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Reconstruction of Interfaces between Electrically Conducting Fluids from
Electrical Potential Measurements

A.Kurenkov1 , A.Thess2, and H.Babovsky3

Abstract: A possibility for the determination of the
interface between two electrically conducting fluids in
cylindrical geometry is presented. The fluids with dif-
ferent conductivities are situated in an infinite cylinder.
Along the axis of the cylinder a homogeneous electri-
cal current is applied. The perturbation of the interface
leads to an inhomogeneous electrical current and, there-
fore, results in an electrical potential change in the flu-
ids and a magnetic field modification outside the fluids.
The dependence of the electrical potential on the inter-
face shape is obtained analytically. The interface pro-
file is then recovered from data of the electrical potential
measurements which have been generated numerically.
This inverse problem is solved for the cases of an axisym-
metric and non-axisymmetric interface using the singular
value decomposition method and Fourier transform. The
number of modes which have to be reconstructed is ob-
tained using L-curve criterion.

keyword: Electrical impedance tomography, Materials
processing, Inverse boundary value problems, L-curve

1 Introduction

There are a variety of problems in materials processing
where it would be useful to know the time-dependent dis-
tribution of the electrical conductivity of a single fluid or
a multiphase flow. For instance, the knowledge of the po-
sition of the interface between highly conducting molten
aluminium and poorly conducting liquid cryolite is im-
portant to prevent unwelcome instabilities in aluminium
reduction cells Davidson (1999). Other examples include
electrical conductivity distributions in glass melting fur-
naces, metal-slag interfaces in steel and ironmaking as
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well as on-line detection of inclusions Guthrie, Li, and
Carrozza (2000). The liquids involved in materials pro-
cessing such as molten metals, semiconductors, and glass
melts are mostly hot and highly aggressive. Therefore
conventional measurement techniques employing local
probes face serious difficulties.

The purpose of the present work is to demonstrate
that concepts of electrical impedance tomography (EIT)
which have been successfully applied to a variety of
medical problems Cheney, Isaacson, and Newell (1999)
and multiphase flows George, Torczynski, Shollenberger,
O’Hern, and Ceccio (2000), Butler and Bonnecaze
(1999) can be used in order to locate interfaces between
current carrying fluids of different electrical conductiv-
ity in high-temperature melts. The basic idea of our ap-
proach is to exploit to the greatest possible extent the
electrical currents which are already present in materi-
als processing operations such as aluminium reduction,
electrical glass melting or vacuum arc remelting rather
than to inject additional artificial electrical current as is
usually done in EIT applications. In particular, we will
demonstrate that the electrical current flowing through a
highly simplified model of an aluminium reduction cell
provides sufficient information to completely reconstruct
the unknown position of the aluminium-cryolite inter-
face.

For the reader it may be interesting to notice that the typ-
ical values of the interface displacement in the latter sys-
tem are very small compared to the lateral extent of the
system. Let us illustrate this by considering typical fig-
ures of a real aluminium reduction cell. Typically the
cross-section of the aluminium reduction cell has a max-
imum length L = 8m. The applied electrical current is
about 100kA. The interface displacement η, the mea-
surement of which is the main goal of our work, is of
the order of several centimetres. It is well known from
industrial practice that already such small interface dis-
placement can perturb significantly the operation of an
aluminium reduction cell. As a result, our problem is
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characterised by a very small ratio ε = η/L between the
interface displacement and the lateral size of the system.
Therefore we have decided to restrict the present analysis
to ε � 1.

The statement of the considered problem is schematically
shown in Fig. 1. Two fluids with different electrical con-
ductivities σ1 (upper) and σ2 (lower) are situated in an
infinite cylinder with the radius R. The cylinder walls
are non-conducting. Along the axis of the cylinder a ho-
mogeneous electrical current with density j0 is applied.
If the interface between the fluids is flat, the electrical

Figure 1 : Statement of the problem.

current �J is homogeneous everywhere (see Fig. 2 a). In
this case the total electrical potential Φ is equal to the
electrical potential Φ0 = − j0z/σ, induced by the applied
electrical current j0. As soon as the interface deviates
from its flat shape due to interfacial waves or an exter-
nal forcing, the electrical current density �J will become
nonhomogeneous near the interface (see Fig. 2 b). At
z→±∞ the mean current �J becomes asymptotically con-
stant. The inhomogeneity of current �J can be represented
by the perturbation of electrical current density �j (where
�J = �j0 +�j) and it induces a perturbation of the electri-
cal potential φ (where Φ = Φ0 + φ). The question as
to whether we can reconstruct the interface shape from
measurements of φ at the wall represents the central fo-
cus of our work.

