig. 5a the initial source
position is d0= 0.1; solid and dashed curves are com-
puted for a fixed source position, d(t) = d0 =0.1, with
Z0= 1.6 and 1.7, respectively. One can see that in the
first case the drop approaches the wall while in the sec-
ond case it moves away from it. This indicates that an
equilibrium position between these two values is unsta-
ble. The dotted curve was calculated under the condition
that the source is freely suspended within the drop and
moves with the flow, i.e. d(t)was computed according to
(15), while the initial conditions are the same as for the
solid curve. In this case the source approaches the upper
interface of the drop and the Marangoni effect becomes
stronger with time that leads to the acceleration of the
drop.

In Fig. 5b, the source is initially closer to the wall, d0 =–
0.1. Again, solid and dashed curves are computed for the
fixed source position, d(t) = d0 =– 0.1, with Z0= 1.6 and
1.72, respectively. In contrast to the motion near an in-
sulated plane, which is illustrated in Fig. 5a, here drops
which are initially located near the wall (solid curve) mi-
grate away from the boundary, while those initially lo-
cated further from the wall (dashed curve) are attracted
to it. Such a behavior indicates the approach of the drop

to a stable equilibrium position. The dotted curve was
calculated under the condition that the source is freely
suspended within the drop and illustrates and accelerated
upwards motion of the drop due to the approach of the
source to the upper interface of the drop.

In Figs. (c) and (d) both curves are calculated for a
freely suspended source. In Fig 5c, the drop is ini-
tially separated by a distance of one radius from the wall,
the dashed line corresponds to initially centered source,
d0 =0, while for the solid curves d0 =– 0.1. Both the drop
and the source migrate upwards in the first case and in the
opposite direction in the second case. In Fig 5d, solid and
dashed curves were calculated for d0 =– 0.1 and Z0= 1.5
and 2, respectively. Again, in both cases the drop and the
source migrate in the same direction and the motion of
the drop is accelerated. In contrast to the case of fixed
source position (see Fig 5b), there is no equilibrium po-
sition of the drop. Various types of the flow induced by
the motion of a drop in the vicinity of a solid wall are
illustrated in Fig 6. All the streamlines were calculated
for µ1 = 1 and κ = 1. For figures of the left column (a,
c and e) the solid wall is insulated, while for the rest of
the figures (b, d and f) the uniform concentration condi-
tion is imposed. In Fig 6a the separation distance is s=
1, while the distance between the drop’s center and the
source is d =– 0.3. The drop migrates upwards from the
wall and one can see two vortices in the flow. In Fig. 6b,
where d= – 0.1 and s = 0.1, the drop migrates upwards
from the wall and a single vortex is evident. A similar
one vortex pattern that corresponds to the case when the
drop moves towards the wall with a uniform concentra-
tion is illustrated in Fig. 6c, where s = 0.5, d = −0.3.
In Fig. 6d, where s = 1.7, d = −0.1, the flow domain
is separated into a vortex and a domain without closed
streamlines. The streamline patterns around stationary
drops are illustrated in Figs. (e) and (f), where d = 0.21,
s = 0.2, and d = −0.1, s= 0.68, respectively. In both
cases, a four vortices structure of the flow is evident, two
of them inside the drop and another two in the outer fluid.

