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Review: Possible strategies for the control and stabilization of Marangoni flow in
laterally heated floating zones

Marcello Lappa1

Abstract: The paper presents a comparative and criti-
cal analysis of some theoretical/experimental/numerical
arguments concerning the possible stabilization of the
surface-tension-driven (Marangoni) flow in the Float-
ing Zone technique and in various related fluid-dynamic
models. It is conceived as a natural extension of the fo-
cused overview published in Cryst. Res. Tech. 40(6),
531, (2005) where much room was devoted to discuss
the intrinsic physical mechanisms responsible for three-
dimensional and oscillatory flows in a variety of tech-
nological processes. Here, a significant effort is pro-
vided to illustrate the genesis of possible control strate-
gies (many of which are still in a very embryonic con-
dition), the underlying ideas, the governing nondimen-
sional parameters, the scaling properties. Particular at-
tention is devoted to their range of applicability that is
still the subject of controversies in the literature. The
discussion is supported by some novel numerical results.
These simulations are used to provide additional insights
into the physics of problems where experimental data are
not available.

keyword: Floating Zone Technique, Marangoni flow,
convective instabilities, thermal feedback control, Mag-
netic fields, Forced high-frequency vibrations, Ther-
movibrational effects.

1 The FZ technique

During the Floating-Zone (FZ) process a melt zone is
established between a lower seed material and an upper
feed material by applying localized heating (see, e.g. Fig.
1). This floating zone is moved along the rod (by means
of relative motion of the heating device) in such a way
that the crystal grows on the seed (which is below the
melt) and simultaneously melting the feed material above
the floating zone. The seed material as well as the feed
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rod is supported but no container is in contact with the
growing crystal or the melt, which is held in place only
by surface tension. Therefore, the key characteristic of
this method is that the molten zone does not need to be
in contact with a foreign solid (crucible) that, besides be-
ing awkward to realize in the practice (the working tem-
perature of the crucible must be well above the 1690 K
of the melting temperature of silicon, e.g.), would intro-
duce impurities unacceptable for the applications envis-
aged (molten silicon is a very reactive material).

Of course, containerless processing on massive samples
can only be done in the microgravity environment of
space where the forces used for suspending and manip-
ulating the specimens are not overwhelmed by gravity.
Microgravity requires much smaller forces to control the
position of containerless samples, so the materials being
studied are not disturbed as much as they would be if they
were levitated on Earth.

Under Earth conditions the zone height is limited be-
cause the liquid tends to run down when the molten zone
becomes too big; this fact limits the possible diameter
of crystals that are grown in Earth’s gravity. In space,
the maximum zone height is given by the circumference
of the crystal; therefore, floating-zone experiments with
higher zone heights and larger diameters become feasi-
ble. Also, in such environment, buoyancy forces, that
are the most important cause of crystal imperfections on
Earth, are absent or very weak.

Along these lines, microgravity experimentation is en-
abling the production of limited quantities of high-
quality large-size samples that exhibit unique properties
for use as benchmarks. This pioneering research is lead-
ing to next-generation commercial crystal products (for
instance, most of the very pure silicon produced today is
processed by the Floating-Zone technique).

Crystal growth by the FZ technique in space was pio-
neered by Eyer et al. (1984). Despite the advantages
offered in terms of size and purity by this environment
(see also Muller, 1988 and Benz, 1990), however it was
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observed that, even in the absence of gravity the presence
of Marangoni convection can be responsible for the pres-
ence of defects in the crystals (the characteristic number
of this type of convection is defined as Ma=σT ∆TL/µα
where L is a reference length, α the melt thermal diffu-
sivity, µ the dynamic viscosity, ∆T the temperature dif-
ference along the free interface and σT the derivative of
the surface tension with respect to the temperature; also,
Ma=Re·Pr where Re=σT ∆TL/ρν2, ν being the kinematic
viscosity and Pr=ν/α being the Prandtl number).

Figure 1 : The floating zone (FZ) technique.

Subsequent theoretical and numerical studies disclosed
that this type of convection can undergo a primary bi-
furcation from axisymmetric motion to steady three-
dimensional flow (Mac1) and a second transition to time-
dependent convection (Mac2), the first being responsible
for the presence of macroscopic defects (radial segre-
gation with a non-axisymmetric distribution), the latter
for microscopic striations (microscopic variations of the
dopant concentration); these striations are mostly caused
by fluctuations of the microscopic growth rate or the mix-
ing of the melt; the fluctuations in turn result from the
aforementioned time-dependent flow in the melt, caused
by oscillatory pure Marangoni convection under zero-g
or by oscillatory mixed buoyant-Marangoni convection
under normal gravity conditions.

