
Copyright c© 2006 Tech Science Press FDMP, vol.2, no.2, pp.77-93, 2006

Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to
Monodisperse Emulsions

V. Cristini1 and Y. Renardy2

Abstract: We review studies of a drop of viscous liq-
uid, suspended in another liquid, and undergoing breakup
in an impulsively started shear flow. Stokes flow condi-
tions as well as the effects of inertia are reported. They
reveal a universal scaling for the fragments, which allows
one to use sheared emulsions to produce monodispersity
as an alternative to microfluidic devices.
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1 Introduction

Drop breakup is important for a wide range of engi-
neering and biomedical applications including produc-
tion and processing of emulsions and immiscible poly-
mer blends, aerosols, and drug delivery systems. The
application of shear and inertia to a premixed emulsion
of various drop sizes is one technique for the production
of monodisperse droplets. Experimental, theoretical and
numerical studies of drop breakup in imposed flows are
reviewed in Rallison (1984); Bentley and Leal (1986);
Stone (1994); Basaran (2002); Guido and Greco (2004);
Cristini and Tan (2004). Criteria for breakup are inves-
tigated experimentally and analytically in, for example,
Bentley and Leal (1986); Navot (1999); Blawzdziewicz,
Cristini, and Loewenberg (2002, 2003). The distribu-
tion of drop fragments resulting from breakup in shear
flow is studied in Cristini, Blawzdziewicz, Loewenberg,
and Collins (2003); Schmitt, Leal-Calderon, and Bibette
(2003), among others. The drop size distribution result-
ing from breakup events determines the mechanical prop-
erties and rheology of such mixtures. These investiga-
tions are therefore key to understanding the microstruc-
ture of immiscible blend systems in materials processing.
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Shear flow is particularly relevant because it is often the
dominant flow type in production devices such as extrud-
ers and rotor-stator mixers [Bigio, Marks, and Calabrese
(1998)]. The study of a single drop in this context con-
tributes to an understanding of the drop size distribution
for dilute emulsions in shearing devices.

1.1 Physical Parameters for Stokes Flow

A drop of viscosity µd and density ρd is suspended in
another liquid of viscosity µm and density ρm. At time
t = 0, the drop is spherical with radius a. Another option
is to place a drop in the liquid that already flows at an im-
posed constant shear rate γ̇. For t > 0, the ambient fluid
undergoes simple shear in the x-z plane with velocity

ẋ =
γ̇
2
(S+A)x, S =

(
0 1
1 0

)
, A =

(
0 1
−1 0

)
, (1)

where x =
(

x
z

)
. The symmetric matrix S generates elon-

gation along x = z and the antisymmetric matrix A gen-
erates rotation.

We take the densities of the drop and matrix liquids to be
the same (ρd = ρm) and focus on the competition between
viscous force, capillary force and inertia. The viscosity
ratio of the drop to matrix liquids is denoted

λ = µd/µm . (2)

The time scales τγ̇ for drop stretching in the flow, and τσ
for drop shape relaxation by surface tension are given by

τγ̇ = γ̇−1, τσ = µma/σ. (3)

The ratio of these time scales defines the capillary num-
ber

Ca = µmγ̇a/σ , (4)

where σ is the surface tension.
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1.2 Critical Condition for Stokes Flow

Initially, the drop is stretched by viscous shear stress in
the external flow. Shear stress is proportional to the vis-
cosity multiplied by the rate of elongation. Continuity
of shear stress across the drop/matrix interface therefore
yields

λ × {rate of elongation in the drop}
∼ {rate of elongation in the matrix}. (5)

The decomposition (1) for simple shear in the matrix
fluid shows that

{rate of elongation in the matrix}
∼ {rate of rotation in the matrix} (6)

In addition, velocity is continuous across the interface;
thus,

{rate of rotation in the matrix}
∼ {rate of rotation in the drop}. (7)

Retracing the steps back to (5),

λ × {rate of elongation in the drop}
∼ {rate of rotation in the drop}. (8)

This shows heuristically that when the drop is very vis-
cous (λ >> 1), the rate of elongation in the drop is small
compared to the rate of rotation in the drop; i.e., the
drop can not break. The critical viscosity ratio λ∗ be-
yond which the drop does not break for Stokes flow is
roughly 3.

For λ < λ∗, there is a critical capillary number, above
which the drop breaks [Rallison (1984); Khismatullin,
Renardy, and Cristini (2003)]:

Ca∗ ∼ 1. (9)

Critical conditions are shown in Fig. 1: Ca∗ → ∞ at
both λ = 0 and λ = λ∗. We define a dimensionless time
t = t/τγ̇, and radius a = a/a∗, where a∗ denotes the ra-
dius corresponding to Ca∗ = µmγ̇a∗/σ. (9) gives a simple
relationship between generated droplet size and imposed
flow rate. The larger the flow rate, the smaller the droplet
size.