4.2 Spherical cavity

The velocity of the drop and the relative velocity of the
source within a spherical cavity of R = 5 with constant
concentration at the wall (see Figure 1b) are plotted ver-
sus the separation distance in Fig. 7. The position of the
drop changes from near contact with the lower wall, s=
10−3, up to a concentric position, s= 4. Velocities for
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Figure 6 : Streamline patterns for a drop near a wall, µ1 = 1 and κ = 1. In (a), (c) and (e) the solid wall is insulated.
In (b), (d) and (f) uniform concentration condition is imposed. (a) s= 1, d =– 0.3, (b) s= 0.1, d = – 0.1. In (a) and (b)
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(e) s = 0.21,d= 0.2, (f) d = – 0.1, s= 0.68, (e) and (f) show equilibrium positions.
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the case when the drop is located above the center of the
container can be obtained from simple symmetry consid-
erations. Figs. (a) and (b) correspond to the velocity of
the drop, while (c) and (d) correspond to the velocity of
fluid at the location of the source. Curves 1, 2, 3, 4, and
5 in Figs. (a) and (c) were calculated for µ1 = 0.1 and
d= 0.7, 0.3, 0. – 0.3, and – 0.7, respectively. One can
see that, similar to the case of a plane wall, if the source
is located near the upper interface (see curves 1 and 2)
the drop migrates from the wall, while the free source
will move toward the upper surface. For a source posi-
tion closer to the interface, curve 1, the velocity of the
drop grows monotonically with the separation distance,
while the velocity at the location of the source achieves
a maximum value at some off-center position and then
decreases. The latter type of behavior is typical for both
velocities when the source is located closer to the center
of the drop (see curves 2). A source located at the center
(lines 3) induces the motion of the drop away from the
nearest wall with constant concentration having a posi-
tive velocity at the center. Both velocities vanish at the
symmetric configuration, when the drop is located at the
center of the container, where a source induces a uniform
distribution of concentration at the interface of the drop
and no Marangoni flow occurs. If the source is located
lower than the center (lines 4 and 5), then, again similar
to the case of a plane wall, there may exist critical separa-
tions when the drop migration velocity and the velocity
at the location of the source vanishes. Generally, these
two critical separations are different. The first critical
separation describes a stable equilibrium position of the
drop with a fixed source, such that the drop is attracted at
higher separations and repulsed for lower ones.

The dependence of the migration velocity and the veloc-
ity at the location of the source on the viscosity ratio is il-
lustrated in Figs. 7b and 7d, where curves 1, 2 and 3 cor-
respond to viscosity ratio 0.1, 1 and 5, respectively. The
distance between the source and the center of the drop is
d= 0.1 for Fig (c) and d= – 0.1 for Fig (d). It is evident
that drops with small separation distance, s, are repulsed
from the nearest wall while the free sources within them
migrate upwards. In contrast to this, more distant drops
are attracted and the velocities at the source locations de-
pends on its position. At a certain separation, s ∼ 0.2, the
drop’s velocity vanishes. This separation corresponds to
a stable equilibrium of a drop with a fixed internal source.
The magnitude of both velocities decreases with the vis-

cosity ratio, and vanishes at µ1 → ∞, which corresponds
to the case of a solid particle. At an opposite limiting case
µ1 → 0, describing a gas bubble or an inviscid drop, the
migration velocity tends to some finite value. The equi-
librium separation turns out to be almost independent of
the viscosity ratio.

Typical examples of the evolution of the drop’s center
position within a spherical shell are presented in Fig. 8.
All the curves in Fig. 8 are calculated for µ1 = 1, κ = 1 and
d0 =– 0.1; solid and dashed curves are computed for s0=
0.3 and 0.8, respectively. In Fig 8a the source position is
fixed, d(t) = d0 =– 0.1. One can see that in the first case
the drop moves away from the wall while in the second
case it migrates in the opposite direction. This indicated
that an equilibrium position between these two values is
stable. The curves in Fig 8b that were calculated under
the condition that the source is freely suspended within
the drop and moves with the flow, i.e. d(t)was computed
according to (15) with the same initial conditions as for
Fig. 8a, illustrate upwards and downwards accelerated
motion of the u drop and no equilibrium is evident.

Various types of flow patterns induced by the motion of a
drop within a spherical shell with constant concentration
are illustrated in Figure 9. In Figure 9a the separation
distance is s= 0.4 and an upward motion of the drop is
evident, while Figure 9b illustrates a streamline pattern
at an equilibrium separation s =0.536.

4.3 Free surface and a liquid/liquid interface

Free surface and a liquid/liquid interface differ from
a solid wall in two main aspects: First, it is mobile,
i.e. tangential velocity on the interface does not vanish
and, hence, its retardation effect on the flow is less pro-
nounced than that of a solid boundary. Second, its sur-
face tension may depend on concentration as well. In this
case, the Marangoni flow is induced not only at the vicin-
ity of the drop, but also at the vicinity of the boundary. In
what follows we address this type of interface as an ac-
tive one in order to distinguish it from a passive interface
with a constant surface tension. For mobile interfaces we
restrict our considerations to the most physically relevant
insulation condition at the interface.