2 Possible models

One of the major difficulties in the experimen-
tal/theoretical analysis of Marangoni flow in real floating
zones is that, due to phase change related to melting and
solidification of the material, the geometry of the bound-
ary of the liquid volume is not known a priori. Irregular
melting and freezing interfaces and thermal conditions
associated with latent-heat effects make the analysis of
the features of the Marangoni flow very difficult from an
experimental point of view. These difficulties led the in-
vestigators, in the past, to create a new configuration, the
so-called half-zone (usually referred to as liquid bridge).
This model of a float zone melt was introduced, in fact,
in the mid-1970s as a vehicle for performing experiments
in well-controlled conditions. It simulates half of a real
floating zone (the liquid between one of the ends of the
domain and the equatorial plane) and consists of a pair
of coaxial, solid cylindrical disks (one hot and the other
cold) with a bridge of liquid material suspended between
them.

Although it is a very crude simplification, one may dis-
tinguish between materials-science-oriented research and
fluid-science-oriented research, according to whether the
interest is centered in the microstructure of the final prod-
uct (grown silicon crystal, e.g.) or on understanding the
molten zone behavior during the processing.

Both the floating zone and the liquid bridge are held
by surface tension forces (capillarity), spanning between
two sharply-edged coaxial solids against the natural ten-
dency of liquids to adopt a spherical shape in the absence
of other forces, and the tendency to creep down the rod
in a gravity field. The real FZ, however, is not a static
configuration; rather, as explained before, it is a dynamic
process governed by temperature gradients that force the
tip of the feeding rod to melt and the tip of the grown ma-
terial to freeze. Nevertheless, the mechanical model of a
quasi-steady series of liquid bridges has already shown to
be relevant to some key aspects of the problem. For in-
stance, by liquid-bridge-based investigations, it was dis-
closed that in the case of transparent model liquids (high
Prandtl number liquids, Pr>1) the instability is of hy-
drothermal nature (related to the onset and propagation of
opposite azimuthal hydrothermal waves, see e.g., Wan-
schura et al., 1995 and Lappa et al., 2001) whereas in
the case of semiconductor melts (Pr � 1) it is of hydro-
dynamic nature (i.e. it is strictly related to an instability
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of the shear flow below the free surface, see, e.g., Lev-
enstam and Amberg, 1995). More recently, however, it
has been proven that the "full-zone" (a pair of coaxial,
solid cylindrical disks with a column of liquid material
suspended between them and laterally heated by an ax-
isymmetrical energy source), even though a static con-
figuration as the half-zone, seems to be a more relevant
model for the investigation of many crucial aspects of
the FZ process (see Lappa, 2003, 2004a, 2004b, 2005a,
Gelfgat et al., 2005).

3 Control of Marangoni convection

As emphasized in the introduction, during crystal growth
from the melt, the flow regime in the liquid is the dom-
inating factor for the heat and mass transport during the
growth process and finally for the quality and yield of the
crystal.

For this reason the possibility to somewhat control the
intensity of these flows as well as their bifurcations has
become a topic of great interest over the years.

The three-dimensional (3D) flow instabilities discussed
before can appear even if the temperature gradient along
the free surface is very small (the critical Marangoni
number for the first flow bifurcation in the case of semi-
conductor melts and liquid metals Mac1is of O(10) and,
in practice, this corresponds to ∆T=O(1) [K] for a typical
length L=O(1) [cm]). Along these lines, control of the
flow is usually regarded by the investigators as an essen-
tial and growing part of the problem and accordingly dif-
ferent approaches with increasing complexity have been
proposed during the last decade (many of which are still
in an embryonic condition).

3.1 Suppression of hydrothermal waves

Since, as mentioned before, in the case of high Prandtl
number liquids the instability in liquid bridges is hy-
drothermal and the related mechanism involves a com-
munication between free-surface temperature perturba-
tions and bulk-liquid temperature (see, e.g., Zeng et
al., 2004), it was speculated (e.g., Benz et al., 1998)
that by eliminating the free-surface temperature oscilla-
tions caused by hydrothermal waves this coupling could
be broken and the oscillations would cease. Accord-
ingly, some experiments have been carried out over re-
cent years.

In all these experiments, the input to the control law was

usually a measurement of the local surface temperature,
and the corresponding output was "heat flux" added (sub-
tracted) by heaters (coolers) at the surface.

In the pioneering experiments of Benz et al. (1998) this
strategy was tested for the case of shallow layers of trans-
parent liquids (Pr»1): free-surface temperature oscilla-
tions of a hydrothermal wave state were sensed at two
locations using an infrared camera, allowing the phase
speed of each wave to be determined. At a location fur-
ther downstream (in the sense of the wave-propagation
direction), a CO2 laser used the actual temperature sig-
nature of each hydrothermal wave to supply heat to
troughs of disturbance temperature. When done suc-
cessfully, hydrothermal waves disappeared downstream
of the periodic-heating location.

Experiments by Petrov et al. (1996, 1998) demonstrated
suppression of oscillatory convection in liquid bridges
by means of a similar technique (the sensing of surface-
temperature variations and the application of surface
heating using externally placed elements).

Ideas from non-linear dynamics were applied to effect
control, with the control law constructed from observa-
tions of the bridge response to randomly applied pertur-
bations. Attempts to effect control of a helical traveling-
wave state using a single sensor/heater pair were un-
successful: It changed the mode into a standing wave
with a node at the sensor location. This was resolved
with the addition of a second sensor/heater pair allow-
ing the algorithm to distinguish between clockwise- and
counterclockwise-propagating waves.