Accurate critical capillary numbers are intrinsically dif-
ficult to obtain due to the divergence of the time t0 re-
quired to reach stationary state [Blawzdziewicz, Cristini,

Figure 1 : From Fig. 4 of Cristini, Guido, Alfani,
Blawzdziewicz, and Loewenberg (2003). Critical capil-
lary numbers for drops in shear flow from numerical sim-
ulations (solid curves), Rallison (1981) (�), Kennedy,
Pozrikidis, and Skalak (1994) (�), Janssen (1993) (♦).
Inset includes experimental data (•) Grace (1982).

and Loewenberg (2002)],

t0 ∼ (1−a)−1/2. (10)

Experimental data (inset of Fig. 1) have large scatter due
to the uncertainty of determining whether a drop is grad-
ually breaking or gradually attaining a stationary config-
uration at shear rates close to the critical value. The same
difficulty applies to numerical computations.

2 Numerical methods

The two main approaches to simulating drop deformation
are interface tracking and interface capturing.

2.1 Interface tracking methods

Interface tracking methods include boundary-integral
methods [Pozrikidis (1992); Prosperetti and Oguz
(1997); Coulliette and Pozrikidis (1998); Cristini,
Blawzdziewicz, and Loewenberg (1998); Zinchenko,
Rother, and Davis (1999); Cristini, Blawzdziewicz,
and Loewenberg (2001); Hou, Lowengrub, and Shelley
(2001); Pozrikidis (2002); Yeo, Matar, de Ortiz, and He-
witt (2003)], finite-element methods [Wilkes, Phillips,
and Basaran (1999); Hooper, Cristini, Shakya, Lowen-
grub, Macosko, and Derby (2001); Hooper, de Almeida,
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Figure 2 : Adaptive 3-D boundary-integral simulation
of drop breakup in shear flow. The simulation is contin-
ued past the transition by reconnecting the computational
mesh [Cristini, Blawzdziewicz, and Loewenberg (1998,
2001)].

Macosko, and Derby (2001); Notz, Chen, and Basaran
(2001)], and immersed-boundary methods [Nobari, Jan,
and Tryggvason (1996); Tryggvason, Bunner, Esmaeeli,
Juric, Al-Rawahi, Tauber, Han, Nas, and Jan (2001); Shin
and Juric (2002); Esmaeeli (2005)]. These are ’sharp-
interface’ methods; the computational mesh elements lay
in part or fully on the fluid/fluid interfaces. Such methods
are very accurate for simulating the onset of breakup and
coalescence transitions but have difficulties in simulating
through and past the transitions.

In boundary-integral methods, the flow equations are
mapped from the immiscible fluid domains to the sharp
interfaces separating them, thus reducing the dimension-
ality of the problem (the computational mesh discretizes
only the interface). In finite-element methods, the fluid
domains are discretized by a volume mesh and thus the
dimensionality is not reduced. Both these approaches
lead to accurate and efficient solution of the flow equa-
tions because the interface is part of the computational
mesh and the equations and interface boundary condi-
tions are posed exactly. In immersed-boundary methods,

the interfacial forces are calculated on a surface mesh
distinct from the computational volume mesh where the
flow equations are solved; thus, in addition, interpolation
onto the volume mesh is needed. A three-dimensional
boundary integral simulation is shown in Fig. 2. The
first three frames show the evolution of a drop towards
breakup and the formation of a thinning liquid thread
separating two large daughter drops. The labels report
the dimensionless time from breakup. The calculated
drop shapes (computational mesh) compare well with ex-
perimental data (solid contour), demonstrating the high
accuracy of the numerical method. These simulations use
an adaptive triangulated mesh [Cristini, Blawzdziewicz,
and Loewenberg (2001)].

Figure 3 shows an application of the finite-element
method to high-Reynolds-number satellite production
from a jet [Notz, Chen, and Basaran (2001)]. Cross sec-
tions of the computed evolution in time (top) compare
well with experimental data (bottom). The computational
accuracy allows the authors to recover features of the
evolutions such as capillary waves (a-c), overturning of
the top and bottom of the satellite in (f), spade-shaped
profiles (g, h), and spawning of a subsatellite.

Figure 3 : From Figs. 2 and 3 of Notz, Chen, and Basaran
(2001). Finite-element simulation (top) of satellite for-
mation and dynamics from a jet compared to an experi-
ment (bottom).