It is also possible to reconstruct the interface from mag-
netic field, which is measured outside the cylinder. If the
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Figure 2 : Non-homogeneity of electrical currents in
case of interface perturbation. a) Flat interface, no cur-
rent perturbation. b) Wrinkled interface, the current per-
turbation is presented.

perturbation of the fluid interface is non-axisymmetric,
it leads to a perturbation of the magnetic field outside
the cylinder. This fact can be used for interface recon-
struction as well. But from the magnetic field measure-
ments one can recover only non-axisymmetric interfaces,
because an axisymmetric interface perturbation leads to
the axisymmetric electrical current distribution and it
does not induce a magnetic field perturbation outside the
cylinder. This was the first reason, why we have cho-
sen the reconstruction from the electric potentials. An-
other reason is, that the analysis with the electric poten-
tial amenable to analytical treatment in contrast to the
magnetic problem. For these two reasons we consider in
this paper only the problem of the interface reconstruc-
tion from the electrical potential measurements.

In our further discussion we will distinguish two tasks.
The first task, the so-called forward problem, concerns
the calculation of the electrical potential in the fluids
from the interface perturbation. The second task, the
so-called inverse problem, is devoted to the reconstruc-
tion of the interface shape from the electrical potential at
the fluid-cylinder boundary. The solution of the forward
problem is usually unique, i.e. one can obtain the elec-
trical potential in the fluids from the interface perturba-
tion data with high accuracy. The solution of the inverse
problem is unstable in most cases. A small measurement
error in the electrical potential data set induces a signifi-
cant error in the reconstructed interface. Such problem is
called ill-posed.

The present problem is similar in many respects to the
tasks of electrical impedance tomography (EIT). EIT is
a noninvasive technique for the construction of an ap-
proximation to the conductivity distribution in a given
region from electrical potential data sets which are mea-
sured at the boundaries of the region Butler and Bon-
necaze (1999). Directly at the boundaries of the con-
sidered region the testing electrical currents are applied.
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This method is used in medicine for the detection of gas
or blood location within the body. Cheney at al. Ch-
eney, Isaacson, and Newell (1999) provide a detailed de-
scription of the medical application of EIT. There are
also other applications of EIT. Butler at al. Butler and
Bonnecaze (1999) have shown the possibility to deter-
mine particle migration for a pressure-driven tube flow
with the help of EIT. In our work we shall use algorithms
which are more simple than in traditional EIT applica-
tions. We have used only one testing electrical current
with comparatively few measurement points.

The structure of the present paper is organised as follows.
In the next section we describe the solution of the for-
ward problem. The dependence of the electrical potential
in the fluids on the interface perturbation is studied in de-
tail. The algorithm for the reconstruction is presented in
section 3. Examples of a complete interface shape recon-
struction are demonstrated in section 4. In section 5 we
summarise our conclusion and discuss some topics that
would be useful to investigate in future.

2 Forward problem

2.1 The interface perturbation

We consider small deviations of the interface position z =
η(r,ϕ, t) from its unperturbed location in the plane at z =
0. More precisely, we shall assume that η � R. We will
restrict our attention to a cylindrical geometry. However,
the present analysis can be extended to infinite rods with
arbitrary cross sections.

The interface displacement can be represented in the
form Miles and Henderson (1990)

η(r,ϕ, t) =
∞

∑
i=1

ξi(t)ψi(r,ϕ) (1)

where ψi(r,ϕ) is a complete set of orthonormal functions
satisfying Neumann boundary conditions ∂ψi/∂r at r =
R. Using the Bessel functions as a basis we can write any
interface displacement in the form

η(r,ϕ, t) =
M

∑
m=−M

N

∑
n=1

cmn(t)Jm(kmnr)eimϕ (2)

where cmn is the complex amplitude of the interface
modes, Jm is the Bessel function of the first kind, kmn =
ymn/R and ymn is the n-th solution of the equation J ′

m(r)=
0. In the case m = 0 we omit the solution y00 = 0 because

this solution corresponds to the flat surface η(t) = const.
Here a limited number of modes M and N is used. It
can be shown Dyachenko, Korotkevich, and Zakharov
(2004), that the amplitudes of higher modes decline as
< |ηk|2 >∼ k−7/2. The higher modes can be neglected.