Within this context it is also worth mentioning the land-
mark studies on " active feedback control " of Shiomi et
al. (2001, 2002, 2003 and 2005), Amberg and Shiomi
(2005).

The active control was realized by locally modifying the
surface temperature of a half-zone of a transparent liquid
using the local temperature measured at different loca-
tions fed back through a simple control law. The perfor-
mance of the control process was quantified by analyz-
ing local temperature signals, and the flow structure was
simultaneously identified by flow visualization. With op-
timal placement of sensors and heaters, and proportional
control, these researchers were able to raise the critical
Marangoni number by more than 40%. The amplitude
of the oscillation was suppressed to less than 30% of the
initial value for a wide range of Marangoni number, up
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to 90% of the critical value.

In practice, it was proven that, with a proper choice of
actuators, it is possible to modify the properties of the
three-dimensional flow with linear and weakly nonlinear
control. Simple "cancellation" schemes were constructed
with only a few controllers by strategically placing sen-
sor/actuator pairs (controllers).

These methods can be regarded as an effective means
to control the flow stability in the case of liquid lay-
ers, shallow annular configurations (e.g., the Czochralski
Method) for both cases Pr<1 and Pr>1 and liquid bridges
of organic liquids (Pr>1). In all these cases, in fact, it is
known (e.g., Lappa, 2005b) that waves of a hydrothermal
nature can arise as the most dangerous disturbances.

The possible application of these procedures to the real
FZ technique for low Prandtl number fluids, however, has
still to be proven. In this case, in fact, the instability,
being hydrodynamic, is not driven by surface azimuthal
temperature gradients and/or waves (Lappa, 2005b).

3.2 Magnetic fields

Since molten semiconductors are excellent electrical
conductors, magnetic fields are widely used as a reliable
and useful flow-control strategy (Series and Hurle, 1991).

This effect was introduced for the first time in mate-
rial science to suppress temperature fluctuations in the
melt during the horizontal Bridgman growth process and
is currently used by commercial crystal growers around
the world to grow more homogeneous Si, GaAs and InP
crystals with various techniques, e.g., Bridgman (hori-
zontal or vertical) and Czochralski methods.

Its action can lead to the braking of the flow (i.e. the
reduction of the rate of convective transport) or to the
damping of possible oscillatory convective instabilities,
the first effect being important with respect to the macro-
scopic homogeneity, the latter with respect to the forma-
tion of striations.

3.2.1 Physical principles and governing equations

The motion of the electrically conducting melt under a
magnetic field induces electric currents. Lorentz forces,
resulting from the interaction between the electric cur-
rents and the magnetic field, affect the flow. The com-
plete theoretical description is rather complex; it is com-
prehensively treated in the monograph of Chandrasekhar
(1981) on magnetohydrodynamics. Different possible

degrees of approximation for the magnetohydrodynamic
equations have been discussed by Baumgartl and Muller
(1992).

In the following the "physics" of the problem and the in-
troduction of the corresponding model equations are con-
sidered for the simple and representative case of constant
(static and uniform) magnetic fields.

As outlined before, a uniform magnetic field Bo (mag-
netic flux density) generates a damping Lorentz force
through the electric currents induced by the motion
across the magnetic field. Like the case of other body
forces (e.g. the buoyancy forces), this force can be added
to the melt momentum balance equation.

Scaling the magnetic flux density with Bo and the elec-
tric current density with σeVre f Bo, this equation includ-
ing the Lorentz force, can be written in nondimensional
form (V is the velocity, p the pressure and the refer-
ence quantities are based on the thermal diffusion veloc-
ity Vre f = α/L) and in the absence of phase transitions
as:

∂V
∂t

= −∇p−∇ · [VV ]+Pr ∇2V+

Pr Ra(T −Tre f )ig +PrH2
a (J∧ iBo) (1)

where Ra=gβT ∆TL3/να (T is the non-dimensional tem-
perature and βT is the thermal expansion coefficient) and
Ha is the Hartmann number

Ha = BoL

(
σe

ρν

)1/2

(2)

In these relationships, σeis the electrical conductivity and
iBo the unit vector in the direction of Bo.

In practice, in the derivation of eq.(1) the magnetic flux
density vector B, that can be generally expressed as
B=Bo+b (where Bo=µoH, H being the imposed magnetic
field strength, µo the permeability of vacuum and b the
melt’s magnetic response), is set equal to Bo (the ap-
plied magnetic field) since the induced field b is small for
Rem � 1, where Rem is the magnetic Reynolds number:

Rem = µpσeVre f L (3a)

(µp is the melt’s magnetic permeability); this parame-
ter represents the characteristic ratio of the induced to
imposed fields; it is known (see, e.g., Baumgartl et al.,
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Figure 2 : Conceptual sketch of the control loop for the suppression of hydrothermal waves.