Near breakup and coalescence transitions, sharp-
interface models break down because of the formation
of singularities in flow variables [Hou, Lowengrub, and
Shelley (1997)], and complex ad hoc cut-and-connect
algorithms have been employed [Mansour and Lund-
gren (1990); Tryggvason, Bunner, Esmaeeli, Juric, Al-
Rawahi, Tauber, Han, Nas, and Jan (2001); Cristini,
Blawzdziewicz, and Loewenberg (2001)] to change the
topology of the meshes and continue simulating through
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a transition. A method to automatically reconnect sharp
interfaces has been recently developed by Shin and Juric
(2002). Nobari, Jan, and Tryggvason (1996) reconnected
the interfaces as their separation fell under a prescribed
value but noticed that the flow can depend sensitively on
the time at which the interface reconnections are per-
formed. Reconnection conditions based on asymptotic
theories for liquid thread pinch-off and film drainage
are also used to extrapolate to the instant of breakup
or coalescence [Keller and Miksis (1983); Eggers and
Dupont (1994); Eggers (1995); Blawzdziewicz, Cristini,
and Loewenberg (1997); Lister and Stone (1998)]. For
instance, the simulation of Fig. 2 (bottom) employs a cut-
and-connect mesh algorithm after the asymptotically lin-
ear thinningof the liquid thread [Lister and Stone (1998)]
has been established. This allows simulations to be con-
tinued past the transition while preserving accurate infor-
mation on breakup time and fragment sizes.

2.2 Interface-capturing methods

Simulations through breakup using interface-capturing
methods do not require mesh cut-and-connect opera-
tions because the mesh elements do not lay on the
interface, but rather the interface evolves through the
mesh. Such methods include the lattice-Boltzmann
and lattice-gas [Rothman and Zaleski (1997); Chen
and Doolen (1998); Nourgaliev, Dinh, Theofanous, and
Joseph (2003); Sankaranarayanan, Kevrekidis, Sundare-
san, Lu, and Tryggvason (2003); Watanabe and Ebihara
(2003)], constrained-interpolation-profile [Yabe, Xiao,
and Utsumi (2001)], level-set [Osher and Fedkiw (2001);
Jimenez, Sussman, and Ohta (2005); Hogea, Murray,
and Sethian (2005)], volume-of-fluid [Scardovelli and
Zaleski (1999)], coupled level-set and volume-of-fluid
[Sussman and Puckett (2000)] and partial-miscibility-
model and phase-field methods [Lowengrub, Goodman,
Lee, Longmire, Shelley, and Truskinovsky (1999); An-
derson, McFadden, and Wheeler (1998); Yabe, Xiao, and
Utsumi (2001); Jacqmin (1999); Badalassi, Ceniceros,
and Banerjee (2003); Chen (2002); Yue, Feng, Liu, and
Shen (2004, 2005)], The fluid discontinuities (e.g., den-
sity, viscosity) are smoothed and the surface tension
force is distributed over a thin layer near the interface to
become a volume force (surface tension being the limit as
the layer approaches zero thickness). Interface-capturing
methods are then ideal for simulating breakup and co-
alescence in immiscible two-fluid systems (and the ef-

fect of surfactants) and for three or more liquid compo-
nents, and can be especially powerful for micro channel
design. Lattice-Boltzmann methods are based on a parti-
cle distribution function and on averaging to capture the
macroscopic behavior. The constrained-interpolation-
profile, level-set and volume-of-fluid methods describe
the macro scale directly and use auxiliary functions ad-
vected by the flow (e.g. level-set, volume fraction, and
color functions) to mark the different fluid domains.

In Fig. 4, we reproduce a simulation of drop breakup
in shear flow using a volume-of-fluid method [Li, Re-
nardy, and Renardy (2000); Renardy, Cristini, and Li
(2002); Renardy and Cristini (2001a,b)]. The drop is
strongly stretched in the supercritical flow leading to rup-
ture into numerous fragments of alternating sizes (see for
comparison,Cristini, Guido, Alfani, Blawzdziewicz, and
Loewenberg (2003); Tan, Cristini, and Lee (2006)). The
diffuse-interface (phase-field) approach is based on free-
energy functionals and uses chemical diffusion in narrow
transition layers between the different fluid components
as a physical mechanism to smooth flow discontinuities
and to yield smooth evolution through breakup and co-
alescence. The singularity which arises at a pinch-off
[Papageorgiou (1995); Eggers (1995); Lister and Stone
(1998)] affects the resolution of the subsequent small
drops.

Figure 4 : 3-D volume-of-fluid simulation of drop
breakup in simple shear, view along the velocity gradi-
ent. Fig. 16 of Li, Renardy, and Renardy (2000).
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In Renardy and Renardy (2002), a parabolic reconstruc-
tion of the interface in the surface tension (PROST) force
for volume-of-fluid methods is formulated. The algo-
rithm achieves convergence with spatial refinements in
repeated drop breakup simulations. The main features
of PROST are that it reconstructs the interface with a
least square fit of a quadratic interface to the values of
the volume fraction function for each interface cell, and
calculates the curvature directly from the quadratic sur-
face at cell centers. This avoids numerical differentia-
tion of the discontinuous volume fraction function. The
PROST algorithm is extended to the Giesekus consti-
tutive law for viscoelastic liquids in Khismatullin, Re-
nardy, and Cristini (2006), where the experimental data
of Guido, Simeone, and Greco (2003) are simulated.