Equation (2) describes the general case of a non-
axisymmetric interface. For the axisymmetric case (m =
0) this equation simplifies to

η(r, t) =
N

∑
n=1

cn(t)J0(knr) (3)

If the interface undergoes free oscillations, the time-
dependent coefficients in equations (2) and (3) have the
form cmneiωt . The oscillation frequency ω can be ob-
tained from linear stability analysis. It should however
be noted that we do not consider the dynamical origin
of the time-dependent amplitudes cmn(t) since the subse-
quent theory depends only on their instantaneous values.

2.2 Electrical potentials in the fluids

The interface perturbation η leads to an inhomogeneous
distribution of the total electrical current density �J in the
fluids. This inhomogeneous current density can be writ-
ten as

�J = − j0�ez +�j (4)

where j0 is the density of the mean electrical current
and �j the perturbation of the current density. The
present analysis is valid for both direct current and low-
frequency alternating electrical current where the skin ef-
fect can be neglected. The maximal allowable frequency
of the electrical current can be estimated by δ�R, where
δ is the skin depth. In our case this leads to the require-
ment that the frequency f of the alternating current is
limited as

f � 1
2πµ0σR2

where σ is the electrical conductivity of the fluid with the
higher conductivity. The total electrical potential in the
fluid is then

Φ = Φ0 +φ (5)

where φ is the perturbation of the electrical potential
which is induced by the perturbation of the current den-
sity �j. The perturbations of the electrical current �j and
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the electrical potential φ are caused by the interface per-
turbation η(r,ϕ). If the interface η(r,ϕ) is flat, then �j = 0
and φ = 0. Φ0 is induced by the homogeneous electrical
current density j0. The solution for Φ0, called the ba-
sic solution, follows from the Ohms law with boundary
condition Φ0 = 0 for z = 0:

Φ0 =
j0 z
σ

(6)

Perturbation of electrical potential φ satisfies

�φ1 = �φ2 = 0 (7)

with the system of the four boundary conditions

∂φ
∂r

= 0, for r = R (8)

φ1 = φ2 = 0, for z = ±∞ (9)

φ1 −φ2 = j0η
[

1
σ2

− 1
σ1

]
, for z = 0 (10)

σ1
∂φ1

∂z
= σ2

∂φ2

∂z
, for z = 0 (11)

The first condition (8) expresses the fact of the non-
conductivity of the cylinder walls and the second condi-
tion (9) expresses the vanishing of the electrical potential
perturbation for z = ±∞. The last two conditions (10)-
(11) follow from the continuity of the tangential compo-
nent of the electrical field and the normal component of
the electrical current density respectively at the interface.
The exact conditions are �J1 ·�n = �J2 ·�n and Φ1 = Φ2 along
the interface z = η(r,ϕ). These two conditions were lin-
earised around z = 0 so as to solve the problem analyti-
cally. This method which is based on the assumption of
small interface perturbation was commonly used for the
analysis of aluminium reduction cells (see e.g. David-
sonDavidson (1994)).

The harmonic function which satisfies all four bound-
ary conditions is determined from the ansatz Davidson
(1994)

φi(r,ϕ, z) =
j0η(r,ϕ)

σi
fi(z) , (12)

where σi, i = 1,2 is the conductivity in the correspond-
ing fluid. Subscript 1 denotes the first one and subscript
2 the second one respectively. fi(z) are the some func-
tions which have to be determined, j0 is the density of the
mean electrical current, η(r,ϕ) = cmnJm(kmnr)eimϕ is the

interface. This expression is valid for both fluids. Condi-
tion (8) is automatically satisfied because the first deriva-
tive of η(r,ϕ) vanishes at r = R. Substituting the expres-
sion (12) in equation (7) and using the condition (9) we
obtain f1(z)= b1 ·exp(−kmnz) and f2(z)= b2 ·exp(kmnz).
We find the constants b1 and b2 from the boundary condi-
tions (10)-(11) as b1 = −b2 = (σ1 −σ2)/(σ1 +σ2). The
electrical potential perturbation in the fluid is the super-
position of the elementary potential perturbations caused
by each single mode of the interface perturbation. The
total potential perturbation in the fluids satisfies

φi(r,ϕ, z)

= sign[z]
j0
σi

σ1 −σ2

σ1 +σ2

M

∑
m=−M

N

∑
n=1

cmnJm(kmnr)eimϕ−kmn|z|

(13)

For the axisymmetric interface case (m = 0) this expres-
sion simplifies to

φi(r, z) = sign[z]
j0
σi

σ1 −σ2

σ1 +σ2

N

∑
n=1

cnJ0(knr)e−kn|z| (14)

The perturbations of the electrical potential φ in the fluid
at the cylinder boundary caused by a single mode of the
interface perturbation η(r,ϕ) are shown in Fig. 3. The
perturbations appear in both fluids, but they are higher in
the poorly conducting fluid.