1990) that, in practice, Rem can be regarded as a mea-
sure of the "bending" of field lines of the original applied
undisturbed magnetic field Bo by the fluid flow with ve-
locity V and that:

|B| = |Bo|+O(Rem) (3b)

thus, the deviation of the disturbed field B from the orig-
inal applied field Bo, as mentioned above, can be esti-
mated to be very small since in the case of semiconductor
melts and related processing Rem=O(10−3).

Additional insights into this approximation can be pro-
vided by the following arguments: the magnetic diffu-
sion coefficient (µpσe)−1 is about 4 orders of magnitude
greater than the thermal diffusivity α which in turn is 102

times higher than the kinematic viscosity ν (values given
for liquid silicon); so on a time-scale defined by α or ν
which gives a natural time-scale for transport processes
in the fluid (if the flow velocity is not too high) the mag-
netic field B retains always its steady-state value.

Accordingly, the nondimensional electric current density
J is given by Ohm’s law for a moving fluid:

J = E +V ∧ iBo (4)

where E is the electric field normalized by Vre f ·Bo.
Since, as mentioned before, the unsteady induced field b
is negligible, in particular, the electric field can be written
as the gradient of an electric potential:

E = −∇Φe (5)

The conservation of the electric current density gives:

∇ · J = 0 (6)

which combined with eq. (4) gives a Poisson equation
for the electric potential:

∇2Φe = ∇ · (V ∧ iBo) = iBo ·∇∧V (7)

Finally, the momentum equation can be rewritten as:

∂V
∂t

= −∇p−∇ · [VV ]+Pr ∇2V +Pr Rar(T −Tre f )ig+

PrH
2
a (−∇Φe ∧ iBo +V ∧ iBo ∧ iBo) (8)

3.2.2 Historical developments and recent contributions

A number of theoretical studies have appeared during re-
cent years concerning the effect of static uniform mag-
netic fields on the "basic" flow motion in several ge-
ometrical models of widespread semiconductor growth
techniques (the term "basic" is used here to indicate the
various types of steady or unsteady, two-dimensional or
three-dimensional buoyant, Marangoni or "mixed" con-
vection without the presence of magnetic fields that can
occur in these configurations, see Lappa (2005b,c).

For instance, the effect of a constant magnetic field on the
electrically conducting liquid-metal flows in heated cav-
ities has been mainly studied for the lateral heating cor-
responding to horizontal Bridgman crystal growth con-
figurations. Ben Hadid et al. (1997) and Ben Hadid and
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Henry (1997) investigated numerically the case of paral-
lelepipedic or cylindrical cavities, respectively. Different
magnetic field orientations were considered, as well as
different situations in the parallelepipedic case, namely
buoyancy driven convection in a closed cavity or in an
open cavity with a stress-free surface at the top bound-
ary, and Marangoni convection in cavities with the upper
boundary subjected to surface-tension variation. In the
case of shallow layers, the magnetic damping was found
to be more effective with a vertical field.

Similar results were obtained by Gelfgat and Bar-Yoseph
(2001); the influence of a uniform magnetic field with
different magnitudes and orientations on the stability
of the two distinct two-dimensional (2D) possible flow
patterns in a rectangular container with aspect ratio
A=length/height=4 (velocity field with a single vortex or
two vortices) was investigated (see Lappa, 2005b for ad-
ditional discussion about the possible existence of mul-
tiple states of steady buoyancy convection in laterally
heated containers). It was shown that a vertical magnetic
field provides the strongest stabilization, and also that
multiplicity of steady states is suppressed by the elec-
tromagnetic effect, so that at a certain field level only the
single-cell flow remains stable.

The effect of a vertical magnetic field in the case of a
horizontal differentially-heated cylinder was considered
by Davoust et al. (1999).

Similar studies concerning the effect of static magnetic
fields in laterally heated cylindrical vessels introduced
as models of the vertical Bridgman technique were car-
ried out by Baumgartl et al. (1990) and more recently by
Gelfgat et al. (2001) in the case of a axial direction of the
fields. In particular, in Baumgartl et al. (1990) the use of
magnetic fields was proposed as a possible alternative to
the expensive microgravity and a critical comparison of
the disadvantages and advantages provided by these two
different approaches were discussed in a quite exhaustive
way.

Owing to the experimental evidence that neither mag-
netic fields nor microgravity alone have produced perfect
ideal crystal, Ma and Walker (1996, 1997) also consid-
ered the use of magnetic fields as a possible means to
damp the typical disturbances of the microgravity envi-
ronment (g-jitters and spikes of residual acceleration) in
laterally heated cylinders.

The corresponding Rayleigh-Bènard problem for the

case of cylinders heated from below on the ground has
been considered recently by Touihri et al. (1999) for ax-
ial and horizontal magnetic fields and by Grants and Ger-
beth (2004) in the case of both rotating and static fields.

Three-dimensional natural convection in parallelepipedic
closed cavities driven by vertical temperature gradients
and undergoing stationary magnetic fields of arbitrary di-
rection was investigated by Möβner and Muller (1999).

For the influence of vertical magnetic fields on convec-
tion arising in a fluid layer heated from below with a free
upper surface (the canonical Marangoni-Bènard prob-
lem), the reader may consider the book of Chandrasekhar
(1981).