The velocity of the drop in the presence of a plane in-
terface z = 0 is plotted versus the separation distance in
Figure 10. (a) and (b) correspond to an active surface of
the drop with a passive outer boundary and to the oppo-
site case, respectively.
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Figure 7 : Velocity of a drop (a and b) and of the source
(c and d) versus separation distance. (a) and (c): µ1=0.1,
curves 1, 2, 3, 4, and 5 correspond to d = 0.7, 0.3, 0,
–0.3 and – 0.7, respectively. (b): d = 0.1; (d): d = –
0.1. Curves 1, 2, and 3 correspond to µ1=0.1, 1, and 5,
respectively.
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Figure 9 : Streamline patterns for µ1= 1, κ = 1,
R =2.5,d =– 0.1. The spherical solid wall is insulated.
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Figure 12 : Migration velocity of a drop in the vicinity
of interface versus separation distance when µ2 = 0, κ =
1. The curves 1, 2, and 3 correspond to d =0.3, µ1= 8,
1, and 0.2, respectively. (a) active drop. (b) active outer
surface.

Note that due to the linearity of the problem the gen-
eral case, when the both surfaces are active, may be ob-
tained by superposition of the two special cases men-
tioned above. Different curves of each plot are calculated
for different positions of the source.

One can see that in the case of an active drop’s interface,
Figure 10a, the dependence of the migration velocity on
the separation distance is similar to that in the case of a
solid wall. Thus, if the source is located near the upper
interface (see curves 1 and 2), the drop migrates from
the wall with a velocity growing monotonically with the
separation distance up to value of the velocity in the un-
bounded fluid far from the outer boundary. A source
located at the center (line 3), which induces a uniform
distribution of concentration at the interface of the drop
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and no Marangoni flow in an unbounded fluid, results in
the attraction of the drop to an insulated interface. If the
source is located lower than the center (lines 4 and 5), the
drop moves towards the insulated plane. The migration
velocity vanishes at contact and tends to the velocity in
unbounded fluid with the growth of separation distance.
It is not monotonic, achieving its maximum value at a
certain separation of O(0.1). The magnitude of the ve-
locity is larger than in the vicinity of solid wall growing
with the decrease of the viscosity of the outer fluid, µ2 up
to the maximum value at the free surface case, µ2 = 0, as
illustrated in Figure 11.
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Figure 13 : Migration velocity of a drop in the vicinity
of interface versus separation distance when µ1= 1, κ =
1, and d =0.3 (a) active drop. The curves 1 and 2 cor-
respond to µ2= 20 and 0.2, respectively. (b) active outer
surface. The curves 1, 2, and 3 correspond to µ2= 8, 1,
and 0.2, respectively.

When the interface of the drop is passive, Figure 10b,
the flow is induced by the Marangoni flow at the active

outer surface. In this case, the direction of drops mo-
tion is independent of the position of the source. The
drop migrates towards the plane with the migration ve-
locity vanishing at large and small separation distances.
At fixed separation, the velocity is larger for lower po-
sition of internal source. The magnitude of the velocity
exceeds that in the case of active drop. It increases with
the decrease of the viscosity of the outer fluid, µ2,up to
a maximum value at the free surface case, µ2 = 0, as il-
lustrated in Fig. 11. When both surfaces are active, Fig.
11, the attractive effect of the plane may be compensated
by an upward motion induced by the active surface of the
drop at some equilibrium position, corresponding to zero
migration velocity at curves 1 and 2. This equilibrium is
an unsteady one as the drop is attracted for lower loca-
tions and migrates upwards for higher ones.

The dependence of the migration velocity on the viscos-
ity ratio between the drop and the surrounding medium
and between the two liquids separated by the plane inter-
face at given separation is illustrated in Figures 12 and
13, respectively.