For large interface displacements the boundary condi-
tions at the interface z = η can not be linearised anymore
and the forward problem would have to be solved numer-
ically. However, such fully numerical solution does not
provide a clear understanding of the dependence of the
electrical potential perturbation φ on the interface dis-
placement η. By contrast, the analytical solution gives
a comparatively simple expression which makes a quali-
tative analysis of the last dependence possible. Therefore
we use in the following parts of this paper only the ana-
lytical solution of the forward problem.

2.3 Non-dimensional equations

We define the dimensionless variables r∗, z∗,η∗,φ∗ by
z∗ = z/R, r∗ = r/R, η∗ = η/R, φ∗

i = φi σi/ j0R. In the di-
mensionless equations the expressions kmnr will be trans-
formed to ymnr∗. The dimensionless equation for the
electrical potential in the non-axisymmetric case is thus
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Figure 3 : Interface perturbations and corresponding po-
tential perturbations: in Figure a) the axisymmetric in-
terface for the first, second and third radial modes (the
modes (0,1), (0,2), (0,3)) is shown. Figure b) presents
the dependence of the potential perturbation φ on z in
the fluid at the cylinder boundary, where φ is caused by
a single mode of the axisymmetric interface perturba-
tion η(r). The —— represents the potential perturbation
which is obtained for the first radial mode of interface
perturbation, the · · · · · · for the second radial mode, the
- - - - for the third radial mode. In Figure c) the non-
axisymmetric interface [the mode (1,2)] is shown and in
Figure d) the caused by its potential perturbation at the
fluid boundary is presented.

modified to

φi(r,ϕ, z) = sign[z]
M

∑
m=−M

N

∑
n=1

cmnJm(ymnr)eimϕ−ymn|z| (15)

and in the axisymmetric case it is transformed to

φi(r, z) = sign[z]
N

∑
n=1

cnJ0(ynr)e−yn|z| (16)

In the remaining part of paper we will use only non-
dimensional variables. Evaluating equations (15) and
(16) at the cylinder wall r = 1 we finally arrive at the
equations providing the link between the surface deflec-
tion (described by the expansion coefficients cmn or cn)
and the potential distribution at the walls. These equa-
tions form the mathematical basis of our work. The rest
of the paper is devoted to the treatment of the inverse
problem φ(ϕ, z)→ cmn or φ(z)→ cn.

It must be remarked, that for the reconstruction of the in-
terface it is sufficient to have the data set of the electrical
potentials at the fluid boundary in one of the fluids only.
Therefore we consider only one fluid further in this pa-
per. The sign[z] will be taken positive in the equations
describing the dependence of the electrical potential per-
turbation on the interface perturbation. The computation
of the position of the unperturbed interface (η = 0) is not
the aim of this paper, but some possibilities will be be
discussed in the subsection 3.1.

2.4 The error in potential resulted from truncated
form of representation

We represent the electrical potential perturbation resulted
from the interface deflection in the form given by eq. 16.
This equation contains a finite numer of modes (number
N in eq. 16). In the reality we can have a more compli-
cated case with a infinite number of modes (N = ∞). The
difference between the real case with infinite number of
modes (N = ∞) and truncated representation (N = const)
forms the model error

ek =
∞

∑
N+1

cnJ0(yn)e−ynzk . (17)

which we will discuss here. In principle the model error
can be defined for both fluids, for the case of simplicity
we assume to be 0 < z < ∞.

Dyachenko et al. Dyachenko, Korotkevich, and Za-
kharov (2004) have been shown that the amplitudes of
interfacial waves decreases as

< |cn|>∼ y−7/4 (18)

where n is the mode number. Based on this, the expres-
sion (17) is simplified to

ek ≤
∞

∑
N+1

y−7/4
n J0(yn). (19)

We note, that 0 < z < ∞ and, therefore, e−ynzk < 1.