Figure 5 (a)-(c) is a breakup simulation for Stokes flow
with PROST, and the close agreement with the bound-
ary integral simulation (d) illustrates the accuracy of this
sharp-interface volume-of-fluid method.

Figure 6 shows a breakup simulation with inertia. The
drop evolves to an ellipsoidal shape, then to a dumbbell
with the central portion continuing to stretch and thin.
There is vortical motion inside the bulbs which detach
to form the first daughter drops. When the mother drop
is large enough, the ends of the remaining portion re-
tracts slightly due to surface tension, then bulb up and
end-pinching repeats. If the capillary number is suffi-
ciently high, end-pinching leaves behind a long cylindri-
cal thread, where capillary wave breakups are observed.
This results in a distribution of large satellite droplets,
interspersed with small droplets.

2.3 Adaptive Mesh

Accurate numerical simulations require the computa-
tional mesh to resolve both the macro (e.g., droplet
size, channel geometry) and micro scales where pinch-
off or coalescence occurs; for example, local inter-
face curvature, separation between interfaces, surfactant
distributions, and relevant stresses and forces. Adap-
tive mesh algorithms greatly increase accuracy and
computational efficiency in boundary-integral [Cristini,
Blawzdziewicz, and Loewenberg (2001)], finite ele-
ment [Wilkes, Phillips, and Basaran (1999); Hooper,
Cristini, Shakya, Lowengrub, Macosko, and Derby
(2001); Cristini, Hooper, Macosko, Simeone, and Guido
(2002)], immersed boundary [Tryggvason, Bunner, Es-
maeeli, Juric, Al-Rawahi, Tauber, Han, Nas, and Jan

(a)

(b)

(c)

(d)

Figure 5 : From Figs. 7-11 of Renardy and Renardy
(2002). VOF-PROST simulation (a)-(c). (a) Drop at time
47.7 just before breakup, full view. Lower: view of neck.
(b) View of neck at time 47.8 close to breakup. (c) Time
47.9 after breakup. (d) Boundary integral simulation at
time 47.5.

(2001)], and interface capturing [Agresar, Linderman,
Tryggvason, and Powell (1998); Sussman, Almgren,
Bell, Colella, Howell, and Welcome (1999); Provatas,
Goldenfeld, and Dantzig (1999); Ubbink and Issa (1999);
Ceniceros and Hou (2001); Jeong, Goldenfeld, and
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Figure 6 : Numerical simulation of fragmenta-
tion. Re = 12,Ca = 0.175 = 1.14Ca∗, λ = 1. t =
0,1,9,19,21,22,22.4,24.8γ̇−1. The VOF-PROST algo-
rithm is used.

Dantzig (2001); Jeong, Dantzig, and Goldenfeld (2003);
Ginzburg and Wittum (2001); Zheng, Roach, and Ismag-
ilov (2003)] methods. Figure 7 shows novel unstructured
adaptive meshes in level-set simulations of Anderson,

Zheng, and Cristini (2005); Zheng, Lowengrub, Ander-
son, and Cristini (2005). Their algorithm automatically
imposes a mesh element size proportional to the distance
from the interface. As the interfaces deform, approach or
pinch-off, the mesh dynamically maintains accurate res-
olution of the flow near the interface. The 3-D simulation
accurately describes drop breakup during retraction of a
previously elongated drop.

Figure 7 : Adaptive unstructured meshes of tetrahe-
dra maintain computational accuracy during simulations
(data from Zheng, Lowengrub, Anderson, and Cristini
(2005)). Some tetrahedra may appear skewed as a result
of projecting the 3-D mesh onto the plane of the figure.

3 Fragment size distribution for Stokes flow

Fragments may be categorized roughly into three types.
The first ’daughters’ produced by the primary breakup
event have the largest volumes. In Fig. 5, these roughly
split the mother drop at criticality. Next comes the neck
region between the dumbbells. Capillary force breaks
this region into smaller but still substantial ’satellites’;
see, for instance, the middle satellite of the last frame
of Fig. 6. The third category is comprised of the small-
est fragments which lie between the satellites and make
up only a few percent of the mother drop volume. Fig-
ures 8 and 9 show experimental photographs of frag-
ments produced by breakup in shear. The fragments
are found to scale with the critical size a∗, indepen-
dent of the parent drop radius a0, so that an appropri-
ate dimensionless daughter radius is ad = ad/a∗. This
scaling has also been observed in experiments of drop
breakup in shear flow [Marks (1998); Cristini, Guido,
Alfani, Blawzdziewicz, and Loewenberg (2003)], and
in numerical simulations of drop breakup in stochas-
tic flows [Cristini, Blawzdziewicz, Loewenberg, and
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Collins (2003)] and shear flows with inertia [Renardy
and Cristini (2001a); Renardy, Cristini, and Li (2002);
Renardy and Cristini (2001b)].