Figs (a) correspond to the case of an active drop, and Figs
(b) are calculated for an active outer surface. One can see
that the dependence on the viscosity of the drop is much
stronger in the first case when the dependence on the vis-
cosity of the outer medium is minor. The magnitude of
the velocity decreases with the increase of the drop vis-
cosity µ1, up to the maximum value at the free surface
case, µ1 = 0, as illustrated in Fig. 12. For the case of an
active drop, the velocity vanishes as µ1 → ∞, while for
the case of active it tends to a nonzero value.

The magnitude of the velocity is larger than in the vicin-
ity of solid wall growing with the decrease of the viscos-
ity of the outer fluid, µ2, up to the maximum value at the
free surface case, µ2 = 0, as illustrated in Fig. 13.

Summarizing the results of the velocity calculations, one
can conclude that a mobile boundary with zero mass flux
attracts a drop undergoing spontaneous Marangoni mi-
gration. This effect is much more pronounced when the
interfacial tension on this boundary depends on the con-
centration of a secreted surfactant.

5 Discussion and conclusions

We have studied the motion of a drop in the vicinity of a
solid or a fluid-fluid boundary. The motion is induced by
the internal secretion of a surface-active substance. The
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latter distributes non-uniformly on the drop surface and
the resulting stress variation drives the locomotion of the
drop. Cases of plane and spherical boundaries have been
considered as well as cases of linear and non-linear de-
pendence of the interfacial tension on the concentration
of the surfactant. The dependence of the drop migration
velocity on the location of the source and on the separa-
tion distance between the drop and the outer boundary,
as well as on the physical parameters of the system, is
reported. The dynamics of the drop is studied in the case
of a fixed location of the source inside the drop, and in
the case when it passively moves with the internal circu-
lation.

The interaction between suspended particles and bound-
aries in viscous flow is a subject with a rich literature.
In this section we compare our results to those available
in the literature for a particle embedded in various types
of motion. We restrict our review to the cases closest to
the situation considered in this paper, i.e. creeping flow
induced solely by the motion of a droplet settling in a
gravity field or undergoing thermocapillary migration.

In the sedimentation problems, an external force exerted
on a particle does not depend on its position with respect
to the boundary that affects solely a viscous resistance to
the motion. A comprehensive introduction to the topic
can be found in Happel and Brenner (1965). Bart (1968),
who studied the case of a fluid drop settling towards a
liquid-liquid interface, demonstrated that the presence of
a nearby boundary strongly increases viscous drag on a
droplet. For a near contact configuration, the drag force
asymptotic behavior was studied, making use of the lu-
brication approximation analysis, by Davis, Schonberg
and Rallison (1989) and by Barnocky and Davis (1989).
It was found that, when the separation distance tends to
zero, viscous drag on an undeformable particle tends to
infinity as s−1 for a solid wall and as s−1/2 for a mobile
interface. Thus it takes a drop a finite time to fall on a mo-
bile interface and infinite time to contact a solid wall. The
effects of slight deformability of the drops were studied
by Yiantsios and Davis (1991) and by Loewenberg and
Davis (1993), while the influence of the wall roughness
was the subject in Zhao, Galvin and Davis (2002) and
Zhao and Davis (2003).

The main difference between sedimentation and thermo-
capillary migration is that, in the latter case, not only
viscous resistance but also the temperature distribution
and hence “thermocapillary force” depends on the geom-