This infinite sum can be estimated with help of geometri-
cal regression. The quotient of two neighboring elements
with m ≥ N +1 is

q = am+1/am =
(

ym

ym +1

)7/4 J0(ym+1)
J0(ym)

< 1 (20)

The first term of the geometrical regression is

a0 = y−7/4
N+1 J0(yN+1) (21)
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Using the formula for the sum of the geometrical regres-
sion

Rn =
a0

1−q
, (22)

we obtain:

en = Rn ≤
y−7/4

N+1 J0(yN+1)

1−
(

yN+1
yN+2

)(7/4) J0(yN+1)
J0(yN+2)

(23)

The last expression shows, that the electrical potential
can be computed form a know interface with any given
accuracy which only depends on the number of modes
included in interface representation. The more modes in-
cluded the better the potential perturbation is computed.
So, we can operate with a small number of first modes
and we neglect the higher modes without a significant
lost of accuracy.

3 Inverse problem

3.1 Basic location of the interface

For the following interface reconstruction we need to
known the position of the basic flat interface. For an
experiment or application a cylinder of large but finite
height H could be used, in which the mean electrical cur-
rent �J could be applied between electrodes. Therefore
in this subsection we consider the determination of the
basic location for a finite cylinder.

If the interface is non-disturbed, the basic interface loca-
tion can be easily determined from the measurements of
the mean electrical current density j0 and from the volt-
age U between two electrodes. The conductivities of the
fluids σ1 and σ2 and the height of the cylinder H are also
known. To find the interface position, we need to eval-
uate the expression for the mean electrical current. The
last could be computed from the Ohms law as

j0 = U
σ1σ2

σ2h1 +σ1h2
(24)

where h1 is the distance between interface and lower
electrode, h2 between interface and upper electrode. Sub-
stituting h1 = H −h2 in the last equation, we obtain

h2 =
U
j0

σ1σ2

σ1 −σ2
− σ2

σ1 −σ2
H (25)

In the practice in the aluminium reduction cells the cur-
rent density and the voltage between electrodes are mea-
sured automatically, so that the location of basic interface
presents no difficulty.

If the interface undergoes small oscillations, the electri-
cal voltage U becomes also oscillating near the value,
which corresponds to the case without oscillations. Nor-
mally it is tried to hold the mean electrical current j0 in
the aluminium reduction cells as constant. Therefore it
is also possible to determine the basic location for the
moving interface by the above described method. In this
case the averaged voltage < U > will be used instead of
constant value U in eq. (25).

3.2 Reconstruction of axisymmetric interface

The interface perturbation is mapped into the electrical
potential in the fluid at the cylinder boundary as follows

φk =
N

∑
n=1

cnJ0(yn)e−ynzk (26)

Here cn is the amplitude of n-th radial mode of the inter-
face perturbation, φk is the value of the electrical poten-
tial in the fluid at the cylinder wall at the k-th measure-
ment point, and zk is the z-coordinate of the k-th mea-
surement point with 1 ≤ k ≤ K. The last expression can
be transformed into the matrix equation

φk =
N

∑
n=1

Akncn (27)

where the linear operator Akn = J0(yn)e−ynzk is also called
the system matrix. A direct inversion of A leading
to η = φ · A−1 is not in general possible for two rea-
sons. First, the number of measurement points is usu-
ally higher than the number of modes to be reconstructed
(K > N). In this case we would have more equations
than variables. Second, the system matrix is in gen-
eral ill-conditioned and the inversion of the operator A
becomes unstable. In this case the reconstruction error
is so intense that the solution cannot be discerned from
noise. We solve the presented inverse problem of the in-
terface reconstruction in the least-square sense, i.e. we
find the solution vector�η which minimizes the deviation
‖ A�η−�φ ‖. A well-known technique for the solution of
the linear least-squares problem is the singular value de-
composition (SVD) method Press, Flannery, Teukolsky,
and Vetterling (1989). Using SVD the system matrix A
can be written as

A = U ·diag[w] ·VT (28)

where U is a N ×K column-orthogonal matrix, w is a



Reconstruction of Interfaces between Fluids 53

N

co
n

d
iti

o
n

n
u

m
b

er
C

1 2 3 4 5 6 7 8 9
100

101

102

103

104

105

106

107

108

Figure 4 : Dependence of the condition number of the
system matrix on the number of the reconstructed radial
modes N. The computation is performed for an axisym-
metric interface and non-equidistant location of the mea-
surement points.