Concerning the pure Marangoni flow, Priede et al. (1995)
were the first to elucidate the effect exerted by a ver-
tical magnetic field on the hydrothermal wave instabil-
ity of thermocapillary driven shear flow in a horizontal
three-dimensional planar layer of a liquid metal. The
linear stability analysis was limited to the disturbances
traveling crosswise the basic flow and it was shown that
the critical Reynolds number increases with the square
of the strength of the applied magnetic field, while the
wavelength of the most unstable mode is inversely pro-
portional to the field strength.

Some interesting numerical results for similar effects on
buoyancy convection and Marangoni flow in Czochral-
ski configurations/models have been reported in Khine
and Walker (1994) and Khine and Walker (1995), re-
spectively; the combined effect of buoyancy forces,
Marangoni forces and static magnetic fields has been an-
alyzed by Jing et al. (2000).

3.2.3 Extension to the FZ technique

The use of magnetic fields has been extended over the
years to the FZ technique (see, e.g., Kimura et al., 1983).
Baumgartl et al. (1990) and Prange et al. (1999), demon-
strated by numerical investigation that the application of
axial static magnetic fields can lead to a significant in-
crease of the critical Marangoni number for both full- and
half-zones.

In agreement with their findings, Figs. 3 show for the
typical reference case (a cylindrical full-zone with aspect
ratio AF=length/diameter=1, Length = 1[cm]) that, for a
fixed value of the input power Q supplied to the heating
source (see Lappa (2003) for additional details about the
surface heat flux distribution used for the simulations),
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Figure 3 : Streamlines of axisymmetric convection in a silicon floating zone (Pr=0.01, AF=1, Q=3.3[W], half
meridian plane is shown, r being the radial coordinate): (a) Pure Marangoni convection (Ma∼=9), (b) Ha=10, (c)
Ha=50.

Table 1 : Critical azimuthal wave number and criti-
cal Marangoni number versus the Hartmann number
(Pr=0.01, full-zone, AF=1, microgravity conditions,
surface heat flux distribution given in Lappa, 2003)

Ha m Mac1

0 2 12.41
10 2 25.42

axial constant magnetic fields lead to a concentration of
the Marangoni flow close to the free surface (see also the
theoretical analysis of Chen and Roux, 1991) as well as
to the damping of the flow velocity (see Fig. 4).

Owing to this effect, the diameter of the toroidal convec-
tion rolls (located above and below the equatorial plane)
is increased and correspondingly their effective aspect ra-
tio is decreased. As a consequence of this behavior, ax-
ial magnetic fields tend to favor modes with larger wave
numbers (Prange et al., 1999). Table 1 and Fig. 5 show
that Mac1 is doubled for Ha=10.

Fig. 6 shows the axial velocity distribution in a cross
section.
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versus the Hartmann number (axial static and uniform
magnetic field), for the same conditions considered in
Fig. 3.
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Figure 5 : Disturbance growth rate versus the Marangoni
number for two different values of the Hartmann number
(Pr=0.01, AF=1).

It is worthwhile to stress that possible stabilization is not
restricted to the use of static fields. It has been shown,
in fact, by means of experimental investigation that it
is possible to reduce or suppress Marangoni convection
during the FZ process, and thus the formation of dopant
striations, through the use of either static (Dold et al.,
1998; Cröll et al., 1998) or dynamic (Dold et al., 2001)
magnetic fields. The transition from a time-dependent to
a laminar flow regime in these cases is usually coupled
with a resymmetrization of the flow geometry.

Over recent years, the first choice has nearly always
been the application of static magnetic fields to sup-
press time-dependent flows. The possible application of
transversal static fields has been also considered; for in-
stance, the effects of both axial and transversal magnetic
fields were investigated numerically through a three-
dimensional selfconsistent model in a recent study by
Lan and Yeh (2004). They illustrated that a transver-
sal field is more efficient in suppressing the unsteady
Marangoni flow. The required magnetic strength for get-
ting a steady flow by means of the transversal field is
lower than that required by the use of the axial one.
Static transversal magnetic fields, however, are featured
by some disadvantages: the flow suppression/damping

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12
12

12

13

13

14
14

Figure 6 : Non-dimensional axial velocity component
distribution in a cross section (Pr=0.01, AF=1, Ha=10,
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tends to be effective only in planes parallel to the mag-
netic field; the flow in planes perpendicular to the direc-
tion of the magnetic field is not suppressed due to the in-
duced electric potential (and this leads to a highly asym-
metric molten zone and growth interface).

Transverse rotating magnetic fields, follow a different ap-
proach: it is not intended to damp the fluid motion, but
to dominate the irregular flow structure by overlaying it
with fast, azimuthal, axisymmetric flows. For this lat-
ter case relevant theoretical background is reported in
the analyses of Fischer et al. (1999) and Walker et al.
(2003), who approached the problem in terms of time
integration of the full three-dimensional governing equa-
tions and linear stability analysis, respectively.