Figure 8 : Fig. 2 of Cristini, Guido, Alfani,
Blawzdziewicz, and Loewenberg (2003). Sequence of
breaking drop in shear flow λ = 1.02, a=1.17; time t as
indicated, predicted values shown in parentheses. Im-
ages from experiment; profiles from numerical simula-
tion with boundary integral method up to pinch-off event.
Top-view of drop, in direction parallel to velocity gradi-
ent.

Figure 8 shows a fluid pair with viscosity ratio λ = 1.02
in Stokes flow just above criticality. Numerical simu-
lations with a boundary integral method are plotted to-
gether. In figure 9, the mother drop size is larger so
that more droplets are created. The first daughter drops
attain a constant value ad for sufficiently super-critical
a0. In the figures, ad ∼ 0.90 for a0 > 1.4; smaller par-
ent drops have insufficient volume to produce daughters
of this size. Experiments at other fluid properties show
the same qualitative behavior of daughter drops that sat-
urate to a specific percentage of the critical drop size.
After the first daughter drops separate, a ‘neck’ is left be-
hind which breaks up further, either by end-pinching or
capillary-wave instability [Stone and Leal (1989)]. The
larger satellite drops scale with the critical size drop, just
as in the case of the first daughters. For small satellite
drops, the external flow is unimportant. Their sizes are
determined by the width of the neck produced by the pri-
mary pinch-off event. For a0 >> 1, the neck width is
found to scale with a∗. In particular, the dimensionless

Figure 9 : As in Fig. 8 with a = 1.38. Side-view of
drop, in direction parallel to vorticity. Flow stopped in
last frame.

neck length at pinch-off ln, and equivalent neck radius rn

in Figs. 8 and 9 satisfy

πr2
nln = v0 −2vd, (11)

where v0 −2vd is the excess volume of the parent drop.
For large a0, rn approaches a fixed value, and satellites
produced by the breakup of the neck therefore scale with
the critical drop size a∗. Thus, all drop fragments scale
with the critical drop size.

Cumulative size distributions of drop fragments obtained
from Stokes flow experiments are shown in Fig. 10
[Cristini, Guido, Alfani, Blawzdziewicz, and Loewen-
berg (2003)]. The vertical axis shows the fraction of
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daughter drops of size less than or equal to the num-
ber plotted on the horizontal axis. The distributions for
each experiment show two distinct daughter drops and
three size classes of satellite drops (1) 0.4 < a < 0.8, (2)
0.10≤ a ≤ 0.3, and (3) a ≤ 0.1. The number of satellites
within each class is denoted by Ni(i = 1,2,3). The largest
(class 1) satellites are clearly distinguishable. The num-
ber of class 1 and 2 satellites are approximately equal,
consistent with the alternating periodic sequence of large
and small satellites that is typical of jet breakup. Ac-
cordingly, class 2 satellites are defined as the N2 largest
subclass-1 fragments, where N2 = N1 + 1. The small-
est (class 3) fragments account for only ≈ 0.1% of the
parent drop volume. Figure 11 replots the same infor-
mation as Fig. 10, but shows separately the cumulative
distribution of the primary daughter drops and the class
1 and 2 satellites. For large a0, the distribution of large
satellites shows a tendency to become independent of the
parent drop size, consistent with the scaling arguments
discussed earlier. Zhao and Goveas (2001) observed that
a narrower size distribution of fragments is produced by
drop breakup in viscoelastic, rather than Newtonian flu-
ids.

Methods for producing controlled micro-sized droplets
mostly rely on the use of surfactants and complex flu-
ids in a variety of flows such as shear (see section 5
below), co-flowing streams [Umbanhowar, Prasad, and
Weitz (2000)] and extrusion flow [Kobayashi, Yasuno,
Iwamoto, Shono, Satoh, and Nakajima (2002)]. Even
without the use of surfactants, Cristini, Guido, Alfani,
Blawzdziewicz, and Loewenberg (2003) demonstrated
that nearly bi-disperse emulsions of large numbers of
microscopic droplets of controlled sizes and generation
times can be achieved; see Figs. 10 and 11. The two sizes
alternate, perhaps because of the asymmetrical evolution
of the drop interface near the pinch-off region into cones
with different angles during the final stages of pinch-off
[Lister and Stone (1998)].