K ×K diagonal matrix with positive elements on its di-
agonal only, V is a N ×N square orthogonal matrix. The
matrices U and V satisfy UT ·U = V T ·V = I, where I is
the unitary matrix. Then the inverse operator A−1 can be
represented in the form

A−1 = V ·diag[w−1] ·UT (29)

Based on this, we obtain the solution of the reconstruc-
tion problem as

�η = V ·diag[w−1] · (UT ·�φ) (30)

The condition number of the system matrix A is defined
in the common case as C =‖ A ‖ · ‖ A−1 ‖. If the Eu-
clidean matrix norm is used than this is the ratio of the
largest element of the matrix w to the smallest element
of w Schwarz (1997). This number is an indicator of the
difficulty of solution. The reconstructed interface at a
high condition number contains a higher reconstruction
error. For the present reconstruction problem it is typical
that the condition number of the system matrix increases
with the growth of N (see Fig. 4). Thus, the more radial
modes we wish to reconstruct, the higher the reconstruc-
tion error will be.

At this place it is important to comment on the choice
of the number of modes to be reconstructed (number N
in eq. 26). Fig. 3.2 demonstrates that the reconstruction
error can significantly depend on the choice of N, whose
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Figure 5 : Dependence of the reconstruction error on the
number of radial modes N which is used for the recon-
struction of the axisymmetric interface. The � denote
the reconstruction without data error, the • denote 1%
data error, � - 5% data error, � - 10% data error.

incorrect choice leads to non-satisfactory reconstruction
results. The reconstruction error is computed as

δ =

√√√√√√√√
2πR
0

1R
0

[η(r,ϕ)−ηex(r,ϕ)]2 r dr dϕ

2πR
0

1R
0

η2
ex(r,ϕ)r dr dϕ

(31)

where η(r,ϕ) is the reconstructed interface, ηex is the ex-
act interface.

To find an optimal number of modes N, which are used
for the reconstruction, the L-curve criterion (see Hansen
(1992)) is used. We solve the forward problem for a
different numbers N and compute for any N the inte-
gral squared norm of the solution ‖η(r)‖ (called solution
norm below) and the squared Euclidean norm ‖A�η−�φ‖
(called residual norm):

‖η(r)‖=
2πZ

0

1Z

0

η2(r)rdrdϕ (32)

‖A�η−�φ‖ =
K

∑
k=1

[
(

N

∑
n=1

Akn · cn)−φk

]2

(33)

Afterwards we plot log‖η(r)‖ as a function of ‖A�η−�φ‖.
The resulting plot is typically L-shaped (Fig. 6) with a
largest curvature at the optimal number of modes (N = 2
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in most of the cases), which is the number of active
modes in system. The corner of the presented curve
shows the compromise between data error and recon-
struction error. For small N the reconstructed interface is
too smooth. For N greater than in the reality the data er-
ror decreases but the reconstructed interface has too large
deviations, it becomes too wavy (see Fig. 7).
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Figure 6 : Dependence of the solution norm on the
residuum norm (L-Curve) at 1% data error. The az-
imuthal modes with m = 0..5 are plotted. The optimal
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The bend of the plotted L-curve can be computed ap-
plying a method described by Kaufmann Kaufmann and

Neumaier (1996). This method works as follows. De-
scribe the vertices of L-curve as (w1,q1), (w2,q2), . . .,
(wl,ql), where w1 > w2 > .. . > wL, q1 < q2 < .. . < qL,
where wl and ql are the l-th values of residual norm and
solution norm respectively. The regularization parameter
N is set for any step to l = 1..L. Then in the first step we
compute the slopes

sk = (wk−1−wk)/(qk−qk−1) k = 2, ..,L (34)

and in the second step the quotient of two consecutive
slopes

dk = sk/sk−1 (35)

The largest quotient ck indicates a bend of the L-curve,
which is in our case the optimal number of modes to be
reconstructed.

3.3 Reconstruction of the non-axisymmetric interface

The mapping of the interface perturbation into the elec-
trical potential at the fluid boundary (r = 1) can be de-
scribed for the non-axisymmetric case as follows:

φkp =
M

∑
m=−M

eimϕp

N

∑
n=1

cmnJm(ymn)e−ymnzk (36)

Here k is the vertical running index of the measurement
points and p is the azimuthal running index. These num-
bers define the measurement point locations (zk,ϕp) re-
spectively (see Fig. 1), and ϕp = 2π p

P , where P is the
number of measurement points in azimuthal direction.
Eq.( 36) shows, that the reconstruction problem for the
non-axisymmetric case decouples into M inverse prob-
lems for the individual Fourier-modes whose mathemat-
ical structure is identical with that of the axisymmetric
problem. In general, the reconstruction algorithm for the
non-axisymmetric interface can be divided in two oper-
ations: 1) discrete Fourier transformation 2) solution of
the inverse problem for every m = 0..M with method de-
scribed in the last subsection. Here M is the number
of azimuthal modes to be reconstructed. The diskrete
Fourier transformation filters from the common data set
the electrical potential which is caused by all of radial
modes n = 1...∞ of fixed azimuthal wave number m. Af-
ter this we can apply the algorithm of reconstruction de-
scribed above in the last subsection.