A number of other strategies exist to control melt
flow; for example, by rotating or accelerating the crys-
tal/crucible (see, e.g., Chun and Wuest (1982) and Roux
et al., 1991). It is known that the centrifugal force due
to the azimuthal velocity can significantly alter thermo-
capillary convection. For the FZ process, however, the
angular velocity is limited by the fact that the associ-
ated centrifugal force can overwhelm the surface tension,
breaking the liquid column.

The possible combination of static or rotating axial mag-
netic fields and of rotation of the solid boundaries (sup-
porting the liquid column) in the opposite direction was
considered by Lan and Yeh (2005) and Ma et al. (2004),
respectively; this combination, however, was found to be
not beneficial in the case of a rotating field.
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3.3 "Ambient" effects

A different novel possible control strategy based on a
chemical approach to the problem rather than on hydro-
dynamic bases, has been recently introduced by Azami
et al. (2001) and Hibiya et al. (2003). They tried to
control the features of Marangoni convection by chang-
ing the oxygen partial pressure in the ambient gas mix-
ture surrounding the floating column of silicon melt. In
practice, these authors disclosed by experimental investi-
gation that both surface tension and its derivative with re-
spect to temperature exhibit a marked dependence on the
ambient oxygen partial pressure (∂σ/∂T decreases with
increasing oxygen adsorption at the surface of the molten
silicon); accordingly, both the magnitude of flow veloc-
ity and the onset of 3D instability can be somewhat con-
trolled by regulation of this parameter.

A non-contaminating method based on the possible influ-
ence of the external "conditions" was also proposed by
Dressler and Sivakumaran (1988). They showed that a
vertical jet of air blown tangentially over the free surface
of a silicone oil liquid bridge, can be used to produce
a viscous shear drag opposing the Marangoni (surface-
tension) shear at the surface. An average reduction of
66% in Marangoni velocities was obtained during their
experiments. This principle was somewhat confirmed by
the experiments of Velten et al. (1991) who revealed that
the air motion around the liquid column, mainly caused
by buoyancy due to the heating and cooling arrangement
of the experiment, has a strong effect on the onset of os-
cillatory flow.

The effective usefulness of this approach for the case
of semiconductor melts needs still to be demonstrated.
Moreover, its applicability to a real floating zone is ques-
tionable as the air jet blown tangentially to damp the in-
tensity of one of the two counter-rotating toroidal rolls
(shown, e.g., in Fig. 3a), would lead to strengthen the
other one.

3.4 Forced high-frequency vibrations

Another method, more recently suggested, is to use axial
vibrations. In some cases Marangoni and thermovibra-
tional mechanisms produce flow motions of opposite di-
rection, so that their competition is expected to be useful
for controlling the intensity of the flow. Moreover, vi-
brational fields can change the Marangoni flow structure
and are capable of exerting a strong influence on the flow

stability.

3.4.1 Past history and current status

In reality, this possible strategy was already suggested by
many authors as a possible means for the dynamic control
of flow instabilities of gravitational origin. The stabil-
ity of terrestrial fluid systems undergoing time-periodic
forcing was initially considered by Davis (1976) and Os-
trach (1982). Most of the subsequent analyses focused on
Rayleigh-Bènard convection subjected to gravity modu-
lation or boundary temperature modulation. The case of
sinusoidal gravity modulation was studied by Gresho and
Sani (1970) and the more general situation was treated
extensively in the book on convective instability by Ger-
shuni and Zhukhovitskii (1976). More recently there
have been a number of studies employing both linear
and non-linear theories to investigate the effect of mod-
ulation on the onset and stability of gravitational con-
vection during Bridgman growth, using numerical or a
combination of numerical and asymptotic solution tech-
niques (Wadih and Roux, 1988; Biringen and Danaba-
soglu, 1990; Wheeler et al., 1991; Naumann, 2000; Fe-
doseyev and Alexander, 2000).

This approach was considered for the control of
Marangoni convection for the first time by Birikh et al.,
(1993). The analysis of the joint action of vibrational
and thermal Marangoni convection mechanisms demon-
strated the possibilities for providing effective control of
flow in an infinite fluid layer (it was found that longitu-
dinal vibrations stabilize the flow by deforming the ve-
locity profiles). A theoretical approach to model similar
effects in a liquid column supported by two end rods with
one rod vibrating, was proposed by Lee et al., (1996) and
Lee (1998). It was based on a one-dimensional nonlinear
model of a viscous liquid. The effect on the hydrothermal
instability in liquid bridges was demonstrated by Tang et
al. (1996) in the case of silicone oils. The solidification
process and the resulting microstructure during float zone
processing of sodium nitrate (NaNO3) with and without
vibrations were considered by Anilkumar et al. (1993)
and Shen et al. (1996). The possible utilization of such a
strategy for the FZ problem with liquid metals has been
suggested by Gershuni et al. (1994), Lyubimova et al.
(1994), and Lyubimova et al. (2003). Like the case of
magnetic fields, vibrations allow a contactless control of
the melt flow. It is a rather new and a yet less investigated
technique that can be used more universally because it is
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not restricted to the electrically conductive melts as is the
case for magnetic fields or to high Prandtl number liquids
as is the case for active temperature control.