The scaling for the first daughter drops and neck frag-
ments aid in interpreting the experimental data of Sec-
tion 4.6 of Marks (1998). His Fig. 4.6.1.a, reproduced
in Fig. 12 gives five sample histograms of daughter drop
sizes, placed in four bins. The 1.0 bin, 0.75 bin, 0.50
bin and 0.25 bin represent 0.75 < Cad/Ca∗, 0.50 <
Cad/Ca∗ < 0.75, 0.25 < Cad/Ca∗ < 0.50, Cad/Ca∗ <

0.25, respectively. The first daughter drops fall into the
1.0 bin. The neck fragments mostly fall into the 0.75

Figure 10 : Fig. 10 of Cristini, Guido, Alfani,
Blawzdziewicz, and Loewenberg (2003). Cumulative
size distribution of drop fragments from experiments;
λ = 1.02, a0 = 1.22 (�), a0 = 1.38 (•).

Figure 11 : Generation of nearly bi-dispersed emul-
sion (From Figs. 11 and 12 of Cristini, Guido, Alfani,
Blawzdziewicz, and Loewenberg (2003)). The cumula-
tive distribution of droplets of alternating sizes (inset)
formed from breakup of a mother drop in shear flow is
shown. The droplet sizes a are rescaled with the maxi-
mum stable size in the flow.

bin, while tiny drops fall into the other two bins. Beyond
the production of the two largest daughters, no other
drops of this order of magnitude are produced because
the rest of the drops come from the elongated neck. The
trend, therefore, is that as the mother capillary number
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Figure 12 : Fig. 4.6.1.a of Marks (1998). Daughter drop
size distributions at several values of Ki = Ca/Ca∗. The
horizontal axis is daughter drop size Kd =Cad/Ca∗. Five
sample histograms at various values of Ki are shown.
These graphs represent typical histograms and were cho-
sen to show a range of Ki’s.

increases, the volume fraction in the 0.75 bin increases
and eventually dominates. The histogram at Ki = 1.0 de-
notes the fact that just above criticality, most of the drop
goes into the first daughter drops in the 1.0 bin. Our re-
sults suggest that just two daughter drops fall into the 1.0
bin and the neck fragments fall into the 0.75 bin. The
moons fall into the smaller bins. We predict from this
that when Ki = Ca/Ca∗ = 2, the volume fraction of the
neck is 0.86, and when Ki = 6.1, it is 0.995. This is a
close prediction of the two histograms in his figure. Gen-
erally, at sufficiently super critical conditions, the total
number of main fragments N are expected to scale as

N ∼ (k/α)3, (12)

where k = Ca/Ca∗ and α is the fragment radius/critical
radius. This scaling is obtained from conservation of vol-
ume.

4 Inertia-induced breakup

Inertia is measured by the Reynolds number

Re = ρmγ̇a2/µm . (13)

There are three trends for the overall effect of inertia
[Li, Renardy, and Renardy (2000); Renardy and Cristini

(2001a)]. First, inertia rotates the drop, so that at higher
Reynolds numbers, the steady states are more aligned to-
ward the vertical than in Stokes flow and therefore the
drop experiences greater shear. Secondly, in Stokes flow,
the flow inside the drop consists of a single vortical swirl.
With increased inertia, the velocity field bifurcates, with
additional swirls. Thirdly, the length of the drop in steady
states just below breakup shortens as inertia increases.
The symmetry across the mid-plane of the steady state,
evident in Stokes flow, is lost.

For large Reynolds numbers, the Reynolds stress is of
order ρ|v|2 where the speed is γ̇a. When this inertial
stress reaches the magnitude of capillary stress, which is
of order σ/a, the drop breaks: ργ̇2a2 ∼ σ/a. Division by
µγ̇ yields the order of magnitude of the critical Reynolds
number, above which the drop breaks:

Re ∼ 1/Ca. (14)

In fact, the ratio of inertial to capillary forces is the Weber
number

We = ReCa. (15)

In the inviscid limit, the critical Weber number is approx-
imately 3.3, which is consistent with the scaling of (14).

Renardy and Cristini (2001b) and Renardy, Cristini, and
Li (2002) focuss on the case of equal viscosities and den-
sities for the drop and matrix liquids, and investigate neck
breakup by keeping the flow strength the same and in-
creasing the parent drop size. For example, when fluid
properties and external flow are fixed at Re = 391Ca2,
the first daughter drops are approximately 50% to 60%
of the critical drop volume. The volumes of the neck
drops are 10% to 15% of the critical drop volume. The
moons which are spawned from the neck immediately
after the first daughter drops detach are extremely small.
As the capillary number increases, more of the volume
goes into the neck and its breakup approaches that of a
filament. Figure 13 shows evolution at Re = 15,Ca =
0.196 = 1.27Ca∗, where the first daughter drop volume
is 54% of the critical volume. The volumes of the main
neck fragments again lie between 10% to 17% of the crit-
ical drop volume. Each main drop is followed by one or
more small drops, or ‘moons’.