etry of the system. Bi-spherical coordinates were em-
ployed to determine thermocapillary migration velocity
of a bubble or droplet perpendicular to an isothermal pla-
nar solid and free surface in Keh and Chen (1990) and
Barton and Subramanian (1990, 1991). Asymptotic so-
lutions of this problem were obtained by Chen and Keh
(1990) and Chen (1999a) using the reflection method
and by Loewenberg and Davis (1993) employing lubri-
cation approach. These results were extended to the
cases of thermocapillary migration parallel to an insu-
lated plane in Chen (1999b) and to the migration in an
arbitrary direction with respect to a planar surface with
constant temperature gradient by Meyyappan and Sub-
ramanian (1987) and by Chen (2000). The effect of the
deformability of a drop has been studied in Ascoli and
Leal (1990), while thermocapillary motion of a drop be-
tween two plane walls was the subject of Keh and Chen
(2001, 2002). Summarizing findings of the researches
mentioned above, it was demonstrated that, though the
boundary effect on the thermocapillary motion is much
weaker than on the motion driven by body force, the
former becomes significant for small separations. For
a droplet moving normal to a plane wall, the velocity
is always smaller than that of a particle isolated in an
unbounded domain. In contrast to this, the presence of
a wall can be an enhancement factor for the translation
in the parallel direction. The effect of the presence of a
passive free surface can be either retarding or enhancing
depending on the parameters of the process.

In this paper it was demonstrated that, similar to the mo-
tion under external temperature gradient, the presence
of a nearby boundary affects both the hydrodynamic re-
sistance to the drops motion and temperature/surfactant
distribution over its interface and, hence, the Marangoni
force. The boundaries increase the hydrodynamic resis-
tance to the flow and, thus, fluid flow near the boundary
has lower velocity as compared to those in unbounded
medium for the same external forcing. On the other
hand, for the surface induced flow, a nearby boundary
affects the concentration at the drops surface and hence
the Marangoni flow. Our calculations revealed that the
boundary with constant concentration has a repulsive ef-
fect on the drop, while an insulated boundary tends to
attract a drop. For a large separation distance, the mo-
tion of the drop is similar to that in an unbounded fluid,
while for smaller separations it is considerably retarded
and, in some cases, can be even reversed. For the latter
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cases there exists an equilibrium separation correspond-
ing to zero migration velocity. In the case of a constant
concentration, this equilibrium is stable for a fixed source
position and it is unstable when the source is freely sus-
pended.

Note that in the case of thermocapillary migration under
external temperature gradient as well as in the case of set-
tling under gravity, the presence of nearby boundaries af-
fects only the magnitude of the migration velocity while
the direction remains the same as for an isolated drop.
In contrast to this, for the self-induced thermocapillarity,
even the direction of the drop’s motion may be changed
by the presence of a boundary.

Free surface and a liquid/liquid interface differ from
a solid wall in two main aspects: First, it is mobile,
i.e. tangential velocity on the interface does not vanish
and, hence, its retardation effect on the flow is less pro-
nounced than that of a solid boundary. Second, its sur-
face tension may depend on concentration as well as it is
at the drops interface. In this case, the Marangoni flow
is induced not only at the vicinity of the drop, but also
at the vicinity of the boundary. This flow is shown to be
quite strong being able to change the flow pattern and the
direction of the drops migration. Similar effect was de-
scribed by Golovin (1995) and by Leshansky, Golovin,
Nir (1997) who described the flow induced by a hot solid
particle near a free surface resulting in a thermocapillary
induced migration of the solid particle.

When the interface of the drop is passive, the motion is
induced by the Marangoni flow at the active outer sur-
face. In this case, the direction of drops motion is inde-
pendent of the position of the source. The drop migrates
towards the plane with the migration velocity vanishing
at large and small separation distances. At fixed separa-
tion, the velocity is larger for lower position of the in-
ternal source. The magnitude of the velocity exceeds the
one in the case of an active drop. It increases with the
decrease of the viscosity of the outer fluid, µ2, up to the
maximum value at a free surface case, µ2 = 0. When both
surfaces are active, the attractive effect of the plane may
be compensated by an upward motion induced by the ac-
tive surface of the drop at some equilibrium position, cor-
responding to zero migration velocity. This equilibrium
is an unsteady one as the drop is attracted for lower loca-
tions and migrates upwards for higher ones.

Summarizing the results of the velocity calculations, one
can conclude that mobile interface with zero mass flux

attracts a drop undergoing spontaneous Marangoni mi-
gration. This effect is much more pronounced when the
interfacial tension on this boundary depends on the con-
centration of the secreted surfactant.