3.4.2 The thermovibrational theory

Disturbances induced in a fluid domain by a forced sinu-
soidal displacement

s (t) = b sin(ωt)n̂ (9)

where b is the amplitude and ω=2πf (f is the frequency)
induce an acceleration:

g(t) = gω sin(ωt) (10)

where gω = b ω2n̂.

Using the Boussinesq approximation, the related body
force can be added to the momentum equation, that in
nondimensional form reads

∂V
∂t

= −∇p−∇ · [VV ]+Pr ∇2V+

Pr · bω2βT ∆T L3

να
T sin(

L2ω
α

t)n̂ (11)

The above equation has been the subject of intensive re-
search in the last decade (many scaling and order-of-
magnitude analyses). Many theoretical and numerical
studies have been devoted to this topic (see, e.g., Monti et
al., 1987; Schneider and Straub, 1989; Alexander, 1990;
Lizèe and Alexander, 1997; Savino and Lappa, 2003).

It is well known that relevant nondimensional parameters
for this problem are the nondimensional frequency (Ω)
and displacement (Λ):

Ω =
ωL2

α
(12a)

Λ = b
βT ∆T

L
(12b)

The nondimensional momentum equation, in fact, can be
re-written as:

∂V
∂t

= −∇p−∇ · [VV ]+Pr∇2V +ΛΩ2T sin(Ωt)n̂ (13)

Numerical solution of eq. (13) with the additional one
for energy disclosed that when soliciting the fluid by pe-
riodic accelerations, the velocity field V is made up by an

average value V plus a periodic oscillation of amplitude
V ′ (V = V +V ′) at the forced vibration frequency f or at
frequencies that are multiple of f.

As a result of such a convective field, the scalar quanti-
ties (temperature and/or species concentration) are also
distorted.

These distortions in turn are also made up by a steady
plus an oscillatory contribution (T=T +T’).

It is well known (see, e.g., Savino and Lappa, 2003) that
the amplitude of the periodic temperature disturbances
tends quickly to decrease with frequency; conversely the
average disturbances are less dependent on the frequency
so that one expects the steady disturbances to prevail over
the unsteady ones at high frequencies (and vice versa).

This suggested the investigators to introduce strong sim-
plifications in the analysis of the disturbances computa-
tion for the case of high-frequency vibrations (the so-
called Gershuni formulation or thermovibrational the-
ory). According to this formulation (Gershuni et al.,
1982; Gershuni and Zhukhovitskii, 1986) the time-
averaged distortions can be simply computed (i.e. with
much less computation time) by a simplified set of equa-
tions in terms of quantities averaged over the oscillation
period.

Under the assumptions of small amplitudes (Λ � 1) and
large frequencies of the oscillatory accelerations (Ω �
1), Gershuni and Lyubimov (1998) showed that, for a
given Prandtl number, the steady (streaming) convection
depends only on one relevant dimensionless parameter,
the vibrational Rayleigh number:

RaV =
(bωβT ∆T L)2

2να
=

(βT ∆T L)2

2να

( g
ω

)2
=

Ω2Λ2

2Pr
(14)

this formulation leads to a closed set of equations for
the time-averaged quantities. The time-averaged conti-
nuity, and energy equations remain unchanged; the time-
averaged momentum equation must be re-written as:

∂V
∂t

= −∇p−∇ · [VV
]
+Pr∇2V+

Pr ·RaV
[
(w ·∇T )n̂−w ·∇w

]
(15)

where w is an auxiliary potential function satisfying the
equations:

∇ ·w = 0 (16)
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∇∧w = ∇T ∧ n̂ → ∇2w = −∇∧(
∇T ∧ n̂

)
(17)

The effect of high-frequency vibrations, like that of a
steady acceleration, strongly depends on the direction of
the vibration n̂ relative to the temperature gradient. In
particular, vibrations parallel to the temperature gradient
tend to maintain initial diffusive conditions. In fact, as
pointed out by Birikh at al. (1993), the mean vibration
force is a bulk driving action induced by temperature gra-
dients normal to the vibration axis (i.e. thermovibrational
convection arises when the isotherms are not perpendic-
ular to the vibration axis). A local feature of this force is
that, if temperature distortions, with respect to the purely
diffusive case, are induced by another type of convection,
average vibrational flows arise in such a way as to permit
the isotherms to turn and again become perpendicular to
the vibration direction.

The above considerations suggest that undesired
Marangoni convection can be weakened by appropriate
orientation of the liquid zone with the imposed tempera-
ture gradient along the imposed forced vibrations.

3.4.3 Results

Like the case of magnetic fields treated in section 3.2.3,
a full-zone of silicon with AF=1 (zero-g) heated by an
equatorial ring heater is considered as a reference case
(Ma=O(10)). The entire system is supposed to oscillate
in the axial direction with displacement amplitude b and
angular frequency ω.

The time-averaged formulation (the Gershuni formula-
tion already illustrated before) is used for the treatment of
thermovibrational convection since it considerably sim-
plifies the initial problem in the case of small amplitude
and high frequency of the periodic disturbances and can
be applied with considerable saving of computing time.