The number of azimuthal modes which we can recon-
struct M is limited by the number of measurement point
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in azimuthal direction as M < P/2 according to the sam-
pling theorem. In the practice, the good results can be
achieved with a small number of M = 1..6. It will be
discussed later in the next subsection.

The equation (36) can be transformed to

φkp =
M

∑
m=−M

Fkmeimϕp =
M

∑
m=−M

Fkm e2π im p
P (37)

where

Fkm =
N

∑
n=1

cmnJm(ymn)e−ymnzk

The expression (37) presents the discretisation of a har-
monic function. This function is the dependence of the
electrical potential perturbation on an azimuthal angle
φ(ϕ) at some fixed point on the cylinder boundary with
r = 1, z = const.

In the first step of reconstruction a discrete Fourier trans-
form is performed on each k-th row of the measurement
data set φkp with p = 0 . . .P, P = 2M and k = const. This
operation let us filter the electrical potential perturbations
caused by the different azimuthal modes. As result the
coefficients matrix F is obtained as

Fkm =
P−1

∑
p=0

φkp e−2πi p
P (38)

The m-th column �f of the coefficients matrix F satisfies
for any m = 1 . . .M the matrix equations

fk =
N

∑
n=1

Akn · cn (39)

where the linear operator

Akn = Jm(ymn)e−ymnzk (40)

is now the system matrix. The solution of such matrix
equations using the singular value decomposition method
has already been discussed in the subsection 3.2. The
matrix A can be decomposed as (30) and the particular
solution for non-axisymmetric case is

b = V ·w−1 ·UT · f (41)

Here the vector �b corresponds to the m-th row of the
amplitudes matrix cmn. We note, that the reconstruction
problem is solved for each mode with m = 0..M com-
pletely independent from the other azimuthal modes.

3.4 Choice of optimal reconstruction parameters.

In this subsection the choice of the number of azimuthal
modes M, of the radial mode number N, and also the
measurement points numbers p and k, are discussed. The
general case of non-axisymmetrical interface is discussed
here, because the axisymmetric interface is a partial case
of the general problem.

In the presented reconstruction problem it exist two very
important parameters, namely M and N, numbers of
modes which form the reconstructed interface. In the
nature it exist the infinitely number interfacial modes at
the same time. As a matter we can not reconstruct all of
these modes, but it is also not necessary. Really, the grav-
itational wave spectrum in the nature satisfies the power
law Dyachenko, Korotkevich, and Zakharov (2004)

< |ηk|2 >∼ k−7/2 = y−7/2. (42)

It means, that the higher modes have a very small ampli-
tude and can be neglected without lost of important infor-
mation about the interface shape to be recovered. This in-
formation can be used for the a-priori estimation of num-
ber M. The electrical potential perturbation φ which is
produced by an azimuthal mode decline very fast with
a growth of m and n. If we consider some point on the
cylinder boundary with coordinates (1,ϕ, z), it satisfies

φm = sgn[z]
∞

∑
n=1

η(1,ϕ)exp(−ymnz).

The amplitudes of interfacial waves declines as shown in
Eq.(42), therefore we rewrite the last expression as

φm = sgn[z]
∞

∑
n=1

y−7/4
mn exp(−ymnz).

The conclusion is that for any fixed point on the cylin-
der walls the higher modes produce very small electri-
cal potential. It is smaller in comparison to the measure-
ment error from the measurement of the strongest mode.
This mode which causes the largest electrical potential
on every data point is the mode with m = 1, n = 1. We
have used this fact as criterion for filtering the data after
Fourier decomposition procedure. In the other words, the
choice of M, the number of azimuthal modes which are
to be reconstructed, depends on the measurement error.
According to this, the following numbers of azimuthal
modes M has been chosen in dependence on the mea-
surement error:
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Table 1 : Dependence of M on the measurement error.

meas. error 1% 5% 10%
M 6 3 3

The optimal number of reconstructed modes N is found
using the L-curve criterion, which was described above.
This procedure is done for any azimuthal mode number
m = 0 . . .M. We have chosen N = 2 because the L-curves
for the 6 first azimuthal modes with m = 0..5 have a sharp
bend in the majority of cases at N = 2 (see Fig. 6).