Most of the results presented are computed for a linear
dependence of surface tension on concentration. Sample
calculations were also performed for a non-linear case,
taking into account the slowing down of the change of
surface tension with concentration at near saturation situ-
ation. A quasi-linear model was admitted. It was demon-
strated that calculations with the linear surface tension
provide upper bound for the migration velocity. As an-
ticipated, the non-linear dependence of surface tension
results in slowing down of the Marangoni flow, which
is completely suppressed when the interface is saturated
by surfactants. For the motion induced by the internal
secretion, this effect is much more pronounced when the
source is located closer to the interface and the larger part
of the interface has a high concentration.

In practice, the non-linear dependence of surface tension
on a surfactant concentration is not of a quasi-linear na-
ture but a convex curve that lies above some low critical
tension (see e.g. Adamson, 1990). Though our calcu-
lations were performed for a simplified surface tension
dependence, this dependence reflects some characteristic
features of the physics of the problem as the convexity of
σ(C) curve and a positive constant tension above some
critical concentration .
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Appendix A: Bi-spherical coordinates

Substituting series representation (23) and (25) into the
boundary conditions (3) and (4), which correspond to the
constant concentration at the outer boundary, results in
the following infinite system of linear algebraic equations

E1
n +G1

n = 0, (29)

(E1
n −E0

n )cosh(n+
1
2
)α+(G1

n −G0
n) sinh(n+

1
2
)α = 0,

(30)

G0
n tanh(n+

1
2
)β+E0

n = 0, (31)

sinh(n+
3
2
)α(E0

n −E0
n+1)+cosh(n+

3
2
)α(G0

n−G0
n+1)

−κexp[−(n+
3
2
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n −E1
n+1)

+
n

n+1

⎧⎨
⎩

sinh(n− 1
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+cosh(n− 1
2 )α(G0
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−κexp[−(n− 1
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⎫⎬
⎭

= κ(2n+1)
1Z

−1

(coshα−µ)1/2G(α,µ)dµ, (32)

In the case of zero mass flux from the outer boundary
(A3) should be replaced by

sinh(n+
3
2
)β(E0

n −E0
n+1)+cosh(n+

3
2
)β(G0

n−G0
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+
n
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[
sinh(n− 1

2)β(E0
n −E0
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+cosh(n− 1

2)β(G0
n−G0

n−1)

]
= 0. (33)

To solve this system numerically, we can fix the num-
ber of terms, for example N, and assume En = 0 for
n > N. By solving the resulting finite system, the
coefficients E0

1 ,E0
2 , ...,E0

N,E1
1 ,E1

2 , ...,E1
N ; G0

1,G0
2, ...,G

0
N;

G1
1,G1

2, ...,G
1
N can be found. Increasing the number N,

the solution can be found with a desired accuracy.

As soon as the concentration field is available, the stream
function can be determined in the form (27), (28). Sub-
stituting (27) - (28) into boundary conditions (19) – (21),
where the tangential component of the viscous stress ten-
sor, used in (19) and (21) are of the form

Πξζ = h

(
∂Uξ

∂ζ
+

∂Uζ

∂ξ

)
+

1
sinhα

(
Uζ sinξ+Uξ sinζ

)
,

results in the following finite system of linear equations
for the coefficients of the stream function expansion at
any n. The right-hand side of this system depends on the
coefficients Ei

n and Gi
n (Golovin, Nir and Pismen,

1995).
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ξ = β. (39)

Note that the last equation (39) is presented here in the
most general form corresponding to the outer boundary
separating two viscous media. The case of a free bound-
ary corresponds to µ2 = 0,while for a rigid wall 39 should
be replaced by

dW 0
n

dξ
= 0, ξ = β, (40)

Substitution (28) for W i
n into (35) - (40) and taking into

account (34) yields a system of twelve linear equations
for the twelve unknown coefficients Ai

n,Bi
n,C

i
n,Di

n, i =
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0,1,2. An integral term in the right-hand side of (38) and
(39) was calculated to yield
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where

Un(ξ) = Ei
n cosh(n+1/2)ξ+Gi

n sinh(n+1/2)ξ.