Figure 14 shows mother drops indicated by circles. The
first daughter drops (indicated by stars) approach 54% of
the critical volume (radius ad ≈ 0.81a∗) as the mother
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Figure 13 : Fig. 11 of Renardy, Cristini, and Li (2002).
Re = 15,Ca = 0.196 = 1.27Ca∗, top view, Breakup se-
quence computed with VOF-CSF.
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Figure 14 : Fig. 12 of Renardy, Cristini, and Li (2002).
Re vs Ca for the critical curve (solid); Re = K.Ca2

(dashed), K = 391, follows an experiment with fluid
properties and flow strength fixed, while the radius of
mother drop varies. Circles represent mother drop data.
Asterisks denote first daughter drop data Red vs Cad. Tri-
angles denote the rest of the fragments. Small fragments
at the level of the discretized mesh are not included.

drop size increases. Compared with Stokes flow results
discussed in section 3 (roughly 70% of volume, corre-
sponding to ad ≈ 0.9a∗), the drops are smaller with in-
ertia. The fragments from the neck (Δ) lie between 10%
to 17% of the critical volume (radius ≈ 0.5a∗, to be con-
trasted to the value 0.64a∗ found by Cristini, Guido, Al-
fani, Blawzdziewicz, and Loewenberg (2003) from ex-
periments for drop-to-matrix viscosity ratio 0.1). Smaller
fragments with ad/a0 < 0.3 occur in each numerical sim-
ulation and are not included in the plot because their vol-
ume fraction is small. These results indicate that the size
of the large satellites produced from breakup events in
the slender neck also scales at large capillary numbers
with the critical size.

For sufficiently high capillary number (mother drop
size), we find that the main contribution to the volume
distribution resulting from the neck lies in the range
0.4 < Cad/Ca∗ < 0.6. These drops are slightly smaller
than for Stokes flow, for which experimental data in Sec-
tion 4.6 of Marks (1998) put these in the range 0.5 <

Cad/Ca∗ < 0.75. These Stokes flow results and the
present work conclude that there are tiny drops that con-
tribute relatively little volume fraction for Cad/Ca∗ <
0.4.

At the instant when the first daughter drops pinch off, the
neck is elongated to roughly its maximum length, and
cylindrical in a central region, tapering off to pencil tips
toward the ends. Renardy, Cristini, and Li (2002) tabu-
lates the ‘effective’ capillary number for the cylindrical
neck Can. This is calculated from the length L of the
neck (projected onto the x-axis) just after the first daugh-
ter drops detach, and the volume in the neck. An effective
radius rn is calculated for this, assuming the neck is cylin-
drical, and of length L, or πr2

nL = (4/3)πa3
0−2(4/3)πa3

d,
so that

rn = [
4a3

0(1−2( ad
a0

)3)

3L
]1/2, (16)

where ad is the first daughter drop radius, and

Can = Ca(rn/a0). (17)

At Re = 15, the drops which result from the neck have
capillary numbers CaDneck between 0.08 and 0.09, and
if CaDneck = FCan, then F ranges from 2.4 to 2.8. If
the breakup were a capillary breakup of a viscous jet in
a quiescent liquid as considered in Tjahjadi, Stone, and
Ottino (1992), then

CaDneck = FCan, F = 2. (18)
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Here, however, we have repeated end-pinching, which
produces larger drops.

Figure 15 shows the volume fraction relative to the
mother drop volume, Vd/Va = (Cad/Ca∗)3/(Caa/Ca∗)3,
for each Cad/Ca∗. There are always tiny drops between
the main fragments which have not been included in the
graphs. The trend, as the mother drop size increases,
is the growth in drops of size roughly half that of the
mother drop. The first daughter drops remain as the
largest drops, at roughly 0.8 of the mother drop volume,
and there are no other drops of that magnitude in the sim-
ulations reported.

The scaling for the drops As the capillary number in-
creases along the parabola shown in Fig. 14, the first
daughters saturate to a specific percentage of the criti-
cal drop size. The neck radius determines the size of the
subsequent drops because they are of the same order of
magnitude. As the capillary number increases to infinity,
the ratio of daughter drop radii to mother drop radius de-
creases to zero, ad/a0 → 0 and equation (16) shows that
the effective neck radius satisfies

rn ∼ L−1/2a3/2
0 . (19)

The capillary numbers covered in Renardy, Cristini, and
Li (2002) are not sufficiently large for this scaling to ap-
ply, because the ratio ad/a0 is not negligible. Therefore,
in our regime, rn is influenced by the two competing ef-
fects in equation (16): L increases with increasing Ca,
and the numerator 1−2(ad/a0)3 also increases.