Figures 7a and 8a show the classical Marangoni vortex
cells generated in the upper and lower parts of the liquid
zone in the case of vibrations being absent (Rav=0). On
the surface the flow is directed from the equatorial plane
towards the supporting disks. For the considered con-
ditions convection is axisymmetric since the Marangoni
number is Ma∼=9<Mac1.

If the case of pure thermovibrational convection is con-
sidered (surface-tension effects "switched off"), Figs. 7b
and 8b show that the flow has the form of two vor-

tices with the direction of circulation opposite to that of
Marangoni flow. The location of these vortices is almost
coincident with that of Marangoni vortices.

These features suggest that if the vibrational Rayleigh
number is tuned in such a way that the magnitude of
the surface velocities is comparable to that related to the
Marangoni flow, it should be possible to considerably
damp Marangoni convection.

Both types of convection structures, in fact, (as shown in
Figs. 7a and 7b) are incompatible in the sense that their
respective transport mechanisms exclude each other.

Fig. 9 shows that the vibrational Rayleigh number pro-
viding such a condition is Rav

∼= 150. The velocity field
resulting from the combined action of surface tension and
vibrations is shown in Figs. 7c and 8c. Figure 8c shows
that two small thermocapillary rolls are still present; they
are confined close to the disks. Figure 7c, however, il-
lustrates that these cells are very weak. Other counter-
rotating cells driven by thermovibrational convection are
located in a zone close to the ring heater. This simple ex-
ample makes it possible to conclude that the vibrational
mechanism can be effectively used for the suppression
of the Marangoni flow. The vibration effects reduce the
intensity of the circulation cell, the local temperature de-
formations and the shear stresses below the free surface.

Like the case of magnetic fields, the application of axial
vibrations does not alter the fact that the first instability of
Marangoni flow is axisymmetry-breaking. Table 2 shows
the significant increase of the critical threshold for the
onset of 3D convection as Rav is increased (see also Fig.
10).

The axial velocity distribution in a cross section for
Ma∼=40 and Rav=100 is reported in Fig. 11.

The case of vibrations perpendicular to the free surface
is not considered herein. For the sake of completeness,
however, it should be pointed out that the application of
such vibrations to the case of high Prandtl number liq-
uid bridges results in a strong stabilization of the so-
called standing-wave regime with hot and cold surface-
temperature disturbances pulsating along the direction of
the imposed vibrations (it is known that free Marangoni
convection in liquid bridges can undergo a first bifurca-
tion to a pulsating instability, i.e. the aforementioned
standing-wave regime, and a second spontaneous transi-
tion to a subsequent rotating regime, also known as trav-
eling -wave, see Lappa et al., 2001).
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Figure 7 : Velocity field in a silicon floating zone (Pr=0.01, AF=1), Q=3.3[W]: (a) Pure Marangoni convection
(Ma∼=9), (b) Pure thermovibrational convection (Rav=150), (c) Combined convection.
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Figure 8 : Streamlines of axisymmetric convection in a silicon floating zone (Pr=0.01, AF=1, Q=3.3[W]): (a) Pure
Marangoni convection (Ma∼=9), (b) Pure thermovibrational convection (Rav

∼=150), (c) Combined convection.
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Figure 9 : Surface-velocity distribution (Pr=0.01, AF=1), Q=3.3[W]: (a) Pure Marangoni convection (Ma∼=9), (b)
Pure thermovibrational convection (Rav=150), (c) Combined convection.
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Figure 10 : Disturbance growth rate versus the
Marangoni number for different values of the vibrational
Rayleigh number (Pr=0.01, AF=1).

Table 2 : Critical azimuthal wave number and critical
Marangoni number versus the vibrational Rayleigh num-
ber (Pr=0.01, cylindrical full-zone, AF=1, microgravity
conditions)

Rav m Mac1

0 2 12.41
50 2 17.26
100 2 24.17
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Figure 11 : Non-dimensional axial velocity component
distribution in a cross section (Pr=0.01, AF=1,Rav=100,
Ma∼=40, level 1→-0.98, level 15→2.17).

4 Conclusions

Possible strategies for the damping/stabilization of typi-
cal Marangoni flow in canonical geometrical models of
the Floating Zone technique have been discussed. The
discussion has been also supported by "ad hoc" numer-
ical simulations specially used to get insights into phe-
nomena for which experimental data are limited or still
not available.

The application of "thermal feedback control", though
fascinating from both theoretical and technological
points of view, requires further investigation for effec-
tive application to the suppression of the hydrodynamic
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instabilities in real floating zones and thus for the con-
trol of the related process. Vice versa, magnetic fields,
the most commonly used tool for the control/damping of
Marangoni flow and related instabilities, are limited to
the case Pr � 1.

The application of forced high-frequency vibrations has
been illustrated as a possible and not expensive alterna-
tive to the use of the aforementioned methods, potentially
useful for both cases of hydrothermal and hydrodynamic
instabilities in liquid bridges and floating zones.
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