After this procedure we have the numbers of modes to be
reconstructed, M and N. Then we choose the number of
measurement points in the vertical direction as k >= N
and in azimuthal direction as p >= 2M. The first con-
dition follows from the fact that the number of recon-
structed modes must be smaller as the number of points
in vertical direction k. The second one follows from the
sampling theorem.

4 Examples of interface reconstruction

The simulation is performed in four steps as follows.
First the amplitudes cn for axisymmetric or cmn for non-
axisymmetric cases are prescribed which determine the
interface shape. In the second step of the electrical po-
tentials φk or (φkp in the general case) at the cylinder
boundary are computed using the analytical solution (26)
or (30) for the forward problem. Then in the third step
random white noise is added to the obtained electrical
potential data set as φkp(1 + εδ), where −1 < ε < 1 is
a random number and δ is the maximum amplitude of
error. These operations simulate the noisy measurement
of the electrical potentials. Different noise amplitudes
represent different data errors. The fourth step is the re-
construction of the interfaces employing the algorithms
described in section 3.

We perform our numerical experiments for two cases.
Firstly, axisymmetric interface is reconstructed and then
the general case of the non-axisymmetric interface is in-
vestigated. We have try to simulate the conditions similar
to the physical experiment. Therefore the amplitudes of
interfacial waves are computed as

ηmn = y−1.75
mn (43)

where ymn is the dimensionless wavenumber for the n-th

r0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

η

Figure 8 : Reconstruction of the axisymmetric interface
for different data errors. The exact interface is denoted
with ——. The — · · — corresponds to 1% data error,
the - - - - 5% data error, the — · — 10% data error.

radial of the m-th azimuthal mode.

Examples of the axisymmetric interface reconstruction
are shown in Fig.8. The exact interface shape consists of
the first ten modes which amplitudes are computed us-
ing Eq.(43). The number of modes N which are used
for the reconstruction procedure, is obtained from the L-
curve (see Fig. 6). It depends on the measurement er-
ror. For 1% data error in measurement set we have used
4 modes for reconstruction, for 5% - three modes and
for 10% two modes only. The reconstructed curves are
very similar to the exact interface. Some deviation in the
centrum of the interface (r− > 0) results from the fact,
that the true interface has more modes in comparison to
the reconstructed. However, the form of the interface is
good recovered. Even if the the measurement error is
high as 10%, the reconstructed interface looks similar to
the exact. It demonstrates that the presented reconstruc-
tion method is robust with respect to measurement noise.

Fig. 9 presents examples of the non-axisymmetric inter-
face reconstruction. The exact interface consists of the
first ten radial modes for m = 0, ..,10, whose dimension-
less amplitudes are computed with eq. (43). Of coarse,
the reconstructed interface is smooth in comparison to
the true interface consisting 100 interfacial modes be-
cause we reconstruct with a short number of interfacial
modes. But the reconstructed interface is also very sim-
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Figure 9 : Reconstruction of the non-axisymmetric in-
terface. View from above.

ilar with the exact interface even for the high measuring
error.

5 Conclusion

In the present work we have described an algorithm
for the interface reconstruction from electrical potential
measurements at the fluid boundary in a two-fluid sys-
tem with cylindrical configurations. We have investi-
gated axisymmetric and non-axisymmetric interfaces. In
both cases the interface shape is determined with good
accuracy. The method is robust to measurement errors
and works even at noise level as high as 10%.

Two important parameters are presented in this inverse
problem. There are the numbers of modes, which are
used for reconstruction, M for azimuthal modes and N
for radial. It is shown, that M can be estimated before the
reconstruction. The incorrect choice of N has a strong
influence on the reconstruction quality and it makes the
reconstruction results unacceptable. Optimal N is found
with the help of dependence of the integral solution norm
on the residual norm, which has the typical L-curve shape
and its bend corresponds to the optimal number of modes
to be reconstructed. It was found the optimal N = 2 for
the most of cases.

The presented reconstruction algorithm is based on the

comparisonly simple analytical solution of the forward
problem. Therefore it is much faster in comparison to the
any another methods which are based on the numerical
solution. The numerical cost of reconstruction is extreme
low. At the other side, the reconstruction results show
the good accuracy. The presented method can be used in
an real-time fast interface detection system, whose appli-
cation field can be the aluminium reduction cells, glass
melting etc.
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