For large capillary numbers, the effect of surface ten-
sion is initially small and the drop stretches following the
simple shear flow, elongates, until eventually, the cross-
section of the drop evolves to a circular shape, length
scales are reached at which surface tension becomes im-
portant, and pinching begins. This pinching begins when
an effective radius is approximately the critical radius:

re ≈ rc, rc = a0
Ca∗

Ca
. (20)

This effective radius might be interpreted either as the
effective neck radius for an extremely elongated case,

but more appropriately for our simulations, as an average
radius for a less elongated shape, where πr2

eLT equals
the original drop volume, with LT being the total length.
When pinch-off occurs, the total length of the drop is of
order

LT ∼ r−2
c a3

0 ∼ a0(
Ca
Ca∗

)2. (21)
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Figure 15 : Fig. 17 of Renardy, Cristini, and Li (2002).
Drop size distribution. (a) Re = 12, Ca = 0.14Ca∗. (b)
Re = 15,Ca = 1.27Ca∗. (c) Re = 20,Ca = 1.47Ca∗. This
excludes moons which lie between every main drop and
account for a few percentage of the mother drop size.
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Note that along the parabola of Fig. 14, Re = K.Ca2, and
equation (21) gives

LT ∼ Re. (22)

5 Complex Fluids

Emulsification is typically promoted by surfactants
which decrease surface tension on the droplet inter-
faces [Stone and Leal (1990); Milliken, Stone, and Leal
(1993); Milliken and Leal (1994); Pawar and Stebe
(1996); Eggleton, Pawar, and Stebe (1999); Li and
Pozrikidis (1997); Siegel (1999); Maldarelli and Huang
(1996)]. Monodispersed emulsions of large numbers of
droplets with controlled sizes are generated using the tip-
streaming phenomenon due to redistribution of surfac-
tants to localized end caps on the drop interface [Bruijn
(1993); Eggleton, Tsai, and Stebe (2001)].

Experimental studies show that the use of complex flu-
ids can lead to a dramatic alteration of the rupturing
phenomenon Utracki and Shi (1992). Mason, Bibette,
and Weitz (1996); Mason and Bibette (1997) produced
monodisperse emulsions in a narrow-gap shear cell with
a viscoelastic medium; Fig. 16 shows their size distribu-
tion.

Figure 16 : Fig. 8 of Mabille, Schmitt, Gorria, Calderon,
Faye, Deminiére, and Bibette (2000). Size distribu-
tion of an emulsion obtained by shearing at 2500 s−1,
a premixed emulsion whose elasticity is mainly provided
by the continuous phase: C = 30%;Ψ = 40%;D[4,3] =
5.5µm;U = 19.3%.

Zhao and Goveas (2001) study a dispersed Newtonian
phase in a Newtonian medium and a viscoelastic medium
under the same shear rates. Initially, the emulsion con-
tains mother drops of various sizes. During satellite for-
mation, the viscoelastic medium produces cylinders of
more uniform radii than the Newtonian medium. The
cylinders break up due to capillary waves and result in
more uniform daughter drops; see Fig. 17.

Figure 17 : From Figs. 3 and 4 of Zhao and Goveas
(2001). Left: (a) Presheared Newtonian emulsion con-
taining 2 wt % silicone oil in glycerol with 2 wt %
TWEEN-80, which corresponds to a viscosity ratio of
0.453. (b) Newtonian emulsion under shear. Drops of
different sizes are deformed into cylinders which have
different widths at breakup. The resulting daughter drops
are nonuniform along the length of the cylinder. Right:
(a) Presheared viscoelastic emulsion containing 2 wt %
silicone oil in an aqueous solution of 12 wt % PVP and
2 wt % SDS, which corresponds to a viscosity ratio of
0.482. (b) Viscoelastic emulsion under shear, showing
that cylinders have similar widths at breakup. The result-
ing daughter drops are very uniform.

6 Conclusions

Theoretical, numerical and experimental investigations
of drop breakup in sheared emulsions were reviewed.
The magnitude of flow and fluid properties are impor-
tant in determining the drop size distribution. The exam-
ination of universal scalings for this type of flow leads
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to the idea that sheared emulsions can be used as an al-
ternative to microfluidics for the production of controlled
monodisperse droplets. Drop sizes can be optimized with
the use of direct numerical simulations. Open challenges
to be addressed include the study of the effect of com-
plex fluids such as viscoelastic liquids to achieve desired
drop sizes. Finally, for non-dilute emulsions, effects of
coalescence events need to be taken into account [Lappa
(2005a,b)].